Skip to main content

Advertisement

Log in

LION: a simple and rapid method to achieve CRISPR gene editing

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The RNA-guided CRISPR–Cas9 technology has paved the way for rapid and cost-effective gene editing. However, there is still a great need for effective methods for rapid generation and validation of CRISPR/Cas9 gRNAs. Previously, we have demonstrated that highly efficient generation of multiplexed CRISPR guide RNA (gRNA) expression array can be achieved with Golden Gate Assembly (GGA). Here, we present an optimized and rapid method for generation and validation in less than 1 day of CRISPR gene targeting vectors. The method (LION) is based on ligation of double-stranded gRNA oligos into CRISPR vectors with GGA followed by nucleic acid purification. Using a dual-fluorescent reporter vector (C-Check), T7E1 assay, TIDE assay and a traffic light reporter assay, we proved that the LION-based generation of CRISPR vectors are functionally active, and equivalent to CRISPR plasmids generated by traditional methods. We also tested the activity of LION CRISPR vectors in different human cell types. The LION method presented here advances the rapid functional validation and application of CRISPR system for gene editing and simplified the CRISPR gene-editing procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CRISPR:

Clustered regularly interspaced short palindromic repeats

Cas9:

CRISPR-associated protein 9

gRNA:

Guide RNA

DSB:

DNA double-stranded break

TIDE:

Tracking indels by decomposition

C-Check:

A dual-fluorescent surrogate reporter system for checking CRISPR cleavage activity in vivo

GGA:

Golden Gate Assembly

LION:

LIgation of double-stranded gRNA oligos into CRISPR vector by GGA followed by nucleic acid purificatiON

SpCas9-RecA:

Streptococcus pyogenes Cas9 fused to E. coli recombinant RecA protein

TLR:

Traffic light reporter

FCM:

Flow cytometry

References

  1. Jansen R et al (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43(6):1565–1575

    Article  CAS  PubMed  Google Scholar 

  2. Cong L et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jinek M et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang H, La Russa M, Qi LS (2016) CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem 85:227–264

    Article  CAS  PubMed  Google Scholar 

  5. Mali P et al (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang L et al (2015) Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 350(6264):1101–1104

    Article  CAS  PubMed  Google Scholar 

  7. Niu D et al (2017) Inactivation of porcine endogenous retrovirus in pigs using CRISPR–Cas9. Science 357(6357):1303–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lackner DH et al (2015) A generic strategy for CRISPR–Cas9-mediated gene tagging. Nat Commun 6:10237

    Article  CAS  PubMed  Google Scholar 

  9. Guo D et al (2017) Creating a patient carried Men1 gene point mutation on wild type iPSCs locus mediated by CRISPR/Cas9 and ssODN. Stem Cell Res 18:67–69

    Article  CAS  PubMed  Google Scholar 

  10. Cheng AW et al (2013) Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res 23(10):1163–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liao HK et al (2017) In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell 171(7):1495 e15–1507 e15

    Article  CAS  Google Scholar 

  12. Ma H et al (2015) Multicolor CRISPR labeling of chromosomal loci in human cells. Proc Natl Acad Sci USA 112(10):3002–3007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lin L et al (2018) Genome-wide determination of on-target and off-target characteristics for RNA-guided DNA methylation by dCas9 methyltransferases. Gigascience 7(3):1–19

    Article  CAS  PubMed  Google Scholar 

  14. Gaudelli NM et al (2017) Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551(7681):464–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Komor AC et al (2017) Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T: A base editors with higher efficiency and product purity. Sci Adv 3(8):eaao4774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Henrik Devitt Møller LL, Xi X, Trine SP, Jinrong H, Luhan Y, Eigil K, Uffe BJ, Xiuqing Z, Xin L, Xun X, Jian W, Huanming Y, George MC, Lars B, Birgitte R, Yonglun L (2018) CRISPR-C: circularization of genes and chromosome by CRISPR in human cells. Nucleic Acids Res 2018:gky767

    Google Scholar 

  17. Jensen KT et al (2017) Chromatin accessibility and guide sequence secondary structure affect CRISPR–Cas9 gene editing efficiency. FEBS Lett 591(13):1892–1901

    Article  CAS  PubMed  Google Scholar 

  18. Bassett AR et al (2014) Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep 6(6):1178–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang T et al (2014) Genetic screens in human cells using the CRISPR–Cas9 system. Science 343(6166):80–84

    Article  CAS  PubMed  Google Scholar 

  20. Moreno-Mateos MA et al (2015) CRISPRscan: designing highly efficient sgRNAs for CRISPR–Cas9 targeting in vivo. Nat Methods 12(10):982–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gagnon JA et al (2014) Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS One 9(5):e98186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chari R et al (2015) Unraveling CRISPR–Cas9 genome engineering parameters via a library-on-library approach. Nat Methods 12(9):823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lim Y et al (2016) Structural roles of guide RNAs in the nuclease activity of Cas9 endonuclease. Nat Commun 7:13350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thyme SB et al (2016) Internal guide RNA interactions interfere with Cas9-mediated cleavage. Nat Commun 7:11750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen Y et al (2017) Using local chromatin structure to improve CRISPR/Cas9 efficiency in zebrafish. PLoS One 12(8):e0182528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smith JD et al (2016) Quantitative CRISPR interference screens in yeast identify chemical–genetic interactions and new rules for guide RNA design. Genome Biol 17:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liang P et al (2015) CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6(5):363–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ruan GX et al (2017) CRISPR/Cas9-mediated genome editing as a therapeutic approach for Leber congenital amaurosis 10. Mol Ther 25(2):331–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liang G et al (2016) Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing. Sci Rep 6:21451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brinkman EK et al (2014) Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res 42(22):e168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou Y et al (2016) Enhanced genome editing in mammalian cells with a modified dual-fluorescent surrogate system. Cell Mol Life Sci 73(13):2543–2563

    Article  CAS  PubMed  Google Scholar 

  32. Zhang JH et al (2014) Improving the specificity and efficacy of CRISPR/CAS9 and gRNA through target specific DNA reporter. J Biotechnol 189:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang Z et al (2015) Fast and sensitive detection of indels induced by precise gene targeting. Nucleic Acids Res 43(9):e59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rose JC et al (2017) Rapidly inducible Cas9 and DSB-ddPCR to probe editing kinetics. Nat Methods 14(9):891–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jewkes R et al (2015) Relationship between single and multiple perpetrator rape perpetration in South Africa: a comparison of risk factors in a population-based sample. BMC Public Health 15:616

    Article  Google Scholar 

  36. Ran FA et al (2013) Genome engineering using the CRISPR–Cas9 system. Nat Protoc 8(11):2281–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Doench JG et al (2014) Rational design of highly active sgRNAs for CRISPR–Cas9-mediated gene inactivation. Nat Biotechnol 32(12):1262–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chu VT et al (2015) Increasing the efficiency of homology-directed repair for CRISPR–Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 33(5):543–548

    Article  CAS  PubMed  Google Scholar 

  39. Vad-Nielsen J et al (2016) Golden Gate Assembly of CRISPR gRNA expression array for simultaneously targeting multiple genes. Cell Mol Life Sci 73(22):4315–4325

    Article  CAS  PubMed  Google Scholar 

  40. Sentmanat MF et al (2018) A survey of validation strategies for CRISPR–Cas9 editing. Sci Rep 8(1):888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vouillot L, Thelie A, Pollet N (2015) Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases. G3 (Bethesda) 5(3):407–415

    Article  CAS  PubMed Central  Google Scholar 

  42. Germini D et al (2017) A one-step PCR-based assay to evaluate the efficiency and precision of genomic DNA-editing tools. Mol Ther Methods Clin Dev 5:43–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen X et al (2014) Dual sgRNA-directed gene knockout using CRISPR/Cas9 technology in Caenorhabditis elegans. Sci Rep 4:7581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Paix A et al (2014) Scalable and versatile genome editing using linear DNAs with microhomology to Cas9 Sites in Caenorhabditis elegans. Genetics 198(4):1347–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Adikusuma F, Pfitzner C, Thomas PQ (2017) Versatile single-step-assembly CRISPR/Cas9 vectors for dual gRNA expression. PLoS One 12(12):e0187236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhen S et al (2017) Inhibition of long non-coding RNA UCA1 by CRISPR/Cas9 attenuated malignant phenotypes of bladder cancer. Oncotarget 8(6):9634–9646

    PubMed  Google Scholar 

  47. Han J et al (2014) Efficient in vivo deletion of a large imprinted lncRNA by CRISPR/Cas9. RNA Biol 11(7):829–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang JP et al (2017) Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biol 18(1):35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zheng Q et al (2014) Precise gene deletion and replacement using the CRISPR/Cas9 system in human cells. Biotechniques 57(3):115–124

    Article  CAS  PubMed  Google Scholar 

  50. Richardson CD et al (2016) Non-homologous DNA increases gene disruption efficiency by altering DNA repair outcomes. Nat Commun 7:12463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Certo MT et al (2011) Tracking genome engineering outcome at individual DNA breakpoints. Nat Methods 8(8):671–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yanik M et al (2018) Development of a reporter system to explore MMEJ in the context of replacing large genomic fragments. Mol Ther Nucleic Acids 11:407–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lin L et al (2017) Fusion of SpCas9 to E. coli Rec A protein enhances CRISPR–Cas9 mediated gene knockout in mammalian cells. J Biotechnol 247:42–49

    Article  CAS  PubMed  Google Scholar 

  54. Kuhar R et al (2014) Novel fluorescent genome editing reporters for monitoring DNA repair pathway utilization at endonuclease-induced breaks. Nucleic Acids Res 42(1):e4

    Article  CAS  PubMed  Google Scholar 

  55. Gomez-Cabello D et al (2013) New tools to study DNA double-strand break repair pathway choice. PLoS One 8(10):e77206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Davis L, Maizels N (2014) Homology-directed repair of DNA nicks via pathways distinct from canonical double-strand break repair. Proc Natl Acad Sci USA 111(10):E924–E932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Fred Dubee for his generous help with language editing. This project was supported by the Sanming Project of Medicine in Shenzhen (SZSM201612074), BGI-Qingdao, and BGI-Shenzhen. Y.L was partially supported by the Danish Research Council for Independent Research (DFF–1337-00128), the Sapere Aude Young Research Talent Prize (DFF-1335-00763A), and Aarhus University Strategic Grant (AU-iCRISPR). L.L. was supported by the Lundbeck Foundation (R219-2016-1375) and the DFF Sapere Aude Starting Grant (8048-00072A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yufeng Xing, Yonglun Luo or Lin Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, X., Luo, L., Nodzyński, M. et al. LION: a simple and rapid method to achieve CRISPR gene editing. Cell. Mol. Life Sci. 76, 2633–2645 (2019). https://doi.org/10.1007/s00018-019-03064-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03064-x

Keywords

Navigation