Skip to main content

Advertisement

Log in

Carbon nanotubes as anti-bacterial agents

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Multidrug-resistant bacterial infections that have evolved via natural selection have increased alarmingly at a global level. Thus, there is a strong need for the development of novel antibiotics for the treatment of these infections. Functionalized carbon nanotubes through their unique properties hold great promise in the fight against multidrug-resistant bacterial infections. This new family of nanovectors for therapeutic delivery proved to be innovative and efficient for the transport and cellular translocation of therapeutic molecules. The current review examines the latest progress in the antibacterial activity of carbon nanotubes and their composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reprinted with permission from [63]. Copyright 2011 American Chemical Society

Fig. 2

Reprinted with permission from [64]. Copyright 2010 American Chemical Society

Fig. 3

Reprinted with permission from [68]. Copyright 2009 American Chemical Society

Fig. 4

Reprinted with permission from [57]. Copyright 2013 American Chemical Society

Fig. 5
Fig. 6

Reprinted with permission from [56]. Copyright 2015 BioMed Central

Similar content being viewed by others

Abbreviations

MDR:

Multi-drug resistant

CNTs:

Carbon nanotubes

f-CNTs:

Functionalized carbon nanotubes

SWCNTs:

Single-walled carbon nanotubes

MWCNTs:

Multi-walled carbon nanotubes

References

  1. Cornejo-Juárez P, Vilar-Compte D, Pérez-Jiménez C, Namendys-Silva S, Sandoval-Hernández S, Volkow-Fernández P (2015) The impact of hospital-acquired infections with multidrug-resistant bacteria in an oncology intensive care unit. Int J Infect Dis 31:31–34

    Article  PubMed  Google Scholar 

  2. Aliberti S, Cilloniz C, Chalmers JD, Zanaboni AM, Cosentini R, Tarsia P, Pesci A, Blasi F, Torres A (2013) Multidrug-resistant pathogens in hospitalised patients coming from the community with pneumonia: a European perspective. Thorax 68:997–999

    Article  PubMed  Google Scholar 

  3. O’neill J (2016) The review on antimicrobial resistance. Tackling drug-resistant infections globally: final report and recommendations. HM Government UK, Wellcome Trust

  4. Goverment US (2015) National action plan for combating antibiotic-resistant bacteria

  5. Rangel-Vega A, Bernstein LR, Mandujano Tinoco E, García-Contreras S, García-Contreras R (2015) Drug repurposing as an alternative for the treatment of recalcitrant bacterial infections. Front Microbiol 6:282

    Article  PubMed  PubMed Central  Google Scholar 

  6. Xu Z, Flavin MT, Flavin J (2014) Combating multidrug-resistant gram-negative bacterial infections. Expert Opin Investig Drugs 23:163–182

    Article  CAS  PubMed  Google Scholar 

  7. Hauser AR, Mecsas J, Moir DT (2016) Beyond antibiotics: new therapeutic approaches for bacterial infections. Clin Infect Dis 63:89–95

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pelaz B, del Pino P, Maffre P, Hartmann R, Gallego M, Rivera-Fernandez S, Fuente JM, Nienhaus Ulrich G, Parak WJ (2015) Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano 9:6996–7008

    Article  CAS  PubMed  Google Scholar 

  9. Ahn S, Lee I, Kang S, Kim D, Choi M, Saw PE, Shin EC, Jon S (2014) Gold nanoparticles displaying tumor-associated self-antigens as a potential vaccine for cancer immunotherapy. Adv Healthc Mater 3:1194–1199

    Article  CAS  PubMed  Google Scholar 

  10. Banu H, Sethi DK, Edgar A, Sheriff A, Rayees N, Renuka N, Faheem SM, Premkumar K, Vasanhakumar G (2015) Doxorubicin loaded polymeric gold nanoparticles targeted to human folate receptor upon laser photothermal therapy potentiates chemotherapy in breast cancer cell lines. J Photochem Photobiol B 149:116–128

    Article  CAS  PubMed  Google Scholar 

  11. Chen C, Chan Y, Hsiao M, Liu R (2016) Plasmon-enhanced photodynamic cancer therapy by upconversion nanoparticles conjugated with au nanorods. ACS Appl Mater Interfaces 8:32108–32119

    Article  CAS  PubMed  Google Scholar 

  12. Ilie I, Ilie R, Mocan T, Tabaran F, Iancu C, Mocan L (2013) Nicotinamide-functionalized multiwalled carbon nanotubes increase insulin production in pancreatic beta cells via MIF pathway. Int J Nanomed 8:3345–3353

    Google Scholar 

  13. Jain S, Hirst D, O’sullivan J (2014) Gold nanoparticles as novel agents for cancer therapy. Br J Radiol 85:101–113

    Article  Google Scholar 

  14. Jiang Y, Huo S, Mizuhara T, Das R, Lee Y, Hou S, Moyano DF, Duncan B, Liang XJ, Rotello VM (2015) The interplay of size and surface functionality on the cellular uptake of sub-10 nm gold nanoparticles. ACS Nano 9:9986–9993

    Article  CAS  PubMed  Google Scholar 

  15. Mocan L, Ilie I, Matea C, Tabaran F, Kalman E, Iancu C, Mocan T (2014) Surface plasmon resonance-induced photoactivation of gold nanoparticles as bactericidal agents against methicillin-resistant Staphylococcus aureus. Int J Nanomed 9:1453–1461

    Article  Google Scholar 

  16. Mocan L, Ilie I, Tabaran FA, Dana B, Zaharie F, Zdrehus C, Puia C, Munteanu V, Pop T, Mosteanu O, Marcel T, Iancu C (2013) Surface plasmon resonance-induced photoactivation of gold nanoparticles as mitochondria-targeted therapeutic agents for pancreatic cancer. Expert Opin Ther Targets 17:1–11

    Article  Google Scholar 

  17. Mocan L, Matea C, Tabaran FA, Mosteanu O, Pop T, Mocan T, Iancu C (2015) Photothermal treatment of liver cancer with albumin-conjugated gold nanoparticles initiates golgi apparatus-ER dysfunction and caspase-3 apoptotic pathway activation by selective targeting of Gp60 receptor. Int J Nanomed 10:5435–5445

    CAS  Google Scholar 

  18. Mocan T, Matea C, Tabaran F, Iancu C, Orasan R, Mocan L (2015) In vitro administration of gold nanoparticles functionalized with MUC-1 protein fragment generates anticancer vaccine response via macrophage activation and polarization mechanism. J Cancer 6:583–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mocan T, Matea CT, Cojocaru I, Ilie I, Tabaran FA, Zaharie F, Iancu C, Bartos D, Mocan L (2014) Photothermal treatment of human pancreatic cancer using PEGylated multi-walled carbon nanotubes induces apoptosis by triggering mitochondrial membrane depolarization mechanism. J Cancer 5:679–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Raj V, Vijayan AN, Joseph K (2015) Cysteine capped gold nanoparticles for naked eye detection of E. coli bacteria in UTI patients. Sens Biosens Res 5:33–36

    Google Scholar 

  21. Rengan AK, Bukhari AB, Pradhan A, Malhotra R, Banerjee R, Srivastava R, De A (2015) In vivo analysis of biodegradable liposome gold nanoparticles as efficient agents for photothermal therapy of cancer. Nano Lett 15:842–848

    Article  CAS  PubMed  Google Scholar 

  22. Sepunaru L, Tschulik K, Batchelor-McAuley C, Gavish R, Compton R (2015) Electrochemical detection of single E. coli bacteria labeled with silver nanoparticles. Biomater Sci 3:816–820

    Article  CAS  PubMed  Google Scholar 

  23. Wang J, Wu X, Wang C, Rong Z, Ding H, Li H, Li S, Shao N, Dong P, Xiao R, Wang S (2016) Facile synthesis of Au-coated magnetic nanoparticles and their application in bacteria detection via a SERS method. ACS Appl Mater Interfaces 8:19958–19967

    Article  CAS  PubMed  Google Scholar 

  24. Wang P, Zhao Y, Tian Y, Jiang X (2015) Multiple strategies to activate gold nanoparticles as potent antibacterial agents. Nanomed Nanotechnol Biol Med 12:527–528

    Article  Google Scholar 

  25. Yick S, Mai-Prochnow A, Levchenko I, Fang J, Bull MKBM, Murphy AB, Ostrikow K (2014) The effects of plasma treatment on bacterial biofilm formation on vertically-aligned carbon nanotube arrays. RSC Adv 5:5142–5148

    Article  Google Scholar 

  26. Al Faraj A, Shaik AP, Shaik A (2014) Magnetic single-walled carbon nanotubes as efficient drug delivery nanocarriers in breast cancer murine model: noninvasive monitoring using diffusion-weighted magnetic resonance imaging as sensitive imaging biomarker. Int J Nanomed 10:157–168

    Article  Google Scholar 

  27. Al Faraj A, Shaik AS, Al Sayed B, Halwani R, Al-Jammaz I (2016) Specific targeting and noninvasive imaging of breast cancer stem cells using single-walled carbon nanotubes as novel multimodality nanoprobes. Nanomedicine 11:31–46

    Article  CAS  PubMed  Google Scholar 

  28. Arya N, Arora A, Vasu K, Sood A, Katti DS (2013) Combination of single walled carbon nanotubes/graphene oxide with paclitaxel: a reactive oxygen species mediated synergism for treatment of lung cancer. Nanoscale 5:2818–2829

    Article  CAS  PubMed  Google Scholar 

  29. Barrientos-Duran A, Carpenter EM, Zur Nieden NI, Malinin TI, Rodriguez-Manzaneque JC, Zanello LP (2014) Carboxyl-modified single-wall carbon nanotubes improve bone tissue formation in vitro and repair in an in vivo rat model. Int J Nanomed 9:4277–4291

    Article  Google Scholar 

  30. De Volder MF, Tawfick SH, Baughman RH, Hart A (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539

    Article  PubMed  Google Scholar 

  31. Fahrenholtz CD, Hadimani M, King SB, Torti SV, Singh R (2015) Targeting breast cancer with sugar-coated carbon nanotubes. Nanomedicine 10:2481–2497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Geng J, Kim K, Zhang J, Escalada A, Tunuguntla R, Comolli LR, Allen FI, Shnyrova AV, Cho KR, Munoz D, Wang YM, Grigoropoulos CP, Ajo-Franklin CM, Frolov VA, Noy A (2014) Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes. Nature 514:612–615

    Article  CAS  PubMed  Google Scholar 

  33. Ghosh D, Bagley AF, Na YJ, Birrer MJ, Bhatia SN, Belcher AM (2014) Deep, noninvasive imaging and surgical guidance of submillimeter tumors using targeted M13-stabilized single-walled carbon nanotubes. Proc Natl Acad Sci USA 111:13948–13953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mehra NK, Jain K, Jain NK (2015) Pharmaceutical and biomedical applications of surface engineered carbon nanotubes. Drug Discov Today 20:750–759

    Article  CAS  PubMed  Google Scholar 

  35. Mehra NK, Verma AK, Mishra P, Jain N (2014) The cancer targeting potential of d-α-tocopheryl polyethylene glycol 1000 succinate tethered multi walled carbon nanotubes. Biomaterials 35:4573–4588

    Article  CAS  PubMed  Google Scholar 

  36. Smith BR, Ghosn EEB, Rallapalli H, Prescher JA, Larson T, Herzenberg LA, Gambhir SS (2014) Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery. Nat Nanotechnol 9:481–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang L, Shi J, Zhang H, Li H, Gao Y, Wang Z, Wang H, Li L, Zhang C, Chen C, Zhang Z, Zhang Y (2013) Synergistic anticancer effect of RNAi and photothermal therapy mediated by functionalized single-walled carbon nanotubes. Biomaterials 34:262–274

    Article  CAS  PubMed  Google Scholar 

  38. Wu H, Shi H, Zhang H, Wang X, Yang Y, Yu C, Du J, Hu H (2014) Prostate stem cell antigen antibody-conjugated multiwalled carbon nanotubes for targeted ultrasound imaging and drug delivery. Biomaterials 35:5369–5380

    Article  CAS  PubMed  Google Scholar 

  39. Battigelli A, Ménard-Moyon C, Da Ros T, Prato M, Bianco A (2013) Endowing carbon nanotubes with biological and biomedical properties by chemical modifications. Adv Drug Deliv Rev 65:1899–1920

    Article  CAS  PubMed  Google Scholar 

  40. Das M, Singh RP, Datir SR, Jain S (2013) Intranuclear drug delivery and effective in vivo cancer therapy via estradiol-peg-appended multiwalled carbon nanotubes. Mol Pharm 10:3404–3416

    Article  CAS  PubMed  Google Scholar 

  41. Karimi M, Solati N, Ghasemi A, Estiar MA, Hashemkhani M, Kiani P, Mohamed E, Saeidi A, Taheri M, Avci P, Aref AR, Amiri M, Baniasadi F, Hamblin MR (2015) Carbon nanotubes part II: a remarkable carrier for drug and gene delivery. Expert Opin Drug Deliv 12:1089–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lin Z, Liu Y, Ma X, Hu S, Zhang J, Wu Q, Ye W, Zhu S, Yang D, Qu D, Jiang J (2015) Photothermal ablation of bone metastasis of breast cancer using PEGylated multi-walled carbon nanotubes. Sci Rep 5:11709

    Article  PubMed  PubMed Central  Google Scholar 

  43. Marega R, De Leo F, Pineux F, Sgrignani J, Magistrato A, Naik AD, Gacia Y, Flamany L, Michelis C, Bonifazi D (2013) functionalized fe-filled multiwalled carbon nanotubes as multifunctional scaffolds for magnetization of cancer cells. Adv Funct Mater 23:3173–3184

    Article  CAS  Google Scholar 

  44. Singh R, Torti S (2013) Carbon nanotubes in hyperthermia therapy. Adv Drug Deliv Rev 65:2045–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Escousura-Miniz A, Merkoci A (2016) Nanochannels for electrical biosensing. TrAC Trends Anal Chem 79:134–150

    Article  Google Scholar 

  46. Huang Y, Lin I, Chen C, Hsu Y, Chang C, Lee M (2013) Delivery of small interfering RNAs in human cervical cancer cells by polyethylenimine-functionalized carbon nanotubes. Nanoscale Res Lett 8:267

    Article  PubMed  PubMed Central  Google Scholar 

  47. Martincic M, Tobias G (2015) Filled carbon nanotubes in biomedical imaging and drug delivery. Expert Opin Drug Deliv 12:563–581

    Article  CAS  PubMed  Google Scholar 

  48. Zhang B, Wang H, Shen S, She X, Shi W, Chen J, Zhang Q, Hu Y, Pang Z, Jaing X (2016) Fibrin-targeting peptide CREKA-conjugated multi-walled carbon nanotubes for self-amplified photothermal therapy of tumor. Biomaterials 79:46–55

    Article  CAS  PubMed  Google Scholar 

  49. Prajapati VK, Awasthi K, Gautam S, Yadav TP, Rai M, Srivastava ON, Sundar S (2011) Targeted killing of Leishmania donovani in vivo and in vitro with amphotericin B attached to functionalized carbon nanotubes. J Antimicrob Chemother 66:874–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Akhavan O, Abdolahad M, Abdi Y, Mohajerzadeh S (2011) Silver nanoparticles within vertically aligned multi-wall carbon nanotubes with open tips for antibacterial purposes. J Mater Chem 21:387–393

    Article  CAS  Google Scholar 

  51. Bai YPI, Lee SJ, Bae TS, Watari F, Uo M, Lee MH (2011) Aqueous dispersion of surfactant-modified multiwalled carbon nanotubes and their application as an antibacterial agent. Carbon 49:3663–3671

    Article  CAS  Google Scholar 

  52. Akhavan O, Azimirad R, Safa S (2011) Functionalized carbon nanotubes in ZnO thin films for photoinactivation of bacteria. Mater Chem Phys 130:598–602

    Article  CAS  Google Scholar 

  53. Amiri A, Zardini HZ, Shanbedi M, Maghrebi M, Baniadam MBT (2012) Efficient method for functionalization of carbon nanotubes by lysine and improved antimicrobial activity and water-dispersion. Mater Lett 72:153–156

    Article  CAS  Google Scholar 

  54. Arias LR, Yang L (2009) Inactivation of bacterial pathogens by carbon nanotubes in suspensions. Langmuir 25:3003–3012

    Article  CAS  PubMed  Google Scholar 

  55. Aslan S, Loebick CZ, Kang S, Elimelech M, Pfefferle LD, Tassel PRV (2010) Antimicrobial biomaterials based on carbon nanotubes dispersed in poly (lactic-co-glycolic acid). Nanoscale 2:1789–1794

    Article  CAS  PubMed  Google Scholar 

  56. Chaudhari AA, Jasper SL, Dosunmu EMME, Arnold RD, Singh SR, Pillai S (2015) Novel pegylated silver coated carbon nanotubes kill Salmonella but they are non-toxic to eukaryotic cells. J Nanobiotechnol 13:1–17

    Article  CAS  Google Scholar 

  57. Chen H, Wang B, Gao D, Guan M, Zheng L, Ouyang H, Chai Z, Zhao Y, Feng W (2013) Broad-spectrum antibacterial activity of carbon nanotubes to human gut bacteria. Small 9:2735–2746

    Article  CAS  PubMed  Google Scholar 

  58. Rodrigues DF, Elimelech M (2010) Toxic effects of single-walled carbon nanotubes in the development of E. coli biofilm. Environ Sci Technol 44:4583–4589

    Article  CAS  PubMed  Google Scholar 

  59. Kim J, Shashkov EV, Galanzha EI, Kotagiri N, Zharov VP (2007) Photothermal antimicrobial nanotherapy and nanodiagnostics with self-assembling carbon nanotube clusters. Lasers Surg Med 39:622–634

    Article  PubMed  Google Scholar 

  60. Khazaee M, Ye D, Majumder A, Baraban L, Opitz J, Cuniberti G (2016) Non-covalent modified multi-walled carbon nanotubes: dispersion capabilities and interactions with bacteria. Biomed Phys Eng Express 2:005008

    Article  Google Scholar 

  61. Levi-Polyachenko N, Young C, MacNeill C, Braden A, Argenta L, Reid S (2014) Eradicating group A streptococcus bacteria and biofilms using functionalised multi-wall carbon nanotubes. Int J Hyperth 30:490–501

    Article  CAS  Google Scholar 

  62. Liu S, Ng AK, Xu R, Wei J, Tan CM, Yang Y, Chen Y (2010) Antibacterial action of dispersed single-walled carbon nanotubes on Escherichia coli and Bacillus subtilis investigated by atomic force microscopy. Nanoscale 2:2744–2750

    Article  CAS  PubMed  Google Scholar 

  63. Vecitis CD, Zodrow KR, Kang S, Elimelech M (2010) Electronic-structure-dependent bacterial cytotoxicity of single-walled carbon nanotubes. ACS Nano 4:5471–5479

    Article  CAS  PubMed  Google Scholar 

  64. Yang C, Mamouni J, Tang Y, Yang L (2010) Antimicrobial activity of single-walled carbon nanotubes: length effect. Langmuir 26:16013–16019

    Article  CAS  PubMed  Google Scholar 

  65. Bazaka K, Crawford RJ, Ivanova EP (2011) Do bacteria differentiate between degrees of nanoscale surface roughness? Biotechnol J 6:1103–1114

    Article  CAS  PubMed  Google Scholar 

  66. Dong X, Yang L (2014) Inhibitory effects of single-walled carbon nanotubes on biofilm formation from Bacillus anthracis spores. Biofouling 30:1165–1174

    Article  CAS  PubMed  Google Scholar 

  67. Pasquini LM, Hashmi SM, Sommer TJ, Elimelech M, Zimmerman JB (2012) Impact of surface functionalization on bacterial cytotoxicity of single-walled carbon nanotubes. Environ Sci Technol 46:6297–6305

    Article  CAS  PubMed  Google Scholar 

  68. Liu S, Wei L, Hao L, Fang N, Chang MW, Xu R, Yang Y, Chen Y (2009) Sharper and faster “nano darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 3:3891–3902

    Article  CAS  PubMed  Google Scholar 

  69. Cortes P, Deng S, Smith GB (2014) The toxic effects of single wall carbon nanotubes on E. coli and a spore-forming Bacillus species. Nanosci Nanotechnol Lett 6:26–30

    Article  CAS  Google Scholar 

  70. Tiraferri A, Vecitis CD, Elimelech M (2011) Covalent binding of single-walled carbon nanotubes to polyamide membranes for antimicrobial surface properties. ACS Appl Mater Interfaces 3:2869–2877

    Article  CAS  PubMed  Google Scholar 

  71. Vecitis CD, Schnoor MH, Rahaman MS, Schiffman JD, Elimelech M (2011) Electrochemical multiwalled carbon nanotube filter for viral and bacterial removal and inactivation. Environ Sci Technol 45:3672–3679

    Article  CAS  PubMed  Google Scholar 

  72. Yang H, Tong M, Kim H (2013) Effect of carbon nanotubes on the transport and retention of bacteria in saturated porous media. Environ Sci Technol 47:11537–11544

    Article  CAS  PubMed  Google Scholar 

  73. Fang J, Levchenko I, Mai-Prochnow A, Keidar M, Cvelbar U, Filipic G, Han ZJ, Ostrikov K (2015) Protein retention on plasma-treated hierarchical nanoscale gold-silver platform. Sci Rep 5:13379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Qi X, Poernomo G, Wang K, Chen Y, Chan-Park MB, Xu R, Chang MW (2011) Covalent immobilization of nisin on multi-walled carbon nanotubes: superior antimicrobial and anti-biofilm properties. Nanoscale 3:1874–1880

    Article  CAS  PubMed  Google Scholar 

  75. Kumar M (2011). Carbon Nanotube Synthesis and Growth Mechanism. In: Yellampalli S (Ed) Carbon Nanotubes - Synthesis, Characterization, Applications. InTech, DOI:10.5772/19331 

  76. Zardini HZ, Amiri A, Shanbedi M, Maghrebi M, Baniadam M (2012) Enhanced antibacterial activity of amino acids-functionalized multi walled carbon nanotubes by a simple method. Colloids Surf B 92:196–202

    Article  CAS  Google Scholar 

  77. Zhu A, Liu HK, Long F, Su E, Klibanov AM (2015) Inactivation of bacteria by electric current in the presence of carbon nanotubes embedded within a polymeric membrane. Appl Biochem Biotechnol 175:666–676

    Article  CAS  PubMed  Google Scholar 

  78. Azizian J, Hekmati M, Dadras OG (2014) Functionalization of carboxylated multiwall nanotubes with dapsone derivatives and study of their antibacterial activities against E. coli and S. aureus. Orient J Chem 30:667–673

    Article  CAS  Google Scholar 

  79. Mocan L, Ilie I, Tabaran FA, Iancu C, Mosteanu O, Pop T, Zdrehus C, Bartos D, Mocan T, Matea C (2016) Selective laser ablation of methicillin-resistant Staphylococcus aureus with IgG functionalized multi-walled carbon nanotubes. J Biomed Nanotechnol 12:781–788

    Article  CAS  PubMed  Google Scholar 

  80. Ondera TJ, Hamme AT II (2015) Magnetic-optical nanohybrids for targeted detection, separation, and photothermal ablation of drug-resistant pathogens. Analyst 140:7902–7911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Romanian National Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project numbers PN-II-RU-TE-2014-4-2267; PN-II-PT-PCCA-2013-4-1553; PN-III-P2-2.1-BG-2016-0446; PN-III-P2-2.1-PED-2016-1742.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cornel Iancu or Lucian Mocan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mocan, T., Matea, C.T., Pop, T. et al. Carbon nanotubes as anti-bacterial agents. Cell. Mol. Life Sci. 74, 3467–3479 (2017). https://doi.org/10.1007/s00018-017-2532-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2532-y

Keywords

Navigation