Abstract
In contrast to the insidious and poorly immunogenic human papillomavirus (HPV) infections, vaccination with the HPV virus-like particles (vlps) is non-infectious and stimulates a strong neutralizing-antibody response that protects HPV-naïve vaccinees from viral infection and associated cancers. However, controversy about alleged adverse events following immunization (AEFI) with the vlps have led to extensive reductions in vaccine acceptance, with countries like Japan dropping it altogether. The AEFIs are grouped into chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). In this review, we present a hypothesis that the AEFIs might arise from malfunctions within the immune system when confronted with the unusual antigen. In addition, we outline how the pathophysiology of the AEFIs can be cost-effectively investigated with the holistic principles of systems vaccinology in a two-step process. First, comprehensive immunological profiles of HPV vaccinees exhibiting the AEFIs are generated by integrating the data derived from serological profiling for prominent HPV antibodies and serum cytokines, with data from serum metabolomics, peripheral white blood cells transcriptomics and gut microbiome profiling. Next, the immunological profiles are compared with corresponding profiles generated for matched (a) HPV vaccinees without AEFIs; (b) non-HPV-vaccinated individuals with CFS/ME-like symptoms; and (c) non-HPV-vaccinated individuals without CFS/ME. In these comparisons, any causal links between HPV vaccine and the AEFIs, as well as the underlying molecular basis for the links will be revealed. Such a study should provide an objective basis for evaluating HPV vaccine safety and for identifying biomarkers for individuals at risk of developing AEFI with HPV vaccination.
This is a preview of subscription content, access via your institution.



Abbreviations
- HPV:
-
Human papillomavirus
- AEFI:
-
Adverse events following immunization
- CFS/ME:
-
Chronic fatigue syndrome/myalgic encephalomyelitis
- DC:
-
Dendritic cells
- APC:
-
Antigen-presenting cell
- BCR:
-
B cell receptor
- TCR:
-
T cell receptor
References
- 1.
World Health Organization (WHO) (2018) Human papillomavirus (HPV) and cervical cancer at http://www.who.int/news-room/fact-sheets/detail/human-papillomavirus-(hpv)-and-cervical-cancer. Accessed 8 Oct 2018
- 2.
Mariani L, Venuti A (2010) HPV vaccine: an overview of immune response, clinical protection, and new approaches for the future. J Transl Med 8:105. https://doi.org/10.1186/1479-5876-8-105
- 3.
Paul WE (2011) Bridging innate and adaptive immunity. Cell 147(6):1212–1215
- 4.
Larson HJ, Wilson R, Hanley S et al (2014) Tracking the global spread of vaccine sentiments: the global response to Japan’s suspension of its HPV vaccine recommendation. Hum Vaccines Immunother 10(9):2543–2550
- 5.
Brinth L, Pors K, Hoppe AAG et al (2015) Is chronic fatigue syndrome/myalgic encephalomyelitis a relevant diagnosis in patients with suspected side effects to human papilloma virus vaccine? Int J Vaccines Vaccin 1(1):00003. https://doi.org/10.15406/ijvv.2015.01.00003
- 6.
Global Advisory Committee on Vaccine Safety (2017) Safety update of HPV vaccines at http://www.who.int/vaccine_safety/committee/reports/June_2017/en/. Accessed 8 Oct 2018
- 7.
Danish Health Authority, news (2016) Sharp fall in HPV vaccination rate at https://www.sst.dk/en/news/2016/sharp-fall-in-hpv-vaccination-rate. Accessed 8 Oct 2018
- 8.
Brodin P, Jojic V, Gao T et al (2015) Variation in the human immune system is largely driven by non-heritable influences. Cell 160:37–47. https://doi.org/10.1016/j.cell.2014.12.020
- 9.
Brodin P, Davis MM (2017) Human immune system variation. Nat Rev Immunol 17(1):21–29. https://doi.org/10.1038/nri.2016.125
- 10.
Hagana T, Nakaya HI, Subramaniam S et al (2015) Systems vaccinology: enabling rational vaccine design with systems biological approaches. Vaccine 33(40):5294–5301. https://doi.org/10.1016/j.vaccine.2015.03.072
- 11.
Querec TD, Akondy RS, Lee EK et al (2009) Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat Immunol 10(1):116–125. https://doi.org/10.1038/ni.1688
- 12.
Avey S, Cheung F, Fermin D et al (2017) Multicohort analysis reveals baseline transcriptional predictors of influenza vaccination responses (HIPC-CHI Signatures Project Team and HIPC-I Consortium). Sci Immunol 2(14):eaal4656. https://doi.org/10.1126/sciimmunol.aal4656
- 13.
Burd EM (2003) Human papillomavirus and cervical cancer. Clin Microbiol Rev 16(1):1–17
- 14.
Longworth MS, Laimins LA (2004) Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiol Mol Biol Rev 68(2):362–372
- 15.
Fehrmann F, Laimins LA (2003) Human papillomaviruses: targeting differentiating epithelial cells for malignant transformation. Oncogene 22:5201–5207
- 16.
Smith JS, Lindsay L, Hoots B et al (2007) Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: a meta-analysis update. Int J Cancer 121(3):621–632
- 17.
Ashrafi GH, Haghshenas MR, Marchetti B et al (2005) E5 protein of human papillomavirus type 16 selectively downregulates surface HLA. Int J Cancer 113:276–283
- 18.
Sapp M, Volpers C, Muller M, Streck RE (1995) Organization of the major and minor capsid proteins in human papillomavirus type 33 virus-like particles. J Gen Virol 76:2407–2412
- 19.
Buck CB, Cheng N, Thompson CD et al (2008) Arrangement of L2 within the papillomavirus capsid. J Virol 82:5190–5197
- 20.
Conway MJ, Meyers C (2009) Replication and assembly of human papillomaviruses. J Dent Res 88(4):307–317. https://doi.org/10.1177/0022034509333446
- 21.
Zheng Z-M, Baker CC (2006) Papillomavirus genome structure, expression and post-transcriptional regulation. Front Biosci 11:2286–2302
- 22.
Sterlinko GH, Weber M, Elston R et al (2004) Inhibition of E6-induced degradation of its cellular substrates by novel blocking peptides. J Mol Biol 335:971–985
- 23.
Yim EK, Park JS (2005) The role of HPV E6 and E7 oncoproteins in HPV-associated cervical carcinogenesis. Cancer Res Treat 37(6):319–324
- 24.
Hasan UA, Bates E, Takeshita F et al (2007) TLR9 expression and function is abolished by the cervical cancer-associated human papillomavirus type 16. J Immunol 178:3186–3197
- 25.
Kanodia S, Fahey LM, Kast WM (2007) Mechanisms used by human papillomaviruses to escape the host immune response. Curr Cancer Drug Targets 7:79–89
- 26.
Moscicki AB, Schiffman M, Kjaer S, Villa LL (2006) Chapter 5: updating the natural history of HPV and anogenital cancer. Vaccine 24(Suppl 3):S3-42–S3-51
- 27.
Roden RBS, Lowy DR, Schiller JT (1997) Papillomavirus is resistant to desiccation. J Infect Dis 176:1076–1079
- 28.
zur Hausen H H, de Villiers EM (1994) Human papillomaviruses. Annu Rev Microbiol 48:427–447
- 29.
Walboomers JMM, Jacobs MV, Manos MM et al (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189:12–19
- 30.
Laimins LA (1993) The biology of human papillomaviruses: from warts to cancer. Infect Agents Dis 2(2):74–86
- 31.
Vinokurova S, Wentzensen N, Kraus I et al (2008) Type-dependent integration frequency of human papillomavirus genomes in cervical lesions. Cancer Res 68(1):307–313
- 32.
Joura EA, Giuliano AR, Ole-Erik Iversen O et al (2015) A 9-valent HPV vaccine against infection and intraepithelial neoplasia in women. N Engl J Med 372:711–723. https://doi.org/10.1056/NEJMoa1405044
- 33.
Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969. https://doi.org/10.1038/nri2448
- 34.
Epelman S, Kory J, Lavine KJ, Randolph GJ (2014) Origin and functions of tissue macrophages. Immunity 41(1):21–35. https://doi.org/10.1016/j.immuni.2014.06.013
- 35.
Chávez-Galán L, Olleros ML, Vesin D, Garcia I (2015) Much more than M1 and M2 macrophages, there are also CD169+ and TCR+ macrophages. Front Immunol 6:263. https://doi.org/10.3389/fimmu.2015.00263
- 36.
Kobayashi SD, DeLeo FR (2009) Towards a comprehensive understanding of the role of neutrophils in innate immunity: a systems biology-level approach. Wiley Interdiscip Rev Syst Biol Med 1(3):309–333. https://doi.org/10.1002/wsbm.32
- 37.
Tak T, Tesselaar K, Pillay J et al (2013) What’s your age again? Determination of human neutrophil half-lives revisited. J Leukoc Biol 94:595–601
- 38.
Lakschevitz FS, Hassanpour S, Rubin A et al (2016) Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res 342(2):200–209. https://doi.org/10.1016/j.yexcr.2016.03.007
- 39.
Steinman RM (2006) Introduction to some of the issues and mysteries considered in this book on dendritic cells. In: Lutz MB, Romani N, Steinkasserer A (eds) Handbook of Dendritic Cells. Biology, Diseases, and Therapies, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 3–11
- 40.
Geissmann F, Manz MG, Jung S et al (2010) Development of monocytes, macrophages and dendritic cells. Science 327(5966):656–661
- 41.
Collin M, McGovern N, Haniffa M (2013) Human dendritic cell subsets. Immunology 140(1):22–30
- 42.
Helft J, Ginhoux F, Bogunovic M, Merad M (2010) Review Origin and functional heterogeneity of non-lymphoid tissue dendritic cells in mice. Immunol Rev 234(1):55–75
- 43.
Merad M, Sathe P, Helft J et al (2013) The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol. https://doi.org/10.1146/annurev-immunol-020711-074950
- 44.
Shamri R, Xenakis JJ, Spencer LA (2011) Eosinophils in innate immunity: an evolving story. Cell Tissue Res 343(1):57–83. https://doi.org/10.1007/s00441-010-1049-6
- 45.
Kobayashi T, Kouzaki H, Kita H (2010) Human eosinophils recognize endogenous danger signal crystalline uric acid and produce proinflammatory cytokines mediated by autocrine ATP. J Immunol 184(11):6350–6358
- 46.
Lee JJ, Jacobsen EA, Ochkur SI et al (2012) Human vs. mouse eosinophils: “That which we call an eosinophil, by any other name would stain as red”. J Allergy Clin Immunol 130(3):572–584. https://doi.org/10.1016/j.jaci.2012.07.025
- 47.
Sokol CL, Medzhitov R (2010) Role of basophils in the initiation of Th2 responses. Curr Opin Immunol 22:73–77
- 48.
Min B, Brown MA, LeGros G (2012) Understanding the roles of basophils: breaking dawn. Immunology 135(3):192–197. https://doi.org/10.1111/j.1365-2567.2011.03530.x
- 49.
Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550. https://doi.org/10.1146/annurev.immunol.021908.132612
- 50.
Schroder K, Zhou R, Tschopp J (2010) The NLRP3 inflammasome: a sensor for metabolic danger? Science 327(5963):296–300. https://doi.org/10.1126/science.1184003
- 51.
Caligiuri MA (2008) Human natural killer cells. Blood 112(3):461–910
- 52.
Orange JS (2013) Natural killer cell deficiency. J Allergy Clin Immunol 132(3):515–526. https://doi.org/10.1016/j.jaci.2013.07.020
- 53.
Ham H, Billadeau DD (2014) Human immunodeficiency syndromes affecting human natural killer cell cytolytic activity. Front Immunol 5:2. https://doi.org/10.3389/fimmu.2014.00002
- 54.
Rothenberg EV (2014) Transcriptional control of early T and B cell developmental choices. Annu Rev Immunol 32:283–321. https://doi.org/10.1146/annurev-immunol-032712-100024
- 55.
LeBien TW, Tedder TF (2008) B lymphocytes: how they develop and function. Blood 112:1570–1580
- 56.
Zhu J, Paul WE (2008) CD4 T cells: fates, functions, and faults. Blood 112(5):1557–1569. https://doi.org/10.1182/blood-2008-05-078154
- 57.
Wan YY (2014) GATA3: a master of many trades in immune regulation. Trends Immunol 35(6):233–242. https://doi.org/10.1016/j.it.2014.04.002
- 58.
Bonilla FA, Oettgen HC (2010) Adaptive immunity. J Allergy Clin Immunol 125(2):S33–S40
- 59.
Artis D, Spits H (2015) The biology of innate lymphoid cells. Nature 517:293–301. https://doi.org/10.1038/nature14189
- 60.
Hepworth MR, Sonnenberg GF (2014) Regulation of the adaptive immune system by innate lymphoid cells. Curr Opin Immunol 27:75–82. https://doi.org/10.1016/j.coi.2014.01.013
- 61.
Nestle FO, Di Meglio P, Qin JZ, Nickoloff BJ (2009) Skin immune sentinels in health and disease. Nat Rev Immunol 9:679–691
- 62.
Franchi L, Warner N, Viani K, Nuñez G (2009) Function of Nod-like receptors in microbial recognition and host defence. Immunol Rev 227(1):106–128
- 63.
Halverson R, Torres R, Pelanda R (2004) Receptor editing is the main mechanism of B cell tolerance toward membrane antigens. Nat Immunol 5(6):645–650. https://doi.org/10.1038/ni1076 (PMID 15156139)
- 64.
Schwarz BA, Bhandoola A (2006) Trafficking from the bone marrow to the thymus: a prerequisite for thymopoiesis. Immunol Rev 209:47–57
- 65.
Takaba H, Morishita Y, Tomofuji Y et al (2015) Fezf2 orchestrates a thymic program of self-antigen expression for immune tolerance. Cell 163:975–987
- 66.
Sakaguchi S, Takahashi T, Nishizuka Y (1982) Study on cellular events in post-thymectomy autoimmune oophoritis in mice. I. Requirement of Lyt-1 effector cells for oocytes damage after adoptive transfer. J Exp Med 156:1565–1576
- 67.
Warrington R, Watson W, Kim HL, Antonetti FR (2011) An introduction to immunology and immunopathology. Allergy Asthma Clin Immunol 7(Suppl 1):S1
- 68.
International Agency for Research on Cancer (IARC) (1995) Monographs on the evaluation of carcinogenic risks to humans, no. 64.1, human papillomavirus (HPV) infection. https://www.ncbi.nlm.nih.gov/books/NBK424405/. Accessed 8 Oct 2018
- 69.
Carter JJ, Koutsky LA, Hughes JP et al (2000) Comparison of human papillomavirus types 16, 18, and 6 capsid antibody responses following incident infection. J Infect Dis 181(6):1911–1919
- 70.
Af Geijersstam V, Kibur M, Wang Z et al (1998) Stability over time of serum antibody levels to human papillomavirus type 16. J Infect Dis 177:1710–1714
- 71.
Lehtinen M, Pawlita M, Zumbach K et al (2003) Evaluation of antibody response to human papillomavirus early proteins in women in whom cervical cancer developed 1 to 20 years later. Am J Obstet Gynecol 188(1):49–55
- 72.
Leon S, Sánchez R, Patarroyo MA et al (2009) Prevalence of HPV-DNA and anti-HPV antibodies in women from Girardot, Colombia. Sex Transm Dis 36(5):290–296. https://doi.org/10.1097/OLQ.0b013e318195762c
- 73.
de Jong A, van Poelgeest MI, van der Hulst JM et al (2004) Human papillomavirus type 16-positive cervical cancer is associated with impaired CD4+ T-cell immunity against early antigens E2 and E6. Cancer Res 64:5449–5455
- 74.
Woo YL, van den Hende M, Sterling JC et al (2010) A prospective study on the natural course of low-grade squamous intraepithelial lesions and the presence of HPV16 E2-, E6- and E7-specific T-cell responses. Int J Cancer 126:133–141
- 75.
Chan PKS, Liu SJ, Cheung TH et al (2010) T-cell response to human papillomavirus type 58 L1, E6, And E7 peptides in women with cleared infection, cervical intraepithelial neoplasia, or invasive cancer. Clin Vaccine Immunol 17(9):1315–1321. https://doi.org/10.1128/CVI.00105-10
- 76.
Chan PKS, Liu SJ, Cheung JL et al (2011) T-cell response to human papillomavirus type 52 L1, E6, and E7 peptides in women with transient infection, cervical intraepithelial neoplasia, and invasive cancer. J Med Virol 83(6):1023–1030. https://doi.org/10.1002/jmv.21889
- 77.
van der Burg SH, Piersma SJ, de Jong A et al (2007) Association of cervical cancer with the presence of CD4+ regulatory T cells specific for human papillomavirus antigens. Proc Natl Acad Sci USA 104(29):12087–12092
- 78.
Molling JW, de Grujil TD, Glim J et al (2007) CD4(+) CD25hi regulatory T-cell frequency correlates with persistence of human papillomavirus type 16 and T helper cell responses in patients with cervical intraepithelial neoplasia. Int J Cancer 121(8):1749–1755
- 79.
Benton C, Shahidulhah H, Hunter JAA (1992) Human papillomaviruses in the immuno-suppressed; pp 23–26 in IARC Working Group on the evaluation of carcinogenic risk to humans. Human papillomaviruses. Lyon (FR): International Agency for Research on Cancer; 1995 (IARC monographs on the evaluation of carcinogenic risks to humans, no. 64.). https://www.ncbi.nlm.nih.gov/books/NBK424408/. Accessed 8 Oct 2018
- 80.
Braun L (1994) Role of human immunodeficiency virus infection in the pathogenesis of human papillomavirus-associated cervical neoplasia. Am J Pathol 144:209–214
- 81.
Wheeler CM, Hunt WC, Schiffman M, Castle PE (2006) Human papillomavirus genotypes and the cumulative 2-year risk of cervical pre-cancer. J Infect Dis 194:1291–1299
- 82.
Stanley M (2010) HPV—immune response to infection and vaccination. Infect Agents Cancer 5:19
- 83.
Giannini SL, Hanon E, Moris P et al (2006) Enhanced humoral and memory B cellular immunity using HPV16/18 L1 VLP vaccine formulated with the MPL/aluminium salt combination (AS04) compared to aluminium salt only. Vaccine 24(33–34):5937–5949
- 84.
De Carvalho N, Teixeira J, Roteli-Martins CM et al (2010) Sustained efficacy and immunogenicity of the HPV-16/18 AS04-adjuvanted vaccine up to 7.3 years in young adult women. Vaccine 28:6247–6255
- 85.
Scherpenisse M, Schepp RM, Mollers M et al (2013) Characteristics of HPV-specific antibody responses induced by infection and vaccination: cross-reactivity, neutralizing activity, avidity and IgG subclasses. PLoS One 8(9):e74797. https://doi.org/10.1371/journal.pone.0074797
- 86.
Handisurya A, Schellenbacher C, Haitel A et al (2016) Human papillomavirus vaccination induces neutralising antibodies in oral mucosal fluids. Br J Cancer 114:409–416. https://doi.org/10.1038/bjc.2015.462
- 87.
Ferris DG, Samakoses R, Block SL et al (2017) 4-Valent human papillomavirus (4vHPV) vaccine in preadolescents and adolescents after 10 years. Pediatrics 140(6):e20163947
- 88.
Narayan S, Choyce A, Linedale R et al (2009) Epithelial expression of human papillomavirus type 16 E7 protein results in peripheral CD8 T-cell suppression mediated by CD4+ CD25+ T cells. Eur J Immunol 39:481–490
- 89.
Varricchio F, Iskander J, Destefano F et al (2004) Understanding vaccine safety information from the vaccine adverse event reporting system. Pediatr Infect Dis J 23(4):287–294
- 90.
Xie J, Zhao L, Zhou S, He Y (2016) Statistical and ontological analysis of adverse events associated with monovalent and combination vaccines against hepatitis A and B diseases. Sci Rep 6:34318. https://doi.org/10.1038/srep34318
- 91.
Committee on the Diagnostic Criteria for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome; Board on the Health of Select Populations; Institute of Medicine (2015) Beyond myalgic encephalomyelitis/chronic fatigue syndrome: redefining an illness. National Academies Press (US), Washington (DC). https://www.ncbi.nlm.nih.gov/books/NBK274235/. Accessed 8 Oct 2018
- 92.
Dantoft TM, Ebstrup JF, Linneberg A et al (2017) Cohort description: the Danish study of functional disorders. Clin Epidemiol 9:127–139
- 93.
Wong R, Lopaschuk G, Zhu G et al (1992) Skeletal muscle metabolism in the chronic fatigue syndrome. In vivo assessment by 31P nuclear magnetic resonance spectroscopy. Chest 102(6):1716–1722
- 94.
Filler K, Lyon D, Bennett J et al (2014) Association of mitochondrial dysfunction and fatigue: a review of the literature. BBA Clin 1:12–23
- 95.
Rutherford G, Manning P, Newton JL (2016) Understanding muscle dysfunction in chronic fatigue syndrome. J Aging Res 2016:2497348. https://doi.org/10.1155/2016/2497348
- 96.
Lacourt TE, Vichaya EG, Chiu GS et al (2018) The high costs of low-grade inflammation: persistent fatigue as a consequence of reduced cellular-energy availability and non-adaptive energy expenditure. Front Behav Neurosci 12:78. https://doi.org/10.3389/fnbeh.2018.00078
- 97.
Blomberg J, Gottfries CG, Elfaitouri A et al (2018) Infection elicited autoimmunity and myalgic encephalomyelitis/chronic fatigue syndrome: an explanatory model. Front Immunol (Hypothesis Theory) 9:229. https://doi.org/10.3389/fimmu.2018.00229
- 98.
Montoya JG, Holmes TH, Anderson JN et al (2017) Cytokine signature associated with disease severity in chronic fatigue syndrome patients. Proc Natl Acad Sci USA 114:E7150–E7158. https://doi.org/10.1073/pnas.1710519114
- 99.
Brenu EW, van Driel ML, Staines DR et al (2011) Immunological abnormalities as potential biomarkers in chronic fatigue syndrome/myalgic encephalomyelitis. J Transl Med 9:81
- 100.
Hardcastle SL, Brenu EW, Johnston S et al (2015) Longitudinal analysis of immune abnormalities in varying severities of chronic fatigue syndrome/myalgic encephalomyelitis patients. J Transl Med 13:299. https://doi.org/10.1186/s12967-015-0653-3
- 101.
Nacul L, O’Donovan DG, Eliana M et al (2014) Considerations in establishing a post-mortem brain and tissue bank for the study of myalgic encephalomyelitis/chronic fatigue syndrome: a proposed protocol. BMC Res Notes 7:370
- 102.
Schondorf R, Benoit J, Wein T, Phaneuf D (1999) Orthostatic intolerance in the chronic fatigue syndrome. J Auton Nerv Syst 75(2–3):192–201
- 103.
Kanduc D (2009) Quantifying the possible cross-reactivity risk of an HPV16 vaccine. J Exp Ther Oncol 8(1):65–76
- 104.
Kanduc D, Shoenfeld Y (2016) From HBV to HPV: designing vaccines for extensive and intensive vaccination campaigns worldwide. Autoimmun Rev 15(11):1054–1061. https://doi.org/10.1016/j.autrev.2016.07.030
- 105.
Lu C, Diehl SA, Noubade R et al (2010) Endothelial histamine H1 receptor signaling reduces blood-brain barrier permeability and susceptibility to autoimmune encephalomyelitis. Proc Natl Acad Sci USA 107(44):18967–18972
- 106.
Shanas U, Bhasin R, Sutherland AK et al (1998) Brain mast cells lack the c-kit receptor: immunocytochemical evidence. J Neuroimmunol 90(2):207–211
- 107.
Letourneau R, Rozniecki JJ, Dimitriadou V, Theoharides TC (2003) Ultrastructural evidence of brain mast cell activation without degranulation in monkey experimental allergic encephalomyelitis. J Neuroimmunol 145:18–26
- 108.
Twisk FNM (2014) The status of and future research into myalgic encephalomyelitis and chronic fatigue syndrome: the need of accurate diagnosis, objective assessment, and acknowledging biological and clinical subgroups. Front Physiol 5:109. https://doi.org/10.3389/fphys.2014.00109
- 109.
Balagopalan L, Sherman E, Barr VA, Samelson LE (2011) Imaging techniques for assaying lymphocyte activation in action. Nat Rev Immunol 11(1):21–33
- 110.
Schietinger A, Delrow JJ, Basom RS et al (2012) Rescued tolerant CD8 T cells are preprogrammed to reestablish the tolerant state. Science 335:723–727
- 111.
Schietinger A, Greenberg PD (2014) Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol 35(2):51–60. https://doi.org/10.1016/j.it.2013.10.001
- 112.
Aderem A (2005) Systems biology: its practice and challenges. Cell 20:511–513
- 113.
Pulendran B, Ahmed R (2006) Translating innate immunity into immunological memory: implications for vaccine development. Cell 124:849–863
- 114.
Daniel E, Zak DE, Aderem A (2009) Systems biology of innate immunity. Immunol Rev 227(1):264–282. https://doi.org/10.1111/j.1600-065X.2008.00721.x
- 115.
Querec TD, Akondy RS, Lee EK et al (2009) Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat Immunol 10:116–125
- 116.
Pulendran B, Li S, Nakaya HI (2010) Systems vaccinology. Immunity 33(4):516–529. https://doi.org/10.1016/j.immuni.2010.10.006
- 117.
Nakaya HI, Li S, Pulendran B (2012) Systems vaccinology: learning to compute the behavior of vaccine induced immunity. Wiley Interdiscip Rev Syst Biol Med 4:193–205
- 118.
Jangi S, Gandhi R, Cox LM, Li N et al (2016) Alterations of the human gut microbiome in multiple sclerosis. Nat Commun 7:12015. https://doi.org/10.1038/ncomms12015
- 119.
Nyamundanda G, Gormley IC, Fan Y et al (2013) MetSizeR: selecting the optimal sample size for metabolomic studies using an analysis based approach. BMC Bioinform 14:338
- 120.
Muller P, Parmigiani G, Robert C, Rousseau J (2004) Optimal sample size for multiple testing. J Am Stat Assoc 99(468):990–1000
- 121.
Tibshirani R (2006) A simple method for assessing sample sizes in microarray experiments. BMC Bioinform 7:106
- 122.
Lin WJ, Hsueh HM, Chen JJ (2010) Power and sample size estimation in microarray studies. BMC Bioinform 11:48
- 123.
Gonzalez E, van Liempd S, Conde-Vancells J, Gutierrez-de Juan V, Perez-Cormenzana M, Mayo R, Berisa A, Alonso C, Marquez CA, Barr J, Lu SC, Mato JM, Falcon-Perez JM (2012) Serum UPLC-MS/MS metabolic profiling in an experimental model for acute-liver injury reveals potential biomarkers for hepatotoxicity. Metabolomics 8(6):997–1011. https://doi.org/10.1007/s11306-011-0329-9
- 124.
Timmons JA, Knudsen S, Rankinen T et al (2010) Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans. J Appl Physiol 108:1487–1496
- 125.
Gallagher IJ, Scheele C, Keller P et al (2010) Integration of microRNA changes in vivo identifies novel molecular features of muscle insulin resistance in type 2 diabetes. Genome Med 2:9
- 126.
Scherpenisse M, Schepp RM, Mollers M et al (2013) Comparison of different assays to assess human papillomavirus (HPV) type 16- and 18-specific antibodies after HPV infection and vaccination. Clin Vaccine Immunol 20(8):1329–1332. https://doi.org/10.1128/CVI.00153-13
- 127.
Pritchard CC, Cheng HH, Tewari M (2015) MicroRNA profiling: approaches and considerations. Nat Rev Genet 13(5):358–369. https://doi.org/10.1038/nrg3198
- 128.
Bizuayehu TT, Lanes CF, Furmanek T et al (2012) Differential expression patterns of conserved miRNAs and isomiRs during Atlantic halibut development. BMC Genom 13:11. https://doi.org/10.1186/1471-2164-13-11
- 129.
Baker M (2011) Metabolomics:from small molecules to big ideas. Nat Methods 8(2):117–121
- 130.
Duportet X, Aggio RB, Carneiro S, Villas-Bôas S (2012) The biological interpretation of metabolomics data can be misled by the extraction method used. Metabolomics 8(3):410–421
- 131.
Martinaz-Arranz I, Mayo R, Perez-Cormenzana M et al (2015) Data in support of enhancing metabolomics research through data mining. Data Br 3:155–164
- 132.
Guo L, Milburn MV, Ryals JA et al (2015) Plasma metabolomics profiles enhance precision medicine for volunteers of normal health. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1508425112
- 133.
Nagana Gowda GA, Zhang S, Gu H et al (2008) Metabolomics-based methods for early disease diagnostics: a review. Exp Rev Mol Diagn 8(5):617–633. https://doi.org/10.1586/14737159.8.5.617
- 134.
Wishart DS, Tzur D, Knox C et al (2007) HMDB: the human metabolome database. Nucleic Acids Res 35:D521–D526. https://doi.org/10.1093/nar/gkl923
- 135.
Wen L, Ley RE, Volchkov PV et al (2008) Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 455(7216):1109–1113
- 136.
Xavier RJ, Podolsky DK (2007) Unravelling the pathogenesis of inflammatory bowel disease. Nature 5:427–434. https://doi.org/10.1038/nature06005
- 137.
Arthur JC, Perez-Chanona E, Mühlbauer M et al (2012) Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 5:120–123
- 138.
Delzenne NM, Neyrinck AM, Backhed F, Cani PD (2011) Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat Rev Endocrinol 5:639–646
- 139.
Foster JA, McVey Neufeld KA (2013) Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 36(5):305–312
- 140.
Belkaid Y, Hand T (2014) Role of the microbiota in immunity and inflammation. Cell 157(1):121–141
- 141.
Turovskiy Y, Sutyak NK, Chikindas ML (2011) The aetiology of bacterial vaginosis. J Appl Microbiol 110:1105–1128
- 142.
Iwase T, Uehara Y, Shinji H et al (2010) Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465:346–349
- 143.
Kamada N, Chen GY, Inohara N, Nunez G (2013) Control of pathogens and pathobionts by the gut microbiota. Nat Immunol 14:685–690
- 144.
Pacheco AR, Curtis MM, Ritchie JM et al (2012) Fucose sensing regulates bacterial intestinal colonization. Nature 492:113–117
- 145.
Gantois I, Ducatelle R, Pasmans F et al (2006) Butyrate specifically down-regulates salmonella pathogenicity island 1 gene expression. Appl Environ Microbiol 72:946–949 [PubMed: 16391141]
- 146.
Molloy MJ, Grainger JR, Bouladoux N et al (2013) Intraluminal containment of commensal outgrowth in the gut during infection-induced dysbiosis. Cell Host Microbe 14:318–328
- 147.
Sansonetti PJ, Di Santo JP (2007) Debugging how bacteria manipulate the immune response. Immunity 26:149–161
- 148.
Manzel A, Muller DN, Hafler DA et al (2014) Role of “Western Diet” in inflammatory autoimmune diseases. Curr Allergy Asthma Rep 14(1):404. https://doi.org/10.1007/s11882-013-0404-6
- 149.
Wu HJ, Ivanov II, Darce J et al (2010) Gut residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32:815–827 (PubMed: 20620945)
- 150.
Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 106:19126–19131
- 151.
Kearse M, Moir R, Wilson A et al (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649
- 152.
Khatri P, Sirota M, Butte AJ (2012) Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol 8:e1002375
- 153.
Vrahatis AG, Dimitrakopoulou K, Balomenos P et al (2015) CHRONOS: a time-varying method for microRNA-mediated sub-pathway enrichment analysis. Bioinformatics 32:884–892
- 154.
Vrahatis AG, Balomenos P, Tsakalidis AK, Bezerianos A (2016) DEsubs: an R package for flexible identification of differentially expressed subpathways using RNA-seq experiments. Bioinformatics 32:3844–3846
- 155.
Kanehisa FM, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45:D353–D361
- 156.
Judeh T, Johnson C, Kumar A, Zhu D (2013) TEAK: topology enrichment analysis framework for detecting activated biological subpathways. Nucleic Acids Res 41:1425–1437
- 157.
Li C, Han J, Yao Q et al (2013) Subpathway-GM: identification of metabolic subpathways via joint power of interesting genes and metabolites and their topologies within pathways. Nucleic Acids Res 41:e101
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Campbell-Tofte, J., Vrahatis, A., Josefsen, K. et al. Investigating the aetiology of adverse events following HPV vaccination with systems vaccinology. Cell. Mol. Life Sci. 76, 67–87 (2019). https://doi.org/10.1007/s00018-018-2925-6
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords
- ‘Omics technologies
- Systems biology
- Chronic fatigue syndrome/myalgic encephalomyelitis
- Vaccine safety