Skip to main content

Advertisement

Log in

Ephrin ligands and Eph receptors contribution to hematopoiesis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Hematopoietic stem and progenitor cells reside predominantly in the bone marrow. They supply billions of mature blood cells every day during life through maturation into multilineage progenitors and self-renewal. Newly produced mature cells serve to replenish the pool of circulating blood cells at the end of their life-span. These mature blood cells and a few hematopoietic progenitors normally exit the bone marrow through the sinusoidal vessels, a specialized venous vascular system that spreads throughout the bone marrow. Many signals regulate the coordinated mobilization of hematopoietic cells from the bone marrow to the circulation. In this review, we present recent advances on hematopoiesis and hematopoietic cell mobilization with a focus on the role of Ephrin ligands and their Eph receptors. These constitute a large family of transmembrane ligands and receptors that play critical roles in development and postnatally. New insights point to distinct roles of ephrin and Eph in different aspects of hematopoiesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

HSPCs:

Hematopoietic stem/progenitor cells

CAR:

(CXCL12-abundant reticular)

Tgfβ:

Transforming growth factor β

ROS:

Reactive oxygen species

G-CSF:

Granulocyte colony-stimulating factor

WHIM:

Warts, hypogammaglobulinemia, immunodeficiency, and myelokathexis

VCAM-1:

Vascular cell adhesion molecule-1

Kit-L:

Kit ligand

MMP9:

Matrix metallopeptidase-9

GPI:

Glycophoshosphatidylinositol

FGFR:

Fibroblast growth factor receptor

PDGFR:

Platelet-derived growth factor receptor

SH2:

Src homology 2

PI3K:

Phosphoinositide 3-kinase

GEFs:

Guanosine exchange factors

VEGF:

Vascular endothelial growth factor

VEGFR2:

VEGF receptor-2

ES cells:

Embryonic stem cells

SVZ:

Subventricular zone

SGZ:

Subgranular zone

M-CSF:

Macrophage colony-stimulating factor

RANK-L:

RANK ligand

IGF:

Insulin-like growth factor

SDF1:

Stromal derived factor-1

LTC-IC:

Long-term culture initiating cells

IL-6:

Interleukin-6

FLT-3:

Fms-like tyrosine-protein kinase-3

VLA-4:

Very late antigen 4

References

  1. Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505(7483):327–334. doi:10.1038/nature12984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Palis J, Robertson S, Kennedy M, Wall C, Keller G (1999) Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 126(22):5073–5084

    CAS  PubMed  Google Scholar 

  3. Clements WK, Traver D (2013) Signalling pathways that control vertebrate haematopoietic stem cell specification. Nat Rev Immunol 13(5):336–348. doi:10.1038/nri3443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Medvinsky A, Dzierzak E (1996) Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86(6):897–906

    Article  CAS  PubMed  Google Scholar 

  5. Muller AM, Medvinsky A, Strouboulis J, Grosveld F, Dzierzak E (1994) Development of hematopoietic stem cell activity in the mouse embryo. Immunity 1(4):291–301

    Article  CAS  PubMed  Google Scholar 

  6. Mikkola HK, Orkin SH (2006) The journey of developing hematopoietic stem cells. Development 133(19):3733–3744. doi:10.1242/dev.02568

    Article  CAS  PubMed  Google Scholar 

  7. Morrison SJ, Hemmati HD, Wandycz AM, Weissman IL (1995) The purification and characterization of fetal liver hematopoietic stem cells. Proc Natl Acad Sci USA 92(22):10302–10306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Khan JA, Mendelson A, Kunisaki Y, Birbrair A, Kou Y, Arnal-Estape A, Pinho S, Ciero P, Nakahara F, Ma’ayan A, Bergman A, Merad M, Frenette PS (2016) Fetal liver hematopoietic stem cell niches associate with portal vessels. Science 351(6269):176–180. doi:10.1126/science.aad0084

    Article  CAS  PubMed  Google Scholar 

  9. Sykes SM, Scadden DT (2013) Modeling human hematopoietic stem cell biology in the mouse. Semin Hematol 50(2):92–100. doi:10.1053/j.seminhematol.2013.03.029

    Article  CAS  PubMed  Google Scholar 

  10. Travlos GS (2006) Normal structure, function, and histology of the bone marrow. Toxicol Pathol 34(5):548–565. doi:10.1080/01926230600939856

    Article  PubMed  Google Scholar 

  11. Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, Mizoguchi T, Wei Q, Lucas D, Ito K, Mar JC, Bergman A, Frenette PS (2013) Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502(7473):637–643. doi:10.1038/nature12612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nombela-Arrieta C, Pivarnik G, Winkel B, Canty KJ, Harley B, Mahoney JE, Park SY, Lu J, Protopopov A, Silberstein LE (2013) Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol 15(5):533–543. doi:10.1038/ncb2730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Itkin T, Gur-Cohen S, Spencer JA, Schajnovitz A, Ramasamy SK, Kusumbe AP, Ledergor G, Jung Y, Milo I, Poulos MG, Kalinkovich A, Ludin A, Golan K, Khatib E, Kumari A, Kollet O, Shakhar G, Butler JM, Rafii S, Adams RH, Scadden DT, Lin CP, Lapidot T (2016) Corrigendum: distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature. doi:10.1038/nature19088

    PubMed Central  Google Scholar 

  14. Taichman RS, Emerson SG (1994) Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J Exp Med 179(5):1677–1682

    Article  CAS  PubMed  Google Scholar 

  15. Kollet O, Dar A, Shivtiel S, Kalinkovich A, Lapid K, Sztainberg Y, Tesio M, Samstein RM, Goichberg P, Spiegel A, Elson A, Lapidot T (2006) Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med 12(6):657–664. doi:10.1038/nm1417

    Article  CAS  PubMed  Google Scholar 

  16. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA, Frenette PS (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124(2):407–421. doi:10.1016/j.cell.2005.10.041

    Article  CAS  PubMed  Google Scholar 

  17. Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H, Shioda S, Taketo MM, Karlsson S, Iwama A, Nakauchi H (2011) Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147(5):1146–1158. doi:10.1016/j.cell.2011.09.053

    Article  CAS  PubMed  Google Scholar 

  18. Winkler IG, Sims NA, Pettit AR, Barbier V, Nowlan B, Helwani F, Poulton IJ, van Rooijen N, Alexander KA, Raggatt LJ, Levesque JP (2010) Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116(23):4815–4828. doi:10.1182/blood-2009-11-253534

    Article  CAS  PubMed  Google Scholar 

  19. Sugiyama T, Kohara H, Noda M, Nagasawa T (2006) Maintenance of the hematopoietic stem cell pool by CXCL12–CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25(6):977–988. doi:10.1016/j.immuni.2006.10.016

    Article  CAS  PubMed  Google Scholar 

  20. Ding L, Morrison SJ (2013) Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495(7440):231–235. doi:10.1038/nature11885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mendez-Ferrer S, Lucas D, Battista M, Frenette PS (2008) Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452(7186):442–447. doi:10.1038/nature06685

    Article  CAS  PubMed  Google Scholar 

  22. Ding L, Saunders TL, Enikolopov G, Morrison SJ (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481(7382):457–462. doi:10.1038/nature10783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Adams GB, Chabner KT, Alley IR, Olson DP, Szczepiorkowski ZM, Poznansky MC, Kos CH, Pollak MR, Brown EM, Scadden DT (2006) Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 439(7076):599–603. doi:10.1038/nature04247

    Article  CAS  PubMed  Google Scholar 

  24. Stier S, Ko Y, Forkert R, Lutz C, Neuhaus T, Grunewald E, Cheng T, Dombkowski D, Calvi LM, Rittling SR, Scadden DT (2005) Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J Exp Med 201(11):1781–1791. doi:10.1084/jem.20041992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nilsson SK, Johnston HM, Whitty GA, Williams B, Webb RJ, Denhardt DT, Bertoncello I, Bendall LJ, Simmons PJ, Haylock DN (2005) Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 106(4):1232–1239. doi:10.1182/blood-2004-11-4422

    Article  CAS  PubMed  Google Scholar 

  26. Nakamura-Ishizu A, Okuno Y, Omatsu Y, Okabe K, Morimoto J, Uede T, Nagasawa T, Suda T, Kubota Y (2012) Extracellular matrix protein tenascin-C is required in the bone marrow microenvironment primed for hematopoietic regeneration. Blood 119(23):5429–5437. doi:10.1182/blood-2011-11-393645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dexter TM, Allen TD, Lajtha LG (1977) Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol 91(3):335–344. doi:10.1002/jcp.1040910303

    Article  CAS  PubMed  Google Scholar 

  28. Boulais PE, Frenette PS (2015) Making sense of hematopoietic stem cell niches. Blood 125(17):2621–2629. doi:10.1182/blood-2014-09-570192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chow A, Huggins M, Ahmed J, Hashimoto D, Lucas D, Kunisaki Y, Pinho S, Leboeuf M, Noizat C, van Rooijen N, Tanaka M, Zhao ZJ, Bergman A, Merad M, Frenette PS (2013) CD169(+) macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat Med 19(4):429–436. doi:10.1038/nm.3057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ramos P, Casu C, Gardenghi S, Breda L, Crielaard BJ, Guy E, Marongiu MF, Gupta R, Levine RL, Abdel-Wahab O, Ebert BL, Van Rooijen N, Ghaffari S, Grady RW, Giardina PJ, Rivella S (2013) Macrophages support pathological erythropoiesis in polycythemia vera and beta-thalassemia. Nat Med 19(4):437–445. doi:10.1038/nm.3126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tokoyoda K, Egawa T, Sugiyama T, Choi BI, Nagasawa T (2004) Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity 20(6):707–718. doi:10.1016/j.immuni.2004.05.001

    Article  CAS  PubMed  Google Scholar 

  32. Zhu J, Garrett R, Jung Y, Zhang Y, Kim N, Wang J, Joe GJ, Hexner E, Choi Y, Taichman RS, Emerson SG (2007) Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells. Blood 109(9):3706–3712. doi:10.1182/blood-2006-08-041384

    Article  CAS  PubMed  Google Scholar 

  33. Nilsson SK, Johnston HM, Coverdale JA (2001) Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood 97(8):2293–2299

    Article  CAS  PubMed  Google Scholar 

  34. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425(6960):841–846. doi:10.1038/nature02040

    Article  CAS  PubMed  Google Scholar 

  35. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Haug J, Johnson T, Feng JQ, Harris S, Wiedemann LM, Mishina Y, Li L (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425(6960):836–841. doi:10.1038/nature02041

    Article  CAS  PubMed  Google Scholar 

  36. Ramasamy SK, Kusumbe AP, Wang L, Adams RH (2014) Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 507(7492):376–380. doi:10.1038/nature13146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh GY, Suda T (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118(2):149–161. doi:10.1016/j.cell.2004.07.004

    Article  CAS  PubMed  Google Scholar 

  38. Yoshihara H, Arai F, Hosokawa K, Hagiwara T, Takubo K, Nakamura Y, Gomei Y, Iwasaki H, Matsuoka S, Miyamoto K, Miyazaki H, Takahashi T, Suda T (2007) Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 1(6):685–697. doi:10.1016/j.stem.2007.10.020

    Article  CAS  PubMed  Google Scholar 

  39. Qian H, Buza-Vidas N, Hyland CD, Jensen CT, Antonchuk J, Mansson R, Thoren LA, Ekblom M, Alexander WS, Jacobsen SE (2007) Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell Stem Cell 1(6):671–684. doi:10.1016/j.stem.2007.10.008

    Article  CAS  PubMed  Google Scholar 

  40. Nguyen TM, Arthur A, Panagopoulos R, Paton S, Hayball JD, Zannettino AC, Purton LE, Matsuo K, Gronthos S (2015) EphB4 expressing stromal cells exhibit an enhanced capacity for hematopoietic stem cell maintenance. Stem Cells 33(9):2838–2849. doi:10.1002/stem.2069

    Article  CAS  PubMed  Google Scholar 

  41. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121(7):1109–1121. doi:10.1016/j.cell.2005.05.026

    Article  CAS  PubMed  Google Scholar 

  42. Sipkins DA, Wei X, Wu JW, Runnels JM, Cote D, Means TK, Luster AD, Scadden DT, Lin CP (2005) In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435(7044):969–973. doi:10.1038/nature03703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Oguro H, Ding L, Morrison SJ (2013) SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell 13(1):102–116. doi:10.1016/j.stem.2013.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Greenbaum A, Hsu YM, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, Nagasawa T, Link DC (2013) CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495(7440):227–230. doi:10.1038/nature11926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, Yoshida N, Kikutani H, Kishimoto T (1996) Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382(6592):635–638. doi:10.1038/382635a0

    Article  CAS  PubMed  Google Scholar 

  46. Lucas D, Scheiermann C, Chow A, Kunisaki Y, Bruns I, Barrick C, Tessarollo L, Frenette PS (2013) Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration. Nat Med 19(6):695–703. doi:10.1038/nm.3155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nave KA (2010) Myelination and the trophic support of long axons. Nat Rev Neurosci 11(4):275–283. doi:10.1038/nrn2797

    Article  CAS  PubMed  Google Scholar 

  48. Bruns I, Lucas D, Pinho S, Ahmed J, Lambert MP, Kunisaki Y, Scheiermann C, Schiff L, Poncz M, Bergman A, Frenette PS (2014) Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat Med 20(11):1315–1320. doi:10.1038/nm.3707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Itkin T, Gur-Cohen S, Spencer JA, Schajnovitz A, Ramasamy SK, Kusumbe AP, Ledergor G, Jung Y, Milo I, Poulos MG, Kalinkovich A, Ludin A, Kollet O, Shakhar G, Butler JM, Rafii S, Adams RH, Scadden DT, Lin CP, Lapidot T (2016) Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532(7599):323–328. doi:10.1038/nature17624

    Article  CAS  PubMed  Google Scholar 

  50. Golan K, Vagima Y, Ludin A, Itkin T, Cohen-Gur S, Kalinkovich A, Kollet O, Kim C, Schajnovitz A, Ovadya Y, Lapid K, Shivtiel S, Morris AJ, Ratajczak MZ, Lapidot T (2012) S1P promotes murine progenitor cell egress and mobilization via S1P1-mediated ROS signaling and SDF-1 release. Blood 119(11):2478–2488. doi:10.1182/blood-2011-06-358614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Parmar K, Mauch P, Vergilio JA, Sackstein R, Down JD (2007) Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci USA 104(13):5431–5436. doi:10.1073/pnas.0701152104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M, Offner S, Dunant CF, Eshkind L, Bockamp E, Lio P, Macdonald HR, Trumpp A (2008) Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135(6):1118–1129. doi:10.1016/j.cell.2008.10.048

    Article  CAS  PubMed  Google Scholar 

  53. Suda T, Takubo K, Semenza GL (2011) Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 9(4):298–310. doi:10.1016/j.stem.2011.09.010

    Article  CAS  PubMed  Google Scholar 

  54. Takubo K, Goda N, Yamada W, Iriuchishima H, Ikeda E, Kubota Y, Shima H, Johnson RS, Hirao A, Suematsu M, Suda T (2010) Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell 7(3):391–402. doi:10.1016/j.stem.2010.06.020

    Article  CAS  PubMed  Google Scholar 

  55. Tokoyoda K, Hauser AE, Nakayama T, Radbruch A (2010) Organization of immunological memory by bone marrow stroma. Nat Rev Immunol 10(3):193–200. doi:10.1038/nri2727

    Article  CAS  PubMed  Google Scholar 

  56. Winter O, Moser K, Mohr E, Zotos D, Kaminski H, Szyska M, Roth K, Wong DM, Dame C, Tarlinton DM, Schulze H, MacLennan IC, Manz RA (2010) Megakaryocytes constitute a functional component of a plasma cell niche in the bone marrow. Blood 116(11):1867–1875. doi:10.1182/blood-2009-12-259457

    Article  CAS  PubMed  Google Scholar 

  57. Eaves CJ (2015) Hematopoietic stem cells: concepts, definitions, and the new reality. Blood 125(17):2605–2613. doi:10.1182/blood-2014-12-570200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bonig H, Papayannopoulou T (2012) Mobilization of hematopoietic stem/progenitor cells: general principles and molecular mechanisms. Methods Mol Biol 904:1–14. doi:10.1007/978-1-61779-943-3_1

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Christopher MJ, Rao M, Liu F, Woloszynek JR, Link DC (2011) Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. J Exp Med 208(2):251–260. doi:10.1084/jem.20101700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Goodman JW, Hodgson GS (1962) Evidence for stem cells in the peripheral blood of mice. Blood 19:702–714

    CAS  PubMed  Google Scholar 

  61. Dorie MJ, Maloney MA, Patt HM (1979) Turnover of circulating hematopoietic stem cells. Exp Hematol 7(9):483–489

    CAS  PubMed  Google Scholar 

  62. Fleming WH, Alpern EJ, Uchida N, Ikuta K, Weissman IL (1993) Steel factor influences the distribution and activity of murine hematopoietic stem cells in vivo. Proc Natl Acad Sci USA 90(8):3760–3764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lieschke GJ, Grail D, Hodgson G, Metcalf D, Stanley E, Cheers C, Fowler KJ, Basu S, Zhan YF, Dunn AR (1994) Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 84(6):1737–1746

    CAS  PubMed  Google Scholar 

  64. Dale DC, Bolyard AA, Schwinzer BG, Pracht G, Bonilla MA, Boxer L, Freedman MH, Donadieu J, Kannourakis G, Alter BP, Cham BP, Winkelstein J, Kinsey SE, Zeidler C, Welte K (2006) The severe chronic neutropenia international registry: 10-year follow-up report. Support Cancer Ther 3(4):220–231. doi:10.3816/SCT.2006.n.020

    Article  PubMed  Google Scholar 

  65. Kawakami M, Tsutsumi H, Kumakawa T, Abe H, Hirai M, Kurosawa S, Mori M, Fukushima M (1990) Levels of serum granulocyte colony-stimulating factor in patients with infections. Blood 76(10):1962–1964

    CAS  PubMed  Google Scholar 

  66. Cebon J, Layton JE, Maher D, Morstyn G (1994) Endogenous haemopoietic growth factors in neutropenia and infection. Br J Haematol 86(2):265–274

    Article  CAS  PubMed  Google Scholar 

  67. Tamura M, Hattori K, Nomura H, Oheda M, Kubota N, Imazeki I, Ono M, Ueyama Y, Nagata S, Shirafuji N et al (1987) Induction of neutrophilic granulocytosis in mice by administration of purified human native granulocyte colony-stimulating factor (G-CSF). Biochem Biophys Res Commun 142(2):454–460

    Article  CAS  PubMed  Google Scholar 

  68. Duhrsen U, Villeval JL, Boyd J, Kannourakis G, Morstyn G, Metcalf D (1988) Effects of recombinant human granulocyte colony-stimulating factor on hematopoietic progenitor cells in cancer patients. Blood 72(6):2074–2081

    CAS  PubMed  Google Scholar 

  69. Favre G, Beksac M, Bacigalupo A, Ruutu T, Nagler A, Gluckman E, Russell N, Apperley J, Szer J, Bradstock K, Buzyn A, Matcham J, Gratwohl A, Schmitz N, European Group for Bone Marrow Transplant (2003) Differences between graft product and donor side effects following bone marrow or stem cell donation. Bone Marrow Transplant 32(9):873–880. doi:10.1038/sj.bmt.1704245

    Article  CAS  PubMed  Google Scholar 

  70. Bonig H, Papayannopoulou T (2013) Hematopoietic stem cell mobilization: updated conceptual renditions. Leukemia 27(1):24–31. doi:10.1038/leu.2012.254

    Article  CAS  PubMed  Google Scholar 

  71. Liu F, Poursine-Laurent J, Link DC (2000) Expression of the G-CSF receptor on hematopoietic progenitor cells is not required for their mobilization by G-CSF. Blood 95(10):3025–3031

    CAS  PubMed  Google Scholar 

  72. Ehninger A, Trumpp A (2011) The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J Exp Med 208(3):421–428. doi:10.1084/jem.20110132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lucas D, Bruns I, Battista M, Mendez-Ferrer S, Magnon C, Kunisaki Y, Frenette PS (2012) Norepinephrine reuptake inhibition promotes mobilization in mice: potential impact to rescue low stem cell yields. Blood 119(17):3962–3965. doi:10.1182/blood-2011-07-367102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Semerad CL, Christopher MJ, Liu F, Short B, Simmons PJ, Winkler I, Levesque JP, Chappel J, Ross FP, Link DC (2005) G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 106(9):3020–3027. doi:10.1182/blood-2004-01-0272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pelus LM, Bian H, King AG, Fukuda S (2004) Neutrophil-derived MMP-9 mediates synergistic mobilization of hematopoietic stem and progenitor cells by the combination of G-CSF and the chemokines GRObeta/CXCL2 and GRObetaT/CXCL2delta4. Blood 103(1):110–119. doi:10.1182/blood-2003-04-1115

    Article  CAS  PubMed  Google Scholar 

  76. Greenbaum AM, Link DC (2011) Mechanisms of G-CSF-mediated hematopoietic stem and progenitor mobilization. Leukemia 25(2):211–217. doi:10.1038/leu.2010.248

    Article  CAS  PubMed  Google Scholar 

  77. Bendall LJ, Bradstock KF (2014) G-CSF: from granulopoietic stimulant to bone marrow stem cell mobilizing agent. Cytokine Growth Factor Rev 25(4):355–367. doi:10.1016/j.cytogfr.2014.07.011

    Article  CAS  PubMed  Google Scholar 

  78. Levesque JP, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ (2003) Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest 111(2):187–196. doi:10.1172/JCI15994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, Ponomaryov T, Taichman RS, Arenzana-Seisdedos F, Fujii N, Sandbank J, Zipori D, Lapidot T (2002) G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 3(7):687–694. doi:10.1038/ni813

    Article  CAS  PubMed  Google Scholar 

  80. Kim HK, De La Luz Sierra M, Williams CK, Gulino AV, Tosato G (2006) G-CSF down-regulation of CXCR4 expression identified as a mechanism for mobilization of myeloid cells. Blood 108(3):812–820. doi:10.1182/blood-2005-10-4162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tzeng YS, Li H, Kang YL, Chen WC, Cheng WC, Lai DM (2011) Loss of Cxcl12/Sdf-1 in adult mice decreases the quiescent state of hematopoietic stem/progenitor cells and alters the pattern of hematopoietic regeneration after myelosuppression. Blood 117(2):429–439. doi:10.1182/blood-2010-01-266833

    Article  CAS  PubMed  Google Scholar 

  82. Christopher MJ, Liu F, Hilton MJ, Long F, Link DC (2009) Suppression of CXCL12 production by bone marrow osteoblasts is a common and critical pathway for cytokine-induced mobilization. Blood 114(7):1331–1339. doi:10.1182/blood-2008-10-184754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hernandez PA, Gorlin RJ, Lukens JN, Taniuchi S, Bohinjec J, Francois F, Klotman ME, Diaz GA (2003) Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet 34(1):70–74. doi:10.1038/ng1149

    Article  CAS  PubMed  Google Scholar 

  84. Lagane B, Chow KY, Balabanian K, Levoye A, Harriague J, Planchenault T, Baleux F, Gunera-Saad N, Arenzana-Seisdedos F, Bachelerie F (2008) CXCR4 dimerization and beta-arrestin-mediated signaling account for the enhanced chemotaxis to CXCL12 in WHIM syndrome. Blood 112(1):34–44. doi:10.1182/blood-2007-07-102103

    Article  CAS  PubMed  Google Scholar 

  85. Broxmeyer HE, Orschell CM, Clapp DW, Hangoc G, Cooper S, Plett PA, Liles WC, Li X, Graham-Evans B, Campbell TB, Calandra G, Bridger G, Dale DC, Srour EF (2005) Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 201(8):1307–1318. doi:10.1084/jem.20041385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Welschinger R, Liedtke F, Basnett J, Dela Pena A, Juarez JG, Bradstock KF, Bendall LJ (2013) Plerixafor (AMD3100) induces prolonged mobilization of acute lymphoblastic leukemia cells and increases the proportion of cycling cells in the blood in mice. Exp Hematol 41(3):293–302. doi:10.1016/j.exphem.2012.11.004

    Article  CAS  PubMed  Google Scholar 

  87. Winkler IG, Pettit AR, Raggatt LJ, Jacobsen RN, Forristal CE, Barbier V, Nowlan B, Cisterne A, Bendall LJ, Sims NA, Levesque JP (2012) Hematopoietic stem cell mobilizing agents G-CSF, cyclophosphamide or AMD3100 have distinct mechanisms of action on bone marrow HSC niches and bone formation. Leukemia 26(7):1594–1601. doi:10.1038/leu.2012.17

    Article  CAS  PubMed  Google Scholar 

  88. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, Nagler A, Ben-Hur H, Many A, Shultz L, Lider O, Alon R, Zipori D, Lapidot T (1999) Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283(5403):845–848

    Article  CAS  PubMed  Google Scholar 

  89. Levesque JP, Takamatsu Y, Nilsson SK, Haylock DN, Simmons PJ (2001) Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood 98(5):1289–1297

    Article  CAS  PubMed  Google Scholar 

  90. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA, Werb Z, Rafii S (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109(5):625–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Levesque JP, Liu F, Simmons PJ, Betsuyaku T, Senior RM, Pham C, Link DC (2004) Characterization of hematopoietic progenitor mobilization in protease-deficient mice. Blood 104(1):65–72. doi:10.1182/blood-2003-05-1589

    Article  CAS  PubMed  Google Scholar 

  92. Papayannopoulou T, Priestley GV, Nakamoto B (1998) Anti-VLA4/VCAM-1-induced mobilization requires cooperative signaling through the kit/mkit ligand pathway. Blood 91(7):2231–2239

    CAS  PubMed  Google Scholar 

  93. Molineux G, Migdalska A, Szmitkowski M, Zsebo K, Dexter TM (1991) The effects on hematopoiesis of recombinant stem cell factor (ligand for c-kit) administered in vivo to mice either alone or in combination with granulocyte colony-stimulating factor. Blood 78(4):961–966

    CAS  PubMed  Google Scholar 

  94. Papayannopoulou T, Nakamoto B (1993) Peripheralization of hemopoietic progenitors in primates treated with anti-VLA4 integrin. Proc Natl Acad Sci USA 90(20):9374–9378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ramirez P, Rettig MP, Uy GL, Deych E, Holt MS, Ritchey JK, DiPersio JF (2009) BIO5192, a small molecule inhibitor of VLA-4, mobilizes hematopoietic stem and progenitor cells. Blood 114(7):1340–1343. doi:10.1182/blood-2008-10-184721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Salvucci O, Jiang K, Gasperini P, Maric D, Zhu J, Sakakibara S, Espigol-Frigole G, Wang S, Tosato G (2012) MicroRNA126 contributes to granulocyte colony-stimulating factor-induced hematopoietic progenitor cell mobilization by reducing the expression of vascular cell adhesion molecule 1. Haematologica 97(6):818–826. doi:10.3324/haematol.2011.056945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Pasquale EB (2005) Eph receptor signalling casts a wide net on cell behaviour. Nat Rev Mol Cell Biol 6(6):462–475. doi:10.1038/nrm1662

    Article  CAS  PubMed  Google Scholar 

  98. Pasquale EB (2008) Eph-ephrin bidirectional signaling in physiology and disease. Cell 133(1):38–52. doi:10.1016/j.cell.2008.03.011

    Article  CAS  PubMed  Google Scholar 

  99. Salvucci O, Tosato G (2012) Essential roles of EphB receptors and EphrinB ligands in endothelial cell function and angiogenesis. Adv Cancer Res 114:21–57. doi:10.1016/B978-0-12-386503-8.00002-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pitulescu ME, Adams RH (2010) Eph/ephrin molecules—a hub for signaling and endocytosis. Genes Dev 24(22):2480–2492. doi:10.1101/gad.1973910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kania A, Klein R (2016) Mechanisms of ephrin-Eph signalling in development, physiology and disease. Nat Rev Mol Cell Biol 17(4):240–256. doi:10.1038/nrm.2015.16

    Article  CAS  PubMed  Google Scholar 

  102. Gale NW, Holland SJ, Valenzuela DM, Flenniken A, Pan L, Ryan TE, Henkemeyer M, Strebhardt K, Hirai H, Wilkinson DG, Pawson T, Davis S, Yancopoulos GD (1996) Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis. Neuron 17(1):9–19

    Article  CAS  PubMed  Google Scholar 

  103. Cunningham F, Amode MR, Barrell D, Beal K, Billis K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fitzgerald S, Gil L, Giron CG, Gordon L, Hourlier T, Hunt SE, Janacek SH, Johnson N, Juettemann T, Kahari AK, Keenan S, Martin FJ, Maurel T, McLaren W, Murphy DN, Nag R, Overduin B, Parker A, Patricio M, Perry E, Pignatelli M, Riat HS, Sheppard D, Taylor K, Thormann A, Vullo A, Wilder SP, Zadissa A, Aken BL, Birney E, Harrow J, Kinsella R, Muffato M, Ruffier M, Searle SM, Spudich G, Trevanion SJ, Yates A, Zerbino DR, Flicek P (2015) Ensembl 2015. Nucleic Acids Res 43(Database issue):D662–D669. doi:10.1093/nar/gku1010

    Article  CAS  PubMed  Google Scholar 

  104. Himanen JP, Chumley MJ, Lackmann M, Li C, Barton WA, Jeffrey PD, Vearing C, Geleick D, Feldheim DA, Boyd AW, Henkemeyer M, Nikolov DB (2004) Repelling class discrimination: ephrin-A5 binds to and activates EphB2 receptor signaling. Nat Neurosci 7(5):501–509. doi:10.1038/nn1237

    Article  CAS  PubMed  Google Scholar 

  105. Xu NJ, Henkemeyer M (2012) Ephrin reverse signaling in axon guidance and synaptogenesis. Semin Cell Dev Biol 23(1):58–64. doi:10.1016/j.semcdb.2011.10.024

    Article  CAS  PubMed  Google Scholar 

  106. Carvalho RF, Beutler M, Marler KJ, Knoll B, Becker-Barroso E, Heintzmann R, Ng T, Drescher U (2006) Silencing of EphA3 through a cis interaction with ephrinA5. Nat Neurosci 9(3):322–330. doi:10.1038/nn1655

    Article  CAS  PubMed  Google Scholar 

  107. Kao TJ, Law C, Kania A (2012) Eph and ephrin signaling: lessons learned from spinal motor neurons. Semin Cell Dev Biol 23(1):83–91. doi:10.1016/j.semcdb.2011.10.016

    Article  CAS  PubMed  Google Scholar 

  108. Holland SJ, Gale NW, Mbamalu G, Yancopoulos GD, Henkemeyer M, Pawson T (1996) Bidirectional signalling through the EPH-family receptor Nuk and its transmembrane ligands. Nature 383(6602):722–725. doi:10.1038/383722a0

    Article  CAS  PubMed  Google Scholar 

  109. Bruckner K, Pasquale EB, Klein R (1997) Tyrosine phosphorylation of transmembrane ligands for Eph receptors. Science 275(5306):1640–1643

    Article  CAS  PubMed  Google Scholar 

  110. Adams RH, Wilkinson GA, Weiss C, Diella F, Gale NW, Deutsch U, Risau W, Klein R (1999) Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 13(3):295–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Moore KB, Mood K, Daar IO, Moody SA (2004) Morphogenetic movements underlying eye field formation require interactions between the FGF and ephrinB1 signaling pathways. Dev Cell 6(1):55–67

    Article  CAS  PubMed  Google Scholar 

  112. Tanaka M, Kamata R, Sakai R (2005) Phosphorylation of ephrin-B1 via the interaction with claudin following cell–cell contact formation. EMBO J 24(21):3700–3711. doi:10.1038/sj.emboj.7600831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Himanen JP, Yermekbayeva L, Janes PW, Walker JR, Xu K, Atapattu L, Rajashankar KR, Mensinga A, Lackmann M, Nikolov DB, Dhe-Paganon S (2010) Architecture of Eph receptor clusters. Proc Natl Acad Sci USA 107(24):10860–10865. doi:10.1073/pnas.1004148107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Egea J, Nissen UV, Dufour A, Sahin M, Greer P, Kullander K, Mrsic-Flogel TD, Greenberg ME, Kiehn O, Vanderhaeghen P, Klein R (2005) Regulation of EphA 4 kinase activity is required for a subset of axon guidance decisions suggesting a key role for receptor clustering in Eph function. Neuron 47(4):515–528. doi:10.1016/j.neuron.2005.06.029

    Article  CAS  PubMed  Google Scholar 

  115. Kullander K, Mather NK, Diella F, Dottori M, Boyd AW, Klein R (2001) Kinase-dependent and kinase-independent functions of EphA4 receptors in major axon tract formation in vivo. Neuron 29(1):73–84

    Article  CAS  PubMed  Google Scholar 

  116. Zisch AH, Kalo MS, Chong LD, Pasquale EB (1998) Complex formation between EphB2 and Src requires phosphorylation of tyrosine 611 in the EphB2 juxtamembrane region. Oncogene 16(20):2657–2670. doi:10.1038/sj.onc.1201823

    Article  CAS  PubMed  Google Scholar 

  117. Palmer A, Zimmer M, Erdmann KS, Eulenburg V, Porthin A, Heumann R, Deutsch U, Klein R (2002) EphrinB phosphorylation and reverse signaling: regulation by Src kinases and PTP-BL phosphatase. Mol Cell 9(4):725–737

    Article  CAS  PubMed  Google Scholar 

  118. Dravis C, Henkemeyer M (2011) Ephrin-B reverse signaling controls septation events at the embryonic midline through separate tyrosine phosphorylation-independent signaling avenues. Dev Biol 355(1):138–151. doi:10.1016/j.ydbio.2011.04.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Davy A, Gale NW, Murray EW, Klinghoffer RA, Soriano P, Feuerstein C, Robbins SM (1999) Compartmentalized signaling by GPI-anchored ephrin-A5 requires the Fyn tyrosine kinase to regulate cellular adhesion. Genes Dev 13(23):3125–3135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Huai J, Drescher U (2001) An ephrin-A-dependent signaling pathway controls integrin function and is linked to the tyrosine phosphorylation of a 120-kDa protein. J Biol Chem 276(9):6689–6694. doi:10.1074/jbc.M008127200

    Article  CAS  PubMed  Google Scholar 

  121. Davy A, Robbins SM (2000) Ephrin-A5 modulates cell adhesion and morphology in an integrin-dependent manner. EMBO J 19(20):5396–5405. doi:10.1093/emboj/19.20.5396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Trinidad EM, Ballesteros M, Zuloaga J, Zapata A, Alonso-Colmenar LM (2009) An impaired transendothelial migration potential of chronic lymphocytic leukemia (CLL) cells can be linked to ephrin-A4 expression. Blood 114(24):5081–5090. doi:10.1182/blood-2009-03-210617

    Article  CAS  PubMed  Google Scholar 

  123. Ting MJ, Day BW, Spanevello MD, Boyd AW (2010) Activation of ephrin A proteins influences hematopoietic stem cell adhesion and trafficking patterns. Exp Hematol 38(11):1087–1098. doi:10.1016/j.exphem.2010.07.007

    Article  CAS  PubMed  Google Scholar 

  124. Barquilla A, Pasquale EB (2015) Eph receptors and ephrins: therapeutic opportunities. Annu Rev Pharmacol Toxicol 55:465–487. doi:10.1146/annurev-pharmtox-011112-140226

    Article  CAS  PubMed  Google Scholar 

  125. Boyd AW, Bartlett PF, Lackmann M (2014) Therapeutic targeting of EPH receptors and their ligands. Nat Rev Drug Discov 13(1):39–62. doi:10.1038/nrd4175

    Article  CAS  PubMed  Google Scholar 

  126. Bong YS, Lee HS, Carim-Todd L, Mood K, Nishanian TG, Tessarollo L, Daar IO (2007) ephrinB1 signals from the cell surface to the nucleus by recruitment of STAT3. Proc Natl Acad Sci USA 104(44):17305–17310. doi:10.1073/pnas.0702337104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Salvucci O, Ohnuki H, Maric D, Hou X, Li X, Yoon SO, Segarra M, Eberhart CG, Acker-Palmer A, Tosato G (2015) EphrinB2 controls vessel pruning through STAT1-JNK3 signalling. Nat Commun 6:6576. doi:10.1038/ncomms7576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bong YS, Park YH, Lee HS, Mood K, Ishimura A, Daar IO (2004) Tyr-298 in ephrinB1 is critical for an interaction with the Grb4 adaptor protein. Biochem J 377(Pt 2):499–507. doi:10.1042/BJ20031449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Cowan CA, Henkemeyer M (2001) The SH2/SH3 adaptor Grb4 transduces B-ephrin reverse signals. Nature 413(6852):174–179. doi:10.1038/35093123

    Article  CAS  PubMed  Google Scholar 

  130. Lee HS, Nishanian TG, Mood K, Bong YS, Daar IO (2008) EphrinB1 controls cell–cell junctions through the Par polarity complex. Nat Cell Biol 10(8):979–986. doi:10.1038/ncb1758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Holen HL, Shadidi M, Narvhus K, Kjosnes O, Tierens A, Aasheim HC (2008) Signaling through ephrin-A ligand leads to activation of Src-family kinases, Akt phosphorylation, and inhibition of antigen receptor-induced apoptosis. J Leukoc Biol 84(4):1183–1191. doi:10.1189/jlb.1207829

    Article  CAS  PubMed  Google Scholar 

  132. Daar IO (2012) Non-SH2/PDZ reverse signaling by ephrins. Semin Cell Dev Biol 23(1):65–74. doi:10.1016/j.semcdb.2011.10.012

    Article  CAS  PubMed  Google Scholar 

  133. Daar I (2014) Special focus: ephrin signaling. Foreword. Cell Adhes Migr 8(4):293. doi:10.4161/19336918.2014.987059

    Article  Google Scholar 

  134. Kwak H, Salvucci O, Weigert R, Martinez-Torrecuadrada JL, Henkemeyer M, Poulos MG, Butler JM, Tosato G (2016) Sinusoidal ephrin receptor EPHB4 controls hematopoietic progenitor cell mobilization from bone marrow. J Clin Investig 126(12):4554–4568. doi:10.1172/JCI87848

    Article  PubMed  PubMed Central  Google Scholar 

  135. Suenobu S, Takakura N, Inada T, Yamada Y, Yuasa H, Zhang XQ, Sakano S, Oike Y, Suda T (2002) A role of EphB4 receptor and its ligand, ephrin-B2, in erythropoiesis. Biochem Biophys Res Commun 293(3):1124–1131. doi:10.1016/S0006-291X(02)00330-3

    Article  CAS  PubMed  Google Scholar 

  136. Wang HU, Chen ZF, Anderson DJ (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93(5):741–753

    Article  CAS  PubMed  Google Scholar 

  137. Gerety SS, Wang HU, Chen ZF, Anderson DJ (1999) Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol Cell 4(3):403–414

    Article  CAS  PubMed  Google Scholar 

  138. Gerety SS, Anderson DJ (2002) Cardiovascular ephrinB2 function is essential for embryonic angiogenesis. Development 129(6):1397–1410

    CAS  PubMed  Google Scholar 

  139. Herbert SP, Huisken J, Kim TN, Feldman ME, Houseman BT, Wang RA, Shokat KM, Stainier DY (2009) Arterial-venous segregation by selective cell sprouting: an alternative mode of blood vessel formation. Science 326(5950):294–298. doi:10.1126/science.1178577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lindskog H, Kim YH, Jelin EB, Kong Y, Guevara-Gallardo S, Kim TN, Wang RA (2014) Molecular identification of venous progenitors in the dorsal aorta reveals an aortic origin for the cardinal vein in mammals. Development 141(5):1120–1128. doi:10.1242/dev.101808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lawson ND, Scheer N, Pham VN, Kim CH, Chitnis AB, Campos-Ortega JA, Weinstein BM (2001) Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development 128(19):3675–3683

    CAS  PubMed  Google Scholar 

  142. Sawamiphak S, Seidel S, Essmann CL, Wilkinson GA, Pitulescu ME, Acker T, Acker-Palmer A (2010) Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature 465(7297):487–491. doi:10.1038/nature08995

    Article  CAS  PubMed  Google Scholar 

  143. Wang Y, Nakayama M, Pitulescu ME, Schmidt TS, Bochenek ML, Sakakibara A, Adams S, Davy A, Deutsch U, Luthi U, Barberis A, Benjamin LE, Makinen T, Nobes CD, Adams RH (2010) Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465(7297):483–486. doi:10.1038/nature09002

    Article  CAS  PubMed  Google Scholar 

  144. Nakayama M, Nakayama A, van Lessen M, Yamamoto H, Hoffmann S, Drexler HC, Itoh N, Hirose T, Breier G, Vestweber D, Cooper JA, Ohno S, Kaibuchi K, Adams RH (2013) Spatial regulation of VEGF receptor endocytosis in angiogenesis. Nat Cell Biol 15(3):249–260. doi:10.1038/ncb2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Chen II, Caprioli A, Ohnuki H, Kwak H, Porcher C, Tosato G (2016) EphrinB2 regulates the emergence of a hemogenic endothelium from the aorta. Sci Rep 6:27195. doi:10.1038/srep27195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhao C, Irie N, Takada Y, Shimoda K, Miyamoto T, Nishiwaki T, Suda T, Matsuo K (2006) Bidirectional ephrinB2–EphB4 signaling controls bone homeostasis. Cell Metab 4(2):111–121. doi:10.1016/j.cmet.2006.05.012

    Article  CAS  PubMed  Google Scholar 

  147. Pennisi A, Ling W, Li X, Khan S, Shaughnessy JD Jr, Barlogie B, Yaccoby S (2009) The ephrinB2/EphB4 axis is dysregulated in osteoprogenitors from myeloma patients and its activation affects myeloma bone disease and tumor growth. Blood 114(9):1803–1812. doi:10.1182/blood-2009-01-201954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Irie N, Takada Y, Watanabe Y, Matsuzaki Y, Naruse C, Asano M, Iwakura Y, Suda T, Matsuo K (2009) Bidirectional signaling through ephrinA2-EphA2 enhances osteoclastogenesis and suppresses osteoblastogenesis. J Biol Chem 284(21):14637–14644. doi:10.1074/jbc.M807598200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Teitelbaum SL, Ross FP (2003) Genetic regulation of osteoclast development and function. Nat Rev Genet 4(8):638–649. doi:10.1038/nrg1122

    Article  CAS  PubMed  Google Scholar 

  150. Cheng S, Zhao SL, Nelson B, Kesavan C, Qin X, Wergedal J, Mohan S, Xing W (2012) Targeted disruption of ephrin B1 in cells of myeloid lineage increases osteoclast differentiation and bone resorption in mice. PLoS One 7(3):e32887. doi:10.1371/journal.pone.0032887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Takyar FM, Tonna S, Ho PW, Crimeen-Irwin B, Baker EK, Martin TJ, Sims NA (2013) EphrinB2/EphB4 inhibition in the osteoblast lineage modifies the anabolic response to parathyroid hormone. J Bone Miner Res 28(4):912–925. doi:10.1002/jbmr.1820

    Article  CAS  PubMed  Google Scholar 

  152. Xing W, Kim J, Wergedal J, Chen ST, Mohan S (2010) Ephrin B1 regulates bone marrow stromal cell differentiation and bone formation by influencing TAZ transactivation via complex formation with NHERF1. Mol Cell Biol 30(3):711–721. doi:10.1128/MCB.00610-09

    Article  CAS  PubMed  Google Scholar 

  153. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Peault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3):301–313. doi:10.1016/j.stem.2008.07.003

    Article  CAS  PubMed  Google Scholar 

  154. Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8(9):726–736. doi:10.1038/nri2395

    Article  CAS  PubMed  Google Scholar 

  155. Zhou BO, Yue R, Murphy MM, Peyer JG, Morrison SJ (2014) Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15(2):154–168. doi:10.1016/j.stem.2014.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Lv FJ, Tuan RS, Cheung KM, Leung VY (2014) Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells 32(6):1408–1419. doi:10.1002/stem.1681

    Article  CAS  PubMed  Google Scholar 

  157. Arthur A, Zannettino A, Panagopoulos R, Koblar SA, Sims NA, Stylianou C, Matsuo K, Gronthos S (2011) EphB/ephrin-B interactions mediate human MSC attachment, migration and osteochondral differentiation. Bone 48(3):533–542. doi:10.1016/j.bone.2010.10.180

    Article  CAS  PubMed  Google Scholar 

  158. Nguyen TM, Arthur A, Gronthos S (2016) The role of Eph/ephrin molecules in stromal–hematopoietic interactions. Int J Hematol 103(2):145–154. doi:10.1007/s12185-015-1886-x

    Article  CAS  PubMed  Google Scholar 

  159. Alfaro D, Garcia-Ceca J, Farias-de-Oliveira DA, Terra-Granado E, Montero-Herradon S, Cotta-de-Almeida V, Savino W, Zapata A (2015) EphB2 and EphB3 play an important role in the lymphoid seeding of murine adult thymus. J Leukoc Biol 98(6):883–896. doi:10.1189/jlb.1HI1114-568R

    Article  CAS  PubMed  Google Scholar 

  160. Okubo T, Yanai N, Obinata M (2006) Stromal cells modulate ephrinB2 expression and transmigration of hematopoietic cells. Exp Hematol 34(3):330–338. doi:10.1016/j.exphem.2005.12.003

    Article  CAS  PubMed  Google Scholar 

  161. Pinho S, Lacombe J, Hanoun M, Mizoguchi T, Bruns I, Kunisaki Y, Frenette PS (2013) PDGFRalpha and CD51 mark human nestin + sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J Exp Med 210(7):1351–1367. doi:10.1084/jem.20122252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Park D, Spencer JA, Koh BI, Kobayashi T, Fujisaki J, Clemens TL, Lin CP, Kronenberg HM, Scadden DT (2012) Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell 10(3):259–272. doi:10.1016/j.stem.2012.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Omatsu Y, Sugiyama T, Kohara H, Kondoh G, Fujii N, Kohno K, Nagasawa T (2010) The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 33(3):387–399. doi:10.1016/j.immuni.2010.08.017

    Article  CAS  PubMed  Google Scholar 

  164. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466(7308):829–834. doi:10.1038/nature09262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Foo SS, Turner CJ, Adams S, Compagni A, Aubyn D, Kogata N, Lindblom P, Shani M, Zicha D, Adams RH (2006) Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell 124(1):161–173. doi:10.1016/j.cell.2005.10.034

    Article  CAS  PubMed  Google Scholar 

  166. Lindahl P, Johansson BR, Leveen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277(5323):242–245

    Article  CAS  PubMed  Google Scholar 

  167. Nakayama A, Nakayama M, Turner CJ, Hoing S, Lepore JJ, Adams RH (2013) Ephrin-B2 controls PDGFRbeta internalization and signaling. Genes Dev 27(23):2576–2589. doi:10.1101/gad.224089.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Salvucci O, Maric D, Economopoulou M, Sakakibara S, Merlin S, Follenzi A, Tosato G (2009) EphrinB reverse signaling contributes to endothelial and mural cell assembly into vascular structures. Blood 114(8):1707–1716. doi:10.1182/blood-2008-12-192294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Simonavicius N, Ashenden M, van Weverwijk A, Lax S, Huso DL, Buckley CD, Huijbers IJ, Yarwood H, Isacke CM (2012) Pericytes promote selective vessel regression to regulate vascular patterning. Blood 120(7):1516–1527. doi:10.1182/blood-2011-01-332338

    Article  CAS  PubMed  Google Scholar 

  170. Damon DH, teRiele JA, Marko SB (2010) Eph/ephrin interactions modulate vascular sympathetic innervation. Auton Neurosci 158(1–2):65–70. doi:10.1016/j.autneu.2010.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Gao PP, Sun CH, Zhou XF, DiCicco-Bloom E, Zhou R (2000) Ephrins stimulate or inhibit neurite outgrowth and survival as a function of neuronal cell type. J Neurosci Res 60(4):427–436. doi:10.1002/(SICI)1097-4547(20000515)60:4<427:AID-JNR1>3.0.CO;2-D

    Article  CAS  PubMed  Google Scholar 

  172. Ogita H, Kunimoto S, Kamioka Y, Sawa H, Masuda M, Mochizuki N (2003) EphA4-mediated Rho activation via Vsm-RhoGEF expressed specifically in vascular smooth muscle cells. Circ Res 93(1):23–31. doi:10.1161/01.RES.0000079310.81429.C8

    Article  CAS  PubMed  Google Scholar 

  173. Gale NW, Baluk P, Pan L, Kwan M, Holash J, DeChiara TM, McDonald DM, Yancopoulos GD (2001) Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells. Dev Biol 230(2):151–160. doi:10.1006/dbio.2000.0112

    Article  CAS  PubMed  Google Scholar 

  174. Parrinello S, Napoli I, Ribeiro S, Wingfield Digby P, Fedorova M, Parkinson DB, Doddrell RD, Nakayama M, Adams RH, Lloyd AC (2010) EphB signaling directs peripheral nerve regeneration through Sox2-dependent Schwann cell sorting. Cell 143(1):145–155. doi:10.1016/j.cell.2010.08.039

    Article  CAS  PubMed  Google Scholar 

  175. Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR (2002) A stem cell molecular signature. Science 298(5593):601–604. doi:10.1126/science.1073823

    Article  CAS  PubMed  Google Scholar 

  176. Steidl U, Bork S, Schaub S, Selbach O, Seres J, Aivado M, Schroeder T, Rohr UP, Fenk R, Kliszewski S, Maercker C, Neubert P, Bornstein SR, Haas HL, Kobbe G, Tenen DG, Haas R, Kronenwett R (2004) Primary human CD34+ hematopoietic stem and progenitor cells express functionally active receptors of neuromediators. Blood 104(1):81–88. doi:10.1182/blood-2004-01-0373

    Article  CAS  PubMed  Google Scholar 

  177. Lazarova P, Wu Q, Kvalheim G, Suo Z, Haakenstad KW, Metodiev K, Nesland JM (2006) Growth factor receptors in hematopoietic stem cells: EPH family expression in CD34+ and CD133+ cell populations from mobilized peripheral blood. Int J Immunopathol Pharmacol 19(1):49–56

    CAS  PubMed  Google Scholar 

  178. Lu Q, Sun EE, Klein RS, Flanagan JG (2001) Ephrin-B reverse signaling is mediated by a novel PDZ-RGS protein and selectively inhibits G protein-coupled chemoattraction. Cell 105(1):69–79

    Article  CAS  PubMed  Google Scholar 

  179. Salvucci O, de la Luz Sierra M, Martina JA, McCormick PJ, Tosato G (2006) EphB2 and EphB4 receptors forward signaling promotes SDF-1-induced endothelial cell chemotaxis and branching remodeling. Blood 108(9):2914–2922. doi:10.1182/blood-2006-05-023341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Wang Z, Miura N, Bonelli A, Mole P, Carlesso N, Olson DP, Scadden DT (2002) Receptor tyrosine kinase, EphB4 (HTK), accelerates differentiation of select human hematopoietic cells. Blood 99(8):2740–2747

    Article  CAS  PubMed  Google Scholar 

  181. Anselmo A, Lauranzano E, Soldani C, Ploia C, Angioni R, D’Amico G, Sarukhan A, Mazzon C, Viola A (2016) Identification of a novel agrin-dependent pathway in cell signaling and adhesion within the erythroid niche. Cell Death Differ 23(8):1322–1330. doi:10.1038/cdd.2016.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Guo B, Huang X, Cooper S, Broxmeyer HE (2017) Glucocorticoid hormone-induced chromatin remodeling enhances human hematopoietic stem cell homing and engraftment. Nat Med. doi:10.1038/nm.4298

    Google Scholar 

  183. Zhang G, Brady J, Liang WC, Wu Y, Henkemeyer M, Yan M (2015) EphB4 forward signalling regulates lymphatic valve development. Nat Commun 6:6625. doi:10.1038/ncomms7625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Abengozar MA, de Frutos S, Ferreiro S, Soriano J, Perez-Martinez M, Olmeda D, Marenchino M, Canamero M, Ortega S, Megias D, Rodriguez A, Martinez-Torrecuadrada JL (2012) Blocking ephrinB2 with highly specific antibodies inhibits angiogenesis, lymphangiogenesis, and tumor growth. Blood 119(19):4565–4576. doi:10.1182/blood-2011-09-380006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of our laboratory, particularly Dr. Hyeongil Kwak, and our collaborators Drs. R. Weigert, J. L. Martinez-Torrecuadrada, M. Henkemeyer, M. C. Poulos and J. Butler for their contributions to this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Tosato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tosato, G. Ephrin ligands and Eph receptors contribution to hematopoiesis. Cell. Mol. Life Sci. 74, 3377–3394 (2017). https://doi.org/10.1007/s00018-017-2566-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2566-1

Keywords

Navigation