Skip to main content

Hematopoietic Stem Cells and Control of Hematopoiesis

  • Chapter
  • First Online:
Regenerative Medicine and Stem Cell Biology

Abstract

This chapter provides an overview of the origin and history of hematopoietic stem cells (HSCs) and the evolvement of their concept and hematopoiesis. It also illustrates the fate of hematopoietic cells arising from the mesoderm, and that later develops into the adult blood lineages by highlighting the major differences between primitive and definitive hematopoiesis. The chapter also includes a brief description of major findings of HSCs’ derivation, regulation, characterization, and differentiation. This chapter concludes with the current and future therapeutic potential of HSCs, and the barriers to their use for the development of new and improved therapies.

Mohamed Essawy and Ahmed Abdelfattah-Hassan contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

5FU:

5-fluorouracil

β-TCP:

β-TriCalcium phosphate

(AGM) region:

Aorta–gonad–mesonephros region

ALL:

Acute lymphocytic leukemia

AML:

Acute myeloid leukemia

AML1 :

Acute myeloid leukemia-1 protein

BCL-2:

B-cell lymphoma 2

BM:

Bone marrow

Bmi-1:

Polycomb complex protein 1

BMPs:

Bone morphogenic proteins

Cbfa2 :

Core-binding factor subunit alpha-2

Cbx7:

Chromobox protein homolog 7

CDKs:

Cyclin-dependent kinases

CFU:

Colony-forming unit

CIBMTR:

The Center for International Blood and Marrow Transplant Research

CML:

Chronic myeloid leukemia

Ezh1:

Enhancer of zeste homolog

(FDCP)-mix:

Factor-dependent cell Paterson-mix

FGF:

Fibroblast growth factor

FL:

Flt3 ligand

G-CSF:

Granulocyte colony-stimulating factor

GVHD:

Graft-versus-host disease

GVL:

Graft-versus-Leukemia

HE:

Hemogenic endothelium

HECs:

Hemogenic endothelial cells

HIF-1:

Hypoxia-inducible factor-1

HPCs:

Hematopoietic progenitor cells

HSCs:

Hematopoietic stem cells

IFNs:

Interferons

IGF:

Insulin-like growth factor

IGFBP2:

IGF-binding protein 2

ILs:

Interleukins

IRF2:

Interferon regulatory factor-2

Irgm-1:

Immunity-related GTPase family M protein-1

KitL:

c-kit/kit ligand

KSL cells:

Kit+Sca+lincells

LIF:

Leukemia inhibitory factor

LPS:

Lipopolysaccharides

LTC:

Long-term culture

LTC-ICs:

Long-term culture-initiating cells

LT-HSCs:

Long-term HSCs

MDS:

Myelodysplastic syndrome

MIP-lα:

Macrophage inflammatory protein lα

MLL:

Mixed lineage Leukemia

MPPs:

Multipotent progenitors

MPR:

Melphalan, prednisone, lenalidomide

Msi2 protein:

Musashi-2 protein

NGF-β:

Nerve growth factor β

PB:

Peripheral blood

PcG protein:

Polycomb-group protein

RBCs:

Red blood cells

Runx1 :

Runt-related transcription factor-1

Sca-1:

Stem cell antigen-1

SCF:

Stem cell factor

SCL:

Stem cell leukemia

SDF-1:

Stromal cell-derived factor-1

SET1A:

SET domain-containing protein 1A

SLAM:

Signaling lymphocyte activation molecule

STAT1:

Signal transducer and activator of transcription 1

ST-HSCs:

Short-term HSCs

TGF-β:

Transforming growth factor-β

TLR:

Toll-like receptor

TNF:

Tumor necrosis factor

TPO:

Thrombopoietin

TrxG protein:

Trithorax-group protein

UCB:

Umbilical cord blood

VCAM-1:

Vascular cell adhesion molecule-1

VLA-4:

Very late antigen-4

References

  1. Jagannathan-Bogdan M, Zon LI. Hematopoiesis. Development. 2013;140(12):2463–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chang J, Sun W, Zeng J, Xue Y, Zhang Y, Pan X, et al. Establishment of an in vitro system based on AGM-S3 co-culture for screening traditional herbal medicines that stimulate hematopoiesis. J Ethnopharmacol. 2019;240:111938.

    Article  CAS  PubMed  Google Scholar 

  3. Raic A, Naolou T, Mohra A, Chatterjee C, Lee-Thedieck C. 3D models of the bone marrow in health and disease: yesterday, today, and tomorrow. MRS Commun. 2019;9(1):37–52.

    Article  CAS  PubMed  Google Scholar 

  4. Ferreira MSV, Bergmann C, Bodensiek I, Peukert K, Abert J, Kramann R, et al. An engineered multicomponent bone marrow niche for the recapitulation of hematopoiesis at ectopic transplantation sites. J Hematol Oncol. 2016;9(1):4.

    Article  Google Scholar 

  5. Vogler J 3rd, Murphy W. Bone marrow imaging. Radiology. 1988;168(3):679–93.

    Article  PubMed  Google Scholar 

  6. Lundbom J, Bierwagen A, Bodis K, Apostolopoulou M, Szendroedi J, Müssig K, et al. 1 H-MRS of femoral red and yellow bone marrow fat composition and water content in healthy young men and women at 3 T. MAGMA. 2019;32(5):591–7.

    Article  PubMed  Google Scholar 

  7. Reske S. Recent advances in bone marrow scanning. Eur J Nucl Med. 1991;18(3):203–21.

    Article  CAS  PubMed  Google Scholar 

  8. Kobayashi M, Tarnawsky SP, Wei H, Mishra A, Portilho NA, Wenzel P, et al. Hemogenic endothelial cells can transition to hematopoietic stem cells through a B-1 lymphocyte-biased state during maturation in the mouse embryo. Stem Cell Rep. 2019;13(1):21–30.

    Article  CAS  Google Scholar 

  9. Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology. Cell. 2008;132(4):631–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McGrath KE, Frame JM, Fromm GJ, Koniski AD, Kingsley PD, Little J, et al. A transient definitive erythroid lineage with unique regulation of the β-globin locus in the mammalian embryo. Blood. 2011;117(17):4600–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Swiers G, De Bruijn M, Speck NA. Hematopoietic stem cell emergence in the conceptus and the role of Runx1. Int J Dev Biol. 2010;54:1151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Palis J, Robertson S, Kennedy M, Wall C, Keller G. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development. 1999;126(22):5073–84.

    CAS  PubMed  Google Scholar 

  13. Inman KE, Downs KM. The murine allantois: emerging paradigms in development of the mammalian umbilical cord and its relation to the fetus. Genesis. 2007;45(5):237–58.

    Article  CAS  PubMed  Google Scholar 

  14. Gekas C, Dieterlen-Lièvre F, Orkin SH, Mikkola HK. The placenta is a niche for hematopoietic stem cells. Dev Cell. 2005;8(3):365–75.

    Article  CAS  PubMed  Google Scholar 

  15. Ottersbach K, Dzierzak E. The murine placenta contains hematopoietic stem cells within the vascular labyrinth region. Dev Cell. 2005;8(3):377–87.

    Article  CAS  PubMed  Google Scholar 

  16. Xiong JW. Molecular and developmental biology of the hemangioblast. Dev Dyn. 2008;237(5):1218–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tam PP, Behringer RR. Mouse gastrulation: the formation of a mammalian body plan. Mech Dev. 1997;68(1–2):3–25.

    Article  CAS  PubMed  Google Scholar 

  18. Garcia-Martinez V, Schoenwolf GC. Primitive-streak origin of the cardiovascular system in avian embryos. Dev Biol. 1993;159(2):706–19.

    Article  CAS  PubMed  Google Scholar 

  19. Padrón-Barthe L, Temino S, Villa del Campo C, Carramolino L, Isern J, Torres M. Clonal analysis identifies hemogenic endothelium as the source of the blood-endothelial common lineage in the mouse embryo. Blood. 2014;124(16):2523–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Lancrin C, Sroczynska P, Stephenson C, Allen T, Kouskoff V, Lacaud G. The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage. Nature. 2009;457(7231):892–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vogeli KM, Jin S-W, Martin GR, Stainier DY. A common progenitor for haematopoietic and endothelial lineages in the zebrafish gastrula. Nature. 2006;443(7109):337–9.

    Article  CAS  PubMed  Google Scholar 

  22. North T, Gu T-L, Stacy T, Wang Q, Howard L, Binder M, et al. Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development. 1999;126(11):2563–75.

    CAS  PubMed  Google Scholar 

  23. van Galen P, Kreso A, Mbong N, Kent DG, Fitzmaurice T, Chambers JE, et al. The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress. Nature. 2014;510(7504):268–72.

    Article  PubMed  CAS  Google Scholar 

  24. Ito K, Bonora M, Ito K. Metabolism as master of hematopoietic stem cell fate. Int J Hematol. 2019;109(1):18–27.

    Article  PubMed  Google Scholar 

  25. Punzel M, Liu D, Zhang T, Eckstein V, Miesala K, Ho AD. The symmetry of initial divisions of human hematopoietic progenitors is altered only by the cellular microenvironment. Exp Hematol. 2003;31(4):339–47.

    Article  PubMed  Google Scholar 

  26. Yamashita YM, Yuan H, Cheng J, Hunt AJ. Polarity in stem cell division: asymmetric stem cell division in tissue homeostasis. Cold Spring Harb Perspect Biol. 2010;2(1):a001313.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cheng Y, Luo H, Izzo F, Pickering BF, Nguyen D, Myers R, et al. m6A RNA methylation maintains hematopoietic stem cell identity and symmetric commitment. Cell Rep. 2019;28(7):1703-16. e6.

    Article  CAS  Google Scholar 

  28. Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M, et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell. 2008;135(6):1118–29.

    Article  CAS  PubMed  Google Scholar 

  29. Cheshier SH, Morrison SJ, Liao X, Weissman IL. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc Natl Acad Sci. 1999;96(6):3120–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stier S, Cheng T, Dombkowski D, Carlesso N, Scadden DT. Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome. Blood. 2002;99(7):2369–78.

    Article  CAS  PubMed  Google Scholar 

  31. Calvi L, Adams G, Weibrecht K, Weber J, Olson D, Knight M, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003;425(6960):841–6.

    Article  CAS  PubMed  Google Scholar 

  32. Miller DM, Thomas SD, Islam A, Muench D, Sedoris K. c-Myc and cancer metabolism. Clin Cancer Res. 2012;18(20):5546–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Satoh Y, Matsumura I, Tanaka H, Ezoe S, Sugahara H, Mizuki M, et al. Roles for c-Myc in self-renewal of hematopoietic stem cells. J Biol Chem. 2004;279(24):24986–93.

    Article  CAS  PubMed  Google Scholar 

  34. Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K, et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature. 2003;423(6938):409–14.

    Article  CAS  PubMed  Google Scholar 

  35. Luis TC, Weerkamp F, Naber BA, Baert MR, de Haas EF, Nikolic T, et al. Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation. Blood. 2009;113(3):546–54.

    Article  CAS  PubMed  Google Scholar 

  36. Luis TC, Naber BA, Roozen PP, Brugman MH, de Haas EF, Ghazvini M, et al. Canonical wnt signaling regulates hematopoiesis in a dosage-dependent fashion. Cell Stem Cell. 2011;9(4):345–56.

    Article  CAS  PubMed  Google Scholar 

  37. Hatzfeld J, Li M-L, Brown EL, Sookdeo H, Levesque J-P, O'Toole T, et al. Release of early human hematopoietic progenitors from quiescence by antisense transforming growth factor beta 1 or Rb oligonucleotides. J Exp Med. 1991;174(4):925–9.

    Article  CAS  PubMed  Google Scholar 

  38. Dubois CM, Ruscetti FW, Palaszynski E, Falk L, Oppenheim J, Keller J. Transforming growth factor beta is a potent inhibitor of interleukin 1 (IL-1) receptor expression: proposed mechanism of inhibition of IL-1 action. J Exp Med. 1990;172(3):737–44.

    Article  CAS  PubMed  Google Scholar 

  39. Cheng T, Shen H, Rodrigues N, Stier S, Scadden DT. Transforming growth factor β1 mediates cell-cycle arrest of primitive hematopoietic cells independent of p21Cip1/Waf1or p27Kip1. Blood. 2001;98(13):3643–9.

    Article  CAS  PubMed  Google Scholar 

  40. Scandura JM, Boccuni P, Massagué J, Nimer SD. Transforming growth factor β-induced cell cycle arrest of human hematopoietic cells requires p57KIP2 up-regulation. Proc Natl Acad Sci. 2004;101(42):15231–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bhatia M, Bonnet D, Wu D, Murdoch B, Wrana J, Gallacher L, et al. Bone morphogenetic proteins regulate the developmental program of human hematopoietic stem cells. J Exp Med. 1999;189(7):1139–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yeoh JS, van Os R, Weersing E, Ausema A, Dontje B, Vellenga E, et al. Fibroblast growth factor-1 and-2 preserve long-term repopulating ability of hematopoietic stem cells in serum-free cultures. Stem Cells. 2006;24(6):1564–72.

    Article  CAS  PubMed  Google Scholar 

  43. Zhao M, Ross JT, Itkin T, Perry JM, Venkatraman A, Haug JS, et al. FGF signaling facilitates postinjury recovery of mouse hematopoietic system. Blood. 2012;120(9):1831–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Itkin T, Ludin A, Gradus B, Gur-Cohen S, Kalinkovich A, Schajnovitz A, et al. FGF-2 expands murine hematopoietic stem and progenitor cells via proliferation of stromal cells, c-kit activation, and CXCL12 down-regulation. Blood. 2012;120(9):1843–55.

    Article  CAS  PubMed  Google Scholar 

  45. Pouget C, Peterkin T, Simões FC, Lee Y, Traver D, Patient R. FGF signalling restricts haematopoietic stem cell specification via modulation of the BMP pathway. Nat Commun. 2014;5(1):1–11.

    Article  CAS  Google Scholar 

  46. Kucia M, Shin D-M, Liu R, Ratajczak J, Bryndza E, Masternak MM, et al. Reduced number of VSELs in the bone marrow of growth hormone transgenic mice indicates that chronically elevated Igf1 level accelerates age-dependent exhaustion of pluripotent stem cell pool: a novel view on aging. Leukemia. 2011;25(8):1370–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Caselli A, Olson TS, Otsuru S, Chen X, Hofmann TJ, Nah HD, et al. IGF-1-mediated osteoblastic niche expansion enhances long-term hematopoietic stem cell engraftment after murine bone marrow transplantation. Stem Cells. 2013;31(10):2193–204.

    Article  CAS  PubMed  Google Scholar 

  48. Huynh H, Zheng J, Umikawa M, Zhang C, Silvany R, Iizuka S, et al. IGF binding protein 2 supports the survival and cycling of hematopoietic stem cells. Blood. 2011;118(12):3236–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Beckman J, Scheitza S, Wernet P, Fischer J, Giebel B. Asymmetric cell division within the human hematopoietic stem and progenitor cell compartment: identification of asymetrically segregating proteins. Blood. 2007;12(109):5494–501.

    Article  CAS  Google Scholar 

  50. Wu M, Kwon HY, Rattis F, Blum J, Zhao C, Ashkenazi R, et al. Imaging hematopoietic precursor division in real time. Cell Stem Cell. 2007;1(5):541–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Osawa M, Hanada K-I, Hamada H, Nakauchi H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science. 1996;273(5272):242–5.

    Article  CAS  PubMed  Google Scholar 

  52. Lu R, Neff NF, Quake SR, Weissman IL. Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding. Nat Biotechnol. 2011;29(10):928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gerrits A, Dykstra B, Kalmykowa OJ, Klauke K, Verovskaya E, Broekhuis MJ, et al. Cellular barcoding tool for clonal analysis in the hematopoietic system. Blood. 2010;115(13):2610–8.

    Article  CAS  PubMed  Google Scholar 

  54. Oguro H, Ding L, Morrison SJ. SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell. 2013;13(1):102–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Crisan M, Dzierzak E. The many faces of hematopoietic stem cell heterogeneity. Development. 2016;143(24):4571–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med. 2000;6(11):1229–34.

    Article  CAS  PubMed  Google Scholar 

  57. Uchida N, Friera AM, He D, Reitsma MJ, Tsukamoto AS, Weissman IL. Hydroxyurea can be used to increase mouse c-kit+ Thy-1.1 loLin−/loSca-1+ hematopoietic cell number and frequency in cell cycle in vivo. Blood. 1997;90(11):4354–62.

    Article  CAS  PubMed  Google Scholar 

  58. Smith LG, Weissman IL, Heimfeld S. Clonal analysis of hematopoietic stem-cell differentiation in vivo. Proc Natl Acad Sci. 1991;88(7):2788–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Taniguchi H, Toyoshima T, Fukao K, Nakauchi H. Presence of hematopoietic stem cells in the adult liver. Nat Med. 1996;2(2):198–203.

    Article  CAS  PubMed  Google Scholar 

  60. Anderson DJ, Gage FH, Weissman IL. Can stem cells cross lineage boundaries? Nat Med. 2001;7(4):393–5.

    Article  CAS  PubMed  Google Scholar 

  61. Orkin SH, Zon LI. Hematopoiesis and stem cells: plasticity versus developmental heterogeneity. Nat Immunol. 2002;3(4):323–8.

    Article  CAS  PubMed  Google Scholar 

  62. Graf Einsiedel H, Taube T, Hartmann R, Wellmann S, Seifert G, Henze G, et al. Deletion analysis of p16 INKa and p15 INKb in relapsed childhood acute lymphoblastic leukemia. Blood. 2002;99(12):4629–31.

    Article  PubMed  Google Scholar 

  63. Morita Y, Iseki A, Okamura S, Suzuki S, Nakauchi H, Ema H. Functional characterization of hematopoietic stem cells in the spleen. Exp Hematol. 2011;39(3):351-9. e3.

    Article  Google Scholar 

  64. de Abreu Manso PP, de Brito-Gitirana L, Pelajo-Machado M. Localization of hematopoietic cells in the bullfrog (Lithobates catesbeianus). Cell Tissue Res. 2009;337(2):301–12.

    Article  PubMed  CAS  Google Scholar 

  65. Bertrand JY, Kim AD, Teng S, Traver D. CD41+ cmyb+ precursors colonize the zebrafish pronephros by a novel migration route to initiate adult hematopoiesis. Development. 2008;135(10):1853–62.

    Article  CAS  PubMed  Google Scholar 

  66. Budkowska M, Ostrycharz E, Wojtowicz A, Marcinowska Z, Woźniak J, Ratajczak MZ, et al. A circadian rhythm in both complement Cascade (ComC) activation and Sphingosine-1-phosphate (S1P) levels in human peripheral blood supports a role for the ComC–S1P Axis in circadian changes in the number of stem cells circulating in peripheral blood. Stem Cell Rev Rep. 2018;14(5):677–85.

    Article  CAS  PubMed  Google Scholar 

  67. Méndez-Ferrer S, Lucas D, Battista M, Frenette PS. Haematopoietic stem cell release is regulated by circadian oscillations. Nature. 2008;452(7186):442–7.

    Article  PubMed  CAS  Google Scholar 

  68. Katayama Y, Battista M, Kao W-M, Hidalgo A, Peired AJ, Thomas SA, et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell. 2006;124(2):407–21.

    Article  CAS  PubMed  Google Scholar 

  69. Sandri M, Adams V, Gielen S, Linke A, Lenk K, Kränkel N, et al. Effects of exercise and ischemia on mobilization and functional activation of bloodderived progenitor cells in patients with ischemic syndromes: results of 3 randomized studies. Circulation. 2005;111:3391–9.

    Article  PubMed  Google Scholar 

  70. Kucia M, Dawn B, Hunt G, Guo Y, Wysoczynski M, Majka M, et al. Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circ Res. 2004;95(12):1191–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wojakowski W, Landmesser U, Bachowski R, Jadczyk T, Tendera M. Mobilization of stem and progenitor cells in cardiovascular diseases. Leukemia. 2012;26(1):23–33.

    Article  CAS  PubMed  Google Scholar 

  72. Broxmeyer H, Orschell C, Clapp D, Hangoc G, Cooper S, Plett PA, Liles WC, Li X, Graham-Evans B, Campbell TB. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med. 2005;201:1307–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Greenbaum A, Link D. Mechanisms of G-CSF-mediated hematopoietic stem and progenitor mobilization. Leukemia. 2011;25(2):211–7.

    Article  CAS  PubMed  Google Scholar 

  74. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med. 2004;10(8):858–64.

    Article  CAS  PubMed  Google Scholar 

  75. Schroeder MA, DiPersio JF. Mobilization of hematopoietic stem and leukemia cells. J Leukoc Biol. 2012;91(1):47–57.

    Article  CAS  PubMed  Google Scholar 

  76. Huntsman HD, Bat T, Cheng H, Cash A, Cheruku PS, Fu J-F, et al. Human hematopoietic stem cells from mobilized peripheral blood can be purified based on CD49f integrin expression. Blood. 2015;126(13):1631–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. McKenzie JL, Takenaka K, Gan OI, Doedens M, Dick JE. Low rhodamine 123 retention identifies long-term human hematopoietic stem cells within the Lin− CD34+ CD38− population. Blood. 2007;109(2):543–5.

    Article  CAS  PubMed  Google Scholar 

  78. Robinson C, Commerford S, Baxeman J. Evidence for the presence of stem cells in the tail of the mouse. Proc Soc Exp Biol Med. 1965;119(1):222–6.

    Article  CAS  PubMed  Google Scholar 

  79. Kessinger A, Armitage JO, Landmark J, Smith D, Weisenburger D. Autologous peripheral hematopoietic stem cell transplantation restores hematopoietic function following marrow ablative therapy. Blood. 1988;71(3):723–7.

    Article  CAS  PubMed  Google Scholar 

  80. Cavins JA, Scheer SC, Thomas ED, Ferrebee JW. The recovery of lethally irradiated dogs given infusions of autologous leukocytes preserved at-80 C. Blood. 1964;23(1):38–43.

    Article  CAS  PubMed  Google Scholar 

  81. Storb R, Graham TC, Epstein RB, Sale G, Thomas E. Demonstration of hemopoietic stem cells in the peripheral blood of baboons by cross circulation. Blood. 1977;50(3):537–42.

    Article  CAS  PubMed  Google Scholar 

  82. Debelak-Fehir K, Catchatourian R, Epstein R. Hemopoietic colony forming units in fresh and cryopreserved peripheral blood cells of canines and man. Exp Hematol. 1975;3(2):109–16.

    CAS  PubMed  Google Scholar 

  83. Barr RD, Whang-Peng J, Perry S. Hemopoietic stem cells in human peripheral blood. Science. 1975;190(4211):284–5.

    Article  CAS  PubMed  Google Scholar 

  84. Prindull G, Prindull B. Meulen Nv. Haematopoietic stem cells (CFUc) in human cord blood. Acta Paediatr. 1978;67(4):413–6.

    Article  CAS  Google Scholar 

  85. Hao Q-L, Shah AJ, Thiemann FT, Smogorzewska EM, Crooks G. A functional comparison of CD34+ CD38-cells in cord blood and bone marrow. Blood. 1995;86(10):3745–53.

    Article  CAS  PubMed  Google Scholar 

  86. Morrison SJ, Weissman IL. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity. 1994;1(8):661–73.

    Article  CAS  PubMed  Google Scholar 

  87. Notta F, Doulatov S, Laurenti E, Poeppl A, Jurisica I, Dick JE. Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science. 2011;333(6039):218–21.

    Article  CAS  PubMed  Google Scholar 

  88. Yang L, Bryder D, Adolfsson J, Nygren J, Månsson R, Sigvardsson M, et al. Identification of Lin–Sca1+ kit+ CD34+ Flt3–short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. Blood. 2005;105(7):2717–23.

    Article  CAS  PubMed  Google Scholar 

  89. Majeti R, Park CY, Weissman IL. Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell. 2007;1(6):635–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Manz MG, Miyamoto T, Akashi K, Weissman IL. Prospective isolation of human clonogenic common myeloid progenitors. Proc Natl Acad Sci. 2002;99(18):11872–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Doulatov S, Notta F, Eppert K, Nguyen LT, Ohashi PS, Dick JE. Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development. Nat Immunol. 2010;11(7):585.

    Article  CAS  PubMed  Google Scholar 

  92. Hao Q-L, Zhu J, Price MA, Payne KJ, Barsky LW, Crooks GM. Identification of a novel, human multilymphoid progenitor in cord blood. Blood. 2001;97(12):3683–90.

    Article  CAS  PubMed  Google Scholar 

  93. Debili N, Issaad C, Masse J-M, Guichard J, Katz A, Breton-Gorius J, et al. Expression of CD34 and platelet glycoproteins during human megakaryocytic differentiation. Blood. 1992;80(12):3022–35.

    Article  CAS  PubMed  Google Scholar 

  94. Murray L, Mandich D, Bruno E, DiGiusto R, Fu W, Sutherland D, et al. Fetal bone marrow CD34+ CD41+ cells are enriched for multipotent hematopoietic progenitors, but not for pluripotent stem cells. Exp Hematol. 1996;24(2):236–45.

    CAS  PubMed  Google Scholar 

  95. Rogers C, Bradley M, Palsson B, Koller M. Flow cytometric analysis of human bone marrow perfusion cultures: erythroid development and relationship with burst-forming units-erythroid. Exp Hematol. 1996;24(5):597–604.

    CAS  PubMed  Google Scholar 

  96. Terstappen L, Huang S, Safford M, Lansdorp PM, Loken MR. Sequential generations of hematopoietic colonies derived from single nonlineage-committed CD34+ CD38-progenitor cells. Blood. 1991;77(6):1218–27.

    Article  CAS  PubMed  Google Scholar 

  97. Till JE, McCulloch EA. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961;14(2):213–22.

    Article  CAS  PubMed  Google Scholar 

  98. Siminovitch L, McCulloch EA, Till JE. The distribution of colony-forming cells among spleen colonies. J Cell Comp Physiol. 1963;62:327–36.

    Article  CAS  PubMed  Google Scholar 

  99. Purton LE, Scadden DT. Limiting factors in murine hematopoietic stem cell assays. Cell Stem Cell. 2007;1(3):263–70.

    Article  CAS  PubMed  Google Scholar 

  100. Szilvassy SJ, Humphries RK, Lansdorp PM, Eaves AC, Eaves CJ. Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy. Proc Natl Acad Sci. 1990;87(22):8736–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Taswell C. Limiting dilution assays for the determination of immunocompetent cell frequencies. I. Data analysis. J Immunol. 1981;126(4):1614–9.

    CAS  PubMed  Google Scholar 

  102. Bradley T, Metcalf D. Leukemic colony cell morphology. Aust J Exp Biol Med Sci. 1966;44:287–99.

    Article  CAS  PubMed  Google Scholar 

  103. Gartner S, Kaplan HS. Long-term culture of human bone marrow cells. Proc Natl Acad Sci. 1980;77(8):4756–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dexter TM, Allen TD, Lajtha L. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol. 1977;91(3):335–44.

    Article  CAS  PubMed  Google Scholar 

  105. Whitlock CA, Witte ON. Long-term culture of B lymphocytes and their precursors from murine bone marrow. Proc Natl Acad Sci. 1982;79(11):3608–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Miller JS, Verfaillie C, McGlave P. The generation of human natural killer cells from CD34+/DR-primitive progenitors in long-term bone marrow culture. Blood. 1992;80:2182–7.

    Article  CAS  PubMed  Google Scholar 

  107. Miller CL, Eaves CJ. Long-term culture-initiating cell assays for human and murine cells. In: Klug CA, Jordan CT, editors. Hematopoietic stem cell protocols. Methods in molecular medicine. Totowa: Humana Press; 2002. p. 123–41.

    Google Scholar 

  108. Cho RH, Müller-Sieburg CE. High frequency of long-term culture-initiating cells retain in vivo repopulation and self-renewal capacity. Exp Hematol. 2000;28(9):1080–6.

    Article  CAS  PubMed  Google Scholar 

  109. Mayani H. A glance into somatic stem cell biology: basic principles, new concepts, and clinical relevance. Arch Med Res. 2003;34(1):3–15.

    Article  PubMed  Google Scholar 

  110. Rojas-Sutterlin S, Lecuyer E, Hoang T. Kit and Scl regulation of hematopoietic stem cells. Curr Opin Hematol. 2014;21(4):256–64.

    Article  CAS  PubMed  Google Scholar 

  111. Lacombe J, Herblot S, Rojas-Sutterlin S, Haman A, Barakat S, Iscove NN, et al. Scl regulates the quiescence and the long-term competence of hematopoietic stem cells. Blood. 2010;115(4):792–803.

    Article  CAS  PubMed  Google Scholar 

  112. Laurenti E, Frelin C, Xie S, Ferrari R, Dunant CF, Zandi S, et al. CDK6 levels regulate quiescence exit in human hematopoietic stem cells. Cell Stem Cell. 2015;16(3):302–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Park S-M, Deering RP, Lu Y, Tivnan P, Lianoglou S, Al-Shahrour F, et al. Musashi-2 controls cell fate, lineage bias, and TGF-β signaling in HSCs. J Exp Med. 2014;211(1):71–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yui J, Chiu C-P, Lansdorp PM. Telomerase activity in candidate stem cells from fetal liver and adult bone marrow. Blood. 1998;91(9):3255–62.

    Article  CAS  PubMed  Google Scholar 

  115. Mahmud N, Petro B, Baluchamy S, Li X, Taioli S, Lavelle D, et al. Differential effects of epigenetic modifiers on the expansion and maintenance of human cord blood stem/progenitor cells. Biol Blood Marrow Transplant. 2014;20(4):480–9.

    Article  CAS  PubMed  Google Scholar 

  116. Park I-K, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL, et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature. 2003;423(6937):302–5.

    Article  CAS  PubMed  Google Scholar 

  117. Iwama A, Oguro H, Negishi M, Kato Y, Morita Y, Tsukui H, et al. Enhanced self-renewal of hematopoietic stem cells mediated by the polycomb gene product Bmi-1. Immunity. 2004;21(6):843–51.

    Article  CAS  PubMed  Google Scholar 

  118. Reagan MR, Rosen CJ. Navigating the bone marrow niche: translational insights and cancer-driven dysfunction. Nat Rev Rheumatol. 2016;12(3):154.

    Article  CAS  PubMed  Google Scholar 

  119. Tzeng Y-S, Li H, Kang Y-L, Chen W-C, Cheng W-C, Lai D-M. Loss of Cxcl12/Sdf-1 in adult mice decreases the quiescent state of hematopoietic stem/progenitor cells and alters the pattern of hematopoietic regeneration after myelosuppression. Blood. 2011;117(2):429–39.

    Article  CAS  PubMed  Google Scholar 

  120. Wright DE, Bowman EP, Wagers AJ, Butcher EC, Weissman IL. Hematopoietic stem cells are uniquely selective in their migratory response to chemokines. J Exp Med. 2002;195(9):1145–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell. 2004;118(2):149–61.

    Article  CAS  PubMed  Google Scholar 

  122. Zhang CC, Kaba M, Ge G, Xie K, Tong W, Hug C, et al. Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells. Nat Med. 2006;12(2):240–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Schuettpelz L, Link D. Regulation of hematopoietic stem cell activity by inflammation. Front Immunol. 2013;4:204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Petzer A, Zandstra P, Piret J, Eaves C. Differential cytokine effects on primitive (CD34+ CD38-) human hematopoietic cells: novel responses to Flt3-ligand and thrombopoietin. J Exp Med. 1996;183(6):2551–8.

    Article  CAS  PubMed  Google Scholar 

  125. Sitnicka E, Lin N, Priestley GV, Fox N, Broudy V, Wolf N, et al. The effect of thrombopoietin on the proliferation and differentiation of murine hematopoietic stem cells. Blood. 1996;87(12):4998–5005.

    Article  CAS  PubMed  Google Scholar 

  126. Ueda T, Tsuji K, Yoshino H, Ebihara Y, Yagasaki H, Hisakawa H, et al. Expansion of human NOD/SCID-repopulating cells by stem cell factor, Flk2/Flt3 ligand, thrombopoietin, IL-6, and soluble IL-6 receptor. J Clin Invest. 2000;105(7):1013–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Massagué J, Blain SW, Lo RS. TGFβ signaling in growth control, cancer, and heritable disorders. Cell. 2000;103(2):295–309.

    Article  PubMed  Google Scholar 

  128. Fortunel NO, Hatzfeld A, Hatzfeld JA. Transforming growth factor-β: pleiotropic role in the regulation of hematopoiesis. Blood. 2000;96(6):2022–36.

    Article  CAS  PubMed  Google Scholar 

  129. Sentman CL, Shutter JR, Hockenbery D, Kanagawa O, Korsmeyer SJ. bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell. 1991;67(5):879–88.

    Article  CAS  PubMed  Google Scholar 

  130. Strasser A, Harris AW, Cory S. bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell. 1991;67(5):889–99.

    Article  CAS  PubMed  Google Scholar 

  131. Domen J, Cheshier SH, Weissman IL. The role of apoptosis in the regulation of hematopoietic stem cells: overexpression of Bcl-2 increases both their number and repopulation potential. J Exp Med. 2000;191(2):253–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hiroyama T, Miharada K, Aoki N, Fujioka T, Sudo K, Danjo I, et al. Long-lasting in vitro hematopoiesis derived from primate embryonic stem cells. Exp Hematol. 2006;34(6):760–9.

    Article  CAS  PubMed  Google Scholar 

  133. Yoder MC. Generation of HSCs in the embryo and assays to detect them. Oncogene. 2004;23(43):7161–3.

    Article  CAS  PubMed  Google Scholar 

  134. Lyman SD. Biology of flt3 ligand and receptor. Int J Hematol. 1995;62(2):63–73.

    Article  CAS  PubMed  Google Scholar 

  135. Essers MA, Offner S, Blanco-Bose WE, Waibler Z, Kalinke U, Duchosal MA, et al. IFNα activates dormant haematopoietic stem cells in vivo. Nature. 2009;458(7240):904–8.

    Article  CAS  PubMed  Google Scholar 

  136. Sato T, Onai N, Yoshihara H, Arai F, Suda T, Ohteki T. Interferon regulatory factor-2 protects quiescent hematopoietic stem cells from type I interferon–dependent exhaustion. Nat Med. 2009;15(6):696.

    Article  CAS  PubMed  Google Scholar 

  137. Baldridge MT, King KY, Boles NC, Weksberg DC, Goodell MA. Quiescent haematopoietic stem cells are activated by IFN-γ in response to chronic infection. Nature. 2010;465(7299):793–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Metcalf D. Hematopoietic cytokines. Blood. 2008;111(2):485–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Nagai Y, Garrett KP, Ohta S, Bahrun U, Kouro T, Akira S, et al. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity. 2006;24(6):801–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Esplin BL, Shimazu T, Welner RS, Garrett KP, Nie L, Zhang Q, et al. Chronic exposure to a TLR ligand injures hematopoietic stem cells. J Immunol. 2011;186(9):5367–75.

    Article  CAS  PubMed  Google Scholar 

  141. Sioud M, Fløisand Y, Forfang L, Lund-Johansen F. Signaling through toll-like receptor 7/8 induces the differentiation of human bone marrow CD34+ progenitor cells along the myeloid lineage. J Mol Biol. 2006;364(5):945–54.

    Article  CAS  PubMed  Google Scholar 

  142. De Luca K, Frances-Duvert V, Asensio M, Ihsani R, Debien E, Taillardet M, et al. The TLR1/2 agonist PAM 3 CSK 4 instructs commitment of human hematopoietic stem cells to a myeloid cell fate. Leukemia. 2009;23(11):2063–74.

    Article  PubMed  CAS  Google Scholar 

  143. Richards MK, Liu F, Iwasaki H, Akashi K, Link DC. Pivotal role of granulocyte colony-stimulating factor in the development of progenitors in the common myeloid pathway. Blood. 2003;102(10):3562–8.

    Article  CAS  PubMed  Google Scholar 

  144. Liu F, Kunter G, Krem MM, Eades WC, Cain JA, Tomasson MH, et al. Csf3r mutations in mice confer a strong clonal HSC advantage via activation of Stat5. J Clin Invest. 2008;118(3):946–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Schuettpelz LG, Borgerding JN, Christopher MJ, Gopalan PK, Romine MP, Herman AC, et al. G-CSF regulates hematopoietic stem cell activity, in part, through activation of toll-like receptor signaling. Leukemia. 2014;28(9):1851–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Dybedal I, Bryder D, Fossum A, Rusten LS, Jacobsen SEW. Tumor necrosis factor (TNF)–mediated activation of the p55 TNF receptor negatively regulates maintenance of cycling reconstituting human hematopoietic stem cells. Blood. 2001;98(6):1782–91.

    Article  CAS  PubMed  Google Scholar 

  147. Pronk CJ, Veiby OP, Bryder D, Jacobsen SEW. Tumor necrosis factor restricts hematopoietic stem cell activity in mice: involvement of two distinct receptors. J Exp Med. 2011;208(8):1563–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Rebel VI, Hartnett S, Hill GR, Lazo-Kallanian SB, Ferrara JLM, Sieff CA. Essential role for the P55 tumor necrosis factor receptor in regulating hematopoiesis at a stem cell level. J Exp Med. 1999;190(10):1493–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Semerad CL, Christopher MJ, Liu F, Short B, Simmons PJ, Winkler I, et al. G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood. 2005;106(9):3020–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Dufour C, Corcione A, Svahn J, Haupt R, Poggi V, Béka'ssy AN, et al. TNF-α and IFN-γ are overexpressed in the bone marrow of Fanconi anemia patients and TNF-α suppresses erythropoiesis in vitro. Blood. 2003;102(6):2053–9.

    Article  CAS  PubMed  Google Scholar 

  151. Monlish DA, Bhatt ST, Schuettpelz LG. The role of toll-like receptors in hematopoietic malignancies. Front Immunol. 2016;7:390.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Pietras EM, Lakshminarasimhan R, Techner J-M, Fong S, Flach J, Binnewies M, et al. Re-entry into quiescence protects hematopoietic stem cells from the killing effect of chronic exposure to type I interferons. J Exp Med. 2014;211(2):245–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. King K, Baldridge M, Weksberg D, Eissa N, Taylor G, Goodell M, editors. Irgm1 is a negative regulator of interferon signaling and autophagy in the hematopoietic stem cell. In: Experimental hematology. New York: Elsevier; 2010.

    Google Scholar 

  154. Parmar K, Mauch P, Vergilio J-A, Sackstein R, Down JD. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci. 2007;104(13):5431–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Spencer JA, Ferraro F, Roussakis E, Klein A, Wu J, Runnels JM, et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature. 2014;508(7495):269–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Feldser D, Agani F, Iyer NV, Pak B, Ferreira G, Semenza GL. Reciprocal positive regulation of hypoxia-inducible factor 1α and insulin-like growth factor 2. Cancer Res. 1999;59(16):3915–8.

    CAS  PubMed  Google Scholar 

  157. Krishnamachary B, Berg-Dixon S, Kelly B, Agani F, Feldser D, Ferreira G, et al. Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res. 2003;63(5):1138–43.

    CAS  PubMed  Google Scholar 

  158. Levy AP, Levy NS, Wegner S, Goldberg MA. Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem. 1995;270(22):13333–40.

    Article  CAS  PubMed  Google Scholar 

  159. Semenza GL, Nejfelt MK, Chi SM, Antonarakis SE. Hypoxia-inducible nuclear factors bind to an enhancer element located 3’ to the human erythropoietin gene. Proc Natl Acad Sci. 1991;88(13):5680–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lévesque JP, Winkler IG, Hendy J, Williams B, Helwani F, Barbier V, et al. Hematopoietic progenitor cell mobilization results in hypoxia with increased hypoxia-inducible transcription factor-1α and vascular endothelial growth factor A in bone marrow. Stem Cells. 2007;25(8):1954–65.

    Article  PubMed  CAS  Google Scholar 

  161. Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W. Chemokine receptor CXCR4 downregulated by von Hippel–Lindau tumour suppressor pVHL. Nature. 2003;425(6955):307–11.

    Article  CAS  PubMed  Google Scholar 

  162. Kirito K, Yoshida K, Hu Y, Qiao Q, Sakoe K, Komatsu N. HIF-1 prevents hematopoietic cells from cell damage by overproduction of mitochondrial ROS after cytokine stimulation through induction of PDK-1. Blood. 2008;112:2435.

    Article  Google Scholar 

  163. Spiegel A, Shivtiel S, Kalinkovich A, Ludin A, Netzer N, Goichberg P, et al. Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling. Nat Immunol. 2007;8(10):1123–31.

    Article  CAS  PubMed  Google Scholar 

  164. Gruber-Olipitz M, Stevenson R, Olipitz W, Wagner E, Gesslbauer B, Kungl A, et al. Transcriptional pattern analysis of adrenergic immunoregulation in mice. Twelve hours norepinephrine treatment alters the expression of a set of genes involved in monocyte activation and leukocyte trafficking. J Neuroimmunol. 2004;155(1–2):136–42.

    Article  CAS  PubMed  Google Scholar 

  165. Fairbairn LJ, Cowling GJ, Reipert BM, Dexter TM. Suppression of apoptosis allows differentiation and development of a multipotent hemopoietic cell line in the absence of added growth factors. Cell. 1993;74(5):823–32.

    Article  CAS  PubMed  Google Scholar 

  166. Domen J, Gandy KL, Weissman IL. Systemic overexpression of BCL-2 in the hematopoietic system protects transgenic mice from the consequences of lethal irradiation. Blood. 1998;91(7):2272–82.

    Article  CAS  PubMed  Google Scholar 

  167. Zhang Y, Gao S, Xia J, Liu F. Hematopoietic hierarchy–an updated roadmap. Trends Cell Biol. 2018;28(12):976–86.

    Article  PubMed  Google Scholar 

  168. Pearce DJ, Ridler CM, Simpson C, Bonnet D. Multiparameter analysis of murine bone marrow side population cells. Blood. 2004;103(7):2541–6.

    Article  CAS  PubMed  Google Scholar 

  169. Yamamoto R, Morita Y, Ooehara J, Hamanaka S, Onodera M, Rudolph KL, et al. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell. 2013;154(5):1112–26.

    Article  CAS  PubMed  Google Scholar 

  170. Velten L, Haas SF, Raffel S, Blaszkiewicz S, Islam S, Hennig BP, et al. Human haematopoietic stem cell lineage commitment is a continuous process. Nat Cell Biol. 2017;19(4):271–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Robertson BJ. Organization at the leading edge: introducing Holacracy™. Integral Leadersh Rev. 2007;7(3):1–13.

    Google Scholar 

  172. Hidalgo I, Herrera-Merchan A, Ligos JM, Carramolino L, Nuñez J, Martinez F, et al. Ezh1 is required for hematopoietic stem cell maintenance and prevents senescence-like cell cycle arrest. Cell Stem Cell. 2012;11(5):649–62.

    Article  CAS  PubMed  Google Scholar 

  173. Kamminga LM, Bystrykh LV, de Boer A, Houwer S, Douma J, Weersing E, et al. The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion. Blood. 2006;107(5):2170–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Klauke K, Radulović V, Broekhuis M, Weersing E, Zwart E, Olthof S, et al. Polycomb Cbx family members mediate the balance between haematopoietic stem cell self-renewal and differentiation. Nat Cell Biol. 2013;15(4):353–62.

    Article  CAS  PubMed  Google Scholar 

  175. McMahon KA, Hiew SY-L, Hadjur S, Veiga-Fernandes H, Menzel U, Price AJ, et al. Mll has a critical role in fetal and adult hematopoietic stem cell self-renewal. Cell Stem Cell. 2007;1(3):338–45.

    Article  CAS  PubMed  Google Scholar 

  176. Arndt K, Kranz A, Fohgrub J, Jolly A, Bledau AS, Di Virgilio M, et al. SETD1A protects HSCs from activation-induced functional decline in vivo. Blood. 2018;131(12):1311–24.

    Article  CAS  PubMed  Google Scholar 

  177. Buisman SC, de Haan G. Epigenetic changes as a target in aging haematopoietic stem cells and age-related malignancies. Cell. 2019;8(8):868.

    Article  CAS  Google Scholar 

  178. Trowbridge JJ, Snow JW, Kim J, Orkin SH. DNA methyltransferase 1 is essential for and uniquely regulates hematopoietic stem and progenitor cells. Cell Stem Cell. 2009;5(4):442–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Bröske A-M, Vockentanz L, Kharazi S, Huska MR, Mancini E, Scheller M, et al. DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat Genet. 2009;41(11):1207.

    Article  PubMed  CAS  Google Scholar 

  180. Jeong M, Park HJ, Celik H, Ostrander EL, Reyes JM, Guzman A, et al. Loss of Dnmt3a immortalizes hematopoietic stem cells in vivo. Cell Rep. 2018;23(1):1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Trowbridge JJ, Orkin SH. Dnmt3a silences hematopoietic stem cell self-renewal. Nat Genet. 2012;44(1):13.

    Article  CAS  Google Scholar 

  182. Guillamot M, Cimmino L, Aifantis I. The impact of DNA methylation in hematopoietic malignancies. Trends Cancer. 2016;2(2):70–83.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Quivoron C, Couronné L, Della Valle V, Lopez CK, Plo I, Wagner-Ballon O, et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell. 2011;20(1):25–38.

    Article  CAS  PubMed  Google Scholar 

  184. Chaturvedi A, Araujo Cruz MM, Jyotsana N, Sharma A, Yun H, Görlich K, et al. Mutant IDH1 promotes leukemogenesis in vivo and can be specifically targeted in human AML. Blood. 2013;122(16):2877–87.

    Article  CAS  PubMed  Google Scholar 

  185. Barrett NA, Malouf C, Kapeni C, Bacon WA, Giotopoulos G, Jacobsen SEW, et al. Mll-AF4 confers enhanced self-renewal and lymphoid potential during a restricted window in development. Cell Rep. 2016;16(4):1039–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Feng Y, Yang Y, Ortega MM, Copeland JN, Zhang M, Jacob JB, et al. Early mammalian erythropoiesis requires the Dot1L methyltransferase. Blood. 2010;116(22):4483–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Nguyen AT, He J, Taranova O, Zhang Y. Essential role of DOT1L in maintaining normal adult hematopoiesis. Cell Res. 2011;21(9):1370–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Wang T, Nandakumar V, Jiang X-X, Jones L, Yang A-G, Huang XF, et al. The control of hematopoietic stem cell maintenance, self-renewal, and differentiation by Mysm1-mediated epigenetic regulation. Blood. 2013;122(16):2812–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Koide S, Oshima M, Takubo K, Yamazaki S, Nitta E, Saraya A, et al. Setdb1 maintains hematopoietic stem and progenitor cells by restricting the ectopic activation of nonhematopoietic genes. Blood. 2016;128(5):638–49.

    Article  CAS  PubMed  Google Scholar 

  190. Uni M, Masamoto Y, Sato T, Kamikubo Y, Arai S, Hara E, et al. Modeling ASXL1 mutation revealed impaired hematopoiesis caused by derepression of p16Ink4a through aberrant PRC1-mediated histone modification. Leukemia. 2019;33(1):191–204.

    Article  CAS  PubMed  Google Scholar 

  191. Milhem M, Mahmud N, Lavelle D, Araki H, DeSimone J, Saunthararajah Y, et al. Modification of hematopoietic stem cell fate by 5aza 2′ deoxycytidine and trichostatin A. Blood. 2004;103(11):4102–10.

    Article  CAS  PubMed  Google Scholar 

  192. De Felice L, Tatarelli C, Mascolo MG, Gregorj C, Agostini F, Fiorini R, et al. Histone deacetylase inhibitor valproic acid enhances the cytokine-induced expansion of human hematopoietic stem cells. Cancer Res. 2005;65(4):1505–13.

    Article  PubMed  Google Scholar 

  193. Becker GM, DeGroot MH, Marschak J. An experimental study of some stochastic models for wagers. Behav Sci. 1963;8(3):199–202.

    Article  Google Scholar 

  194. Thomas ED, Lochte HL Jr, Lu WC, Ferrebee JW. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med. 1957;257(11):491–6.

    Article  CAS  PubMed  Google Scholar 

  195. Mathe G, Jammet H, Pendic B, Schwarzenberg L, Duplan J, Maupin B, et al. Transfusions and grafts of homologous bone marrow in humans after accidental high dosage irradiation. Rev Fr Etud Clin Biol. 1959;4(3):226.

    CAS  PubMed  Google Scholar 

  196. Mathe G, Amiel J, Schwarzenberg L, Cattan A, Schneider M. Haematopoietic chimera in man after allogenic (homologous) bone-marrow transplantation. Br Med J. 1963;2(5373):1633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Hofmeister C, Zhang J, Knight K, Le P, Stiff P. Ex vivo expansion of umbilical cord blood stem cells for transplantation: growing knowledge from the hematopoietic niche. Bone Marrow Transplant. 2007;39(1):11–23.

    Article  CAS  PubMed  Google Scholar 

  198. Delaney C, Gutman JA, Appelbaum FR. Cord blood transplantation for haematological malignancies: conditioning regimens, double cord transplant and infectious complications. Br J Haematol. 2009;147(2):207–16.

    Article  CAS  PubMed  Google Scholar 

  199. Munoz J, Shah N, Rezvani K, Hosing C, Bollard CM, Oran B, et al. Concise review: umbilical cord blood transplantation: past, present, and future. Stem Cells Transl Med. 2014;3(12):1435–43.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Piemontese S, Ciceri F, Labopin M, Bacigalupo A, Huang H, Santarone S, et al. A survey on unmanipulated haploidentical hematopoietic stem cell transplantation in adults with acute leukemia. Leukemia. 2015;29(5):1069–75.

    Article  CAS  PubMed  Google Scholar 

  201. Palumbo A, Cavallo F, Gay F, Di Raimondo F, Ben Yehuda D, Petrucci MT, et al. Autologous transplantation and maintenance therapy in multiple myeloma. N Engl J Med. 2014;371(10):895–905.

    Article  PubMed  CAS  Google Scholar 

  202. Schmitz N, Pfistner B, Sextro M, Sieber M, Carella AM, Haenel M, et al. Aggressive conventional chemotherapy compared with high-dose chemotherapy with autologous haemopoietic stem-cell transplantation for relapsed chemosensitive Hodgkin's disease: a randomised trial. Lancet. 2002;359(9323):2065–71.

    Article  CAS  PubMed  Google Scholar 

  203. Othus M, Appelbaum FR, Petersdorf SH, Kopecky KJ, Slovak M, Nevill T, et al. Fate of patients with newly diagnosed acute myeloid leukemia who fail primary induction therapy. Biol Blood Marrow Transplant. 2015;21(3):559–64.

    Article  PubMed  Google Scholar 

  204. Yanada M, Matsuo K, Suzuki T, Naoe T. Allogeneic hematopoietic stem cell transplantation as part of postremission therapy improves survival for adult patients with high-risk acute lymphoblastic leukemia: a metaanalysis. Cancer. 2006;106(12):2657–63.

    Article  PubMed  Google Scholar 

  205. Rondelli D, Goldberg JD, Isola L, Price LS, Shore TB, Boyer M, et al. MPD-RC 101 prospective study of reduced-intensity allogeneic hematopoietic stem cell transplantation in patients with myelofibrosis. Blood. 2014;124(7):1183–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Einhorn LH, Williams SD, Chamness A, Brames MJ, Perkins SM, Abonour R. High-dose chemotherapy and stem-cell rescue for metastatic germ-cell tumors. N Engl J Med. 2007;357(4):340–8.

    Article  CAS  PubMed  Google Scholar 

  207. Negrin RS. Graft-versus-host disease versus graft-versus-leukemia. Hematology. 2015;2015(1):225–30.

    Article  PubMed  Google Scholar 

  208. Tsao GJ, Allen JA, Logronio KA, Lazzeroni LC, Shizuru JA. Purified hematopoietic stem cell allografts reconstitute immunity superior to bone marrow. Proc Natl Acad Sci. 2009;106(9):3288–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Czechowicz A, Weissman IL. Purified hematopoietic stem cell transplantation: the next generation of blood and immune replacement. Immunol Allergy Clin. 2010;30(2):159–71.

    Article  Google Scholar 

  210. Ng AP, Alexander WS. Haematopoietic stem cells: past, present and future. Cell Death Discov. 2017;3(1):1–4.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grant # 5300 from the Egyptian Science and Technology Development Fund (STDF), and by internal funding from Zewail City of Science and Technology (ZC 003-2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagwa El-Badri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Essawy, M., Abdelfattah-Hassan, A., Radwan, E., Abdelhai, M.F., Elshaboury, S., El-Badri, N. (2020). Hematopoietic Stem Cells and Control of Hematopoiesis. In: El-Badri, N. (eds) Regenerative Medicine and Stem Cell Biology . Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-030-55359-3_3

Download citation

Publish with us

Policies and ethics