Skip to main content

Advertisement

Log in

A researcher’s guide to the galaxy of IRESs

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The idea of internal initiation is frequently exploited to explain the peculiar translation properties or unusual features of some eukaryotic mRNAs. In this review, we summarize the methods and arguments most commonly used to address cases of translation governed by internal ribosome entry sites (IRESs). Frequent mistakes are revealed. We explain why “cap-independent” does not readily mean “IRES-dependent” and why the presence of a long and highly structured 5′ untranslated region (5′UTR) or translation under stress conditions cannot be regarded as an argument for appealing to internal initiation. We carefully describe the known pitfalls and limitations of the bicistronic assay and artefacts of some commercially available in vitro translation systems. We explain why plasmid DNA transfection should not be used in IRES studies and which control experiments are unavoidable if someone decides to use it anyway. Finally, we propose a workflow for the validation of IRES activity, including fast and simple experiments based on a single genetic construct with a sequence of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

4E-BP:

eIF4E-binding protein

CAGE:

Cap analysis of gene expression

CDS:

Coding DNA sequence

CITE:

Cap-independent translation enhancer

CrPV:

Cricket paralysis virus

eIF:

Eukaryotic translation initiation factor

EMCV:

Encephalomyocarditis virus

FMDV:

Foot and mouth decease virus

HalV:

Halastavi árva virus

HCV:

Hepatitis C virus

HIV:

Human immunodeficiency virus

HRV:

Human rhinovirus

IFIT:

Interferon-induced proteins with tetratricopeptide repeats

IRES:

Internal ribosome entry site

KSHV:

Kaposi's sarcoma-associated Herpes Virus

PV:

Poliovirus

RhPV:

Rhopalosiphum padi virus

RRL:

Rabbit reticulocyte lysate

SHAPE:

Selective 2′-hydroxyl acylation analyzed by primer extension

TSS:

Transcription start site

uORF:

Upstream open reading frame

UTR:

Untranslated region

References

  1. Thompson SR (2012) So you want to know if your message has an IRES? Wiley Interdiscip Rev RNA 3:697–705. doi:10.1002/wrna.1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gilbert WV (2010) Alternative ways to think about cellular internal ribosome entry. J Biol Chem 285:29033–29038. doi:10.1074/jbc.R110.150532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kozak M (2005) A second look at cellular mRNA sequences said to function as internal ribosome entry sites. Nucleic Acids Res 33:6593–6602. doi:10.1093/nar/gki958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jackson RJ (2013) The current status of vertebrate cellular mRNA IRESs. Cold Spring Harb Perspect Biol 5:a011569. doi:10.1101/cshperspect.a011569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Shatsky IN, Dmitriev SE, Terenin IM, Andreev DE (2010) Cap- and IRES-independent scanning mechanism of translation initiation as an alternative to the concept of cellular IRESs. Mol Cells 30:285–293. doi:10.1007/s10059-010-0149-1

    Article  CAS  PubMed  Google Scholar 

  6. Hinnebusch AG (2014) The scanning mechanism of eukaryotic translation initiation. Annu Rev Biochem 83:779–812. doi:10.1146/annurev-biochem-060713-035802

    Article  CAS  PubMed  Google Scholar 

  7. Hinnebusch AG, Lorsch JR (2012) The mechanism of eukaryotic translation initiation: new insights and challenges. Cold Spring Harb Perspect Biol 4:a011544. doi:10.1101/cshperspect.a011544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Jackson RJ, Hellen CUT, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11:113–127. doi:10.1038/nrm2838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Filbin ME, Kieft JS (2009) Toward a structural understanding of IRES RNA function. Curr Opin Struct Biol 19:267–276. doi:10.1016/j.sbi.2009.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hellen CU, Sarnow P (2001) Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 15:1593–1612. doi:10.1101/gad.891101

    Article  CAS  PubMed  Google Scholar 

  11. Lozano G, Martínez-Salas E (2015) Structural insights into viral IRES-dependent translation mechanisms. Curr Opin Virol 12:113–120. doi:10.1016/j.coviro.2015.04.008

    Article  CAS  PubMed  Google Scholar 

  12. Morita M, Gravel S-P, Hulea L et al (2015) mTOR coordinates protein synthesis, mitochondrial activity and proliferation. Cell Cycle 14:473–480. doi:10.4161/15384101.2014.991572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Puertollano R (2014) mTOR and lysosome regulation. F1000 Prime Rep 6:52. doi:10.12703/P6-52

    Article  CAS  Google Scholar 

  14. Albert V, Hall MN (2015) mTOR signaling in cellular and organismal energetics. Curr Opin Cell Biol 33:55–66. doi:10.1016/j.ceb.2014.12.001

    Article  CAS  PubMed  Google Scholar 

  15. Heesom KJ, Gampel A, Mellor H, Denton RM (2001) Cell cycle-dependent phosphorylation of the translational repressor eIF-4E binding protein-1 (4E-BP1). Curr Biol 11:1374–1379

    Article  CAS  PubMed  Google Scholar 

  16. Shang Z-F, Yu L, Li B et al (2012) 4E-BP1 participates in maintaining spindle integrity and genomic stability via interacting with PLK1. Cell Cycle 11:3463–3471. doi:10.4161/cc.21770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shin S, Wolgamott L, Tcherkezian J et al (2014) Glycogen synthase kinase-3β positively regulates protein synthesis and cell proliferation through the regulation of translation initiation factor 4E-binding protein 1. Oncogene 33:1690–1699. doi:10.1038/onc.2013.113

    Article  CAS  PubMed  Google Scholar 

  18. Herbert TP, Tee AR, Proud CG (2002) The extracellular signal-regulated kinase pathway regulates the phosphorylation of 4E-BP1 at multiple sites. J Biol Chem 277:11591–11596. doi:10.1074/jbc.M110367200

    Article  CAS  PubMed  Google Scholar 

  19. Topisirovic I, Borden KLB (2005) Homeodomain proteins and eukaryotic translation initiation factor 4E (eIF4E): an unexpected relationship. Histol Histopathol 20:1275–1284

    CAS  PubMed  Google Scholar 

  20. Kamenska A, Simpson C, Standart N (2014) eIF4E-binding proteins: new factors, new locations, new roles. Biochem Soc Trans 42:1238–1245. doi:10.1042/BST20140063

    Article  CAS  PubMed  Google Scholar 

  21. Rose JK, Lodish HF (1976) Translation in vitro of vesicular stomatitis virus mRNA lacking 5′-terminal 7-methylguanosine. Nature 262:32–37. doi:10.1038/262032a0

    Article  CAS  PubMed  Google Scholar 

  22. Kozak M, Shatkin AJ (1978) Identification of features in 5′ terminal fragments from reovirus mRNA which are important for ribosome binding. Cell 13:201–212

    Article  CAS  PubMed  Google Scholar 

  23. Gunnery S, Mäivali U, Mathews MB (1997) Translation of an uncapped mRNA involves scanning. J Biol Chem 272:21642–21646. doi:10.1074/jbc.272.34.21642

    Article  CAS  PubMed  Google Scholar 

  24. Gunnery S, Mathews MB (1995) Functional mRNA can be generated by RNA polymerase III. Mol Cell Biol 15:3597–3607. doi:10.1128/MCB.15.7.3597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Smirnova VV, Terenin IM, Khutornenko AA et al (2015) Does HIV-1 mRNA 5′-untranslated region bear an internal ribosome entry site? Biochimie 121:228–237. doi:10.1016/j.biochi.2015.12.004

    Article  PubMed  CAS  Google Scholar 

  26. Hundsdoerfer P, Thoma C, Hentze MW (2005) Eukaryotic translation initiation factor 4GI and p97 promote cellular internal ribosome entry sequence-driven translation. Proc Natl Acad Sci USA 102:13421–13426. doi:10.1073/pnas.0506536102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Terenin IM, Andreev DE, Dmitriev SE, Shatsky IN (2013) A novel mechanism of eukaryotic translation initiation that is neither m7G-cap-, nor IRES-dependent. Nucleic Acids Res 41:1807–1816. doi:10.1093/nar/gks1282

    Article  CAS  PubMed  Google Scholar 

  28. de Gregorio E, Preiss T, Hentze MW (1998) Translational activation of uncapped mRNAs by the central part of human eIF4G is 5′ end-dependent. RNA 4:828–836

    Article  PubMed  PubMed Central  Google Scholar 

  29. Thoma C, Hasselblatt P, Köck J et al (2001) Generation of stable mRNA fragments and translation of N-truncated proteins induced by antisense oligodeoxynucleotides. Mol Cell 8:865–872. doi:10.1016/S1097-2765(01)00364-1

    Article  CAS  PubMed  Google Scholar 

  30. Dolph PJ, Racaniello V, Villamarin A et al (1988) The adenovirus tripartite leader may eliminate the requirement for cap-binding protein complex during translation initiation. J Virol 62:2059–2066

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Frolov I, Schlesinger S (1994) Comparison of the effects of Sindbis virus and Sindbis virus replicons on host cell protein synthesis and cytopathogenicity in BHK cells. J Virol 68:1721–1727

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Simon AE, Miller WA (2013) 3′ cap-independent translation enhancers of plant viruses. Annu Rev Microbiol 67:21–42. doi:10.1146/annurev-micro-092412-155609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nicholson BL, White KA (2011) 3′ Cap-independent translation enhancers of positive-strand RNA plant viruses. Curr Opin Virol 1:373–380. doi:10.1016/j.coviro.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  34. Miller WA, Wang Z, Treder K (2007) The amazing diversity of cap-independent translation elements in the 3′-untranslated regions of plant viral RNAs. Biochem Soc Trans 35:1629–1633. doi:10.1042/BST0351629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Andreev DE, Dmitriev SE, Terenin IM, Shatsky IN (2013) Cap-independent translation initiation of apaf-1 mRNA based on a scanning mechanism is determined by some features of the secondary structure of its 5′ untranslated region. Biochem Mosc 78:157–165. doi:10.1134/S0006297913020041

    Article  CAS  Google Scholar 

  36. Edgil D, Polacek C, Harris E (2006) Dengue virus utilizes a novel strategy for translation initiation when cap-dependent translation is inhibited. J Virol 80:2976–2986. doi:10.1128/JVI.80.6.2976-2986.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Paek KY, Hong KY, Ryu I et al (2015) Translation initiation mediated by RNA looping. Proc Natl Acad Sci USA 112:1041–1046. doi:10.1073/pnas.1416883112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee ASY, Kranzusch PJ, Cate JHD (2015) eIF3 targets cell-proliferation messenger RNAs for translational activation or repression. Nature 522:111–114. doi:10.1038/nature14267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Meyer KD, Patil DP, Zhou J et al (2015) 5′ UTR m(6)A promotes cap-independent translation. Cell 163:999–1010. doi:10.1016/j.cell.2015.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Andreev DE, Dmitriev SE, Terenin IM et al (2009) Differential contribution of the m7G-cap to the 5′ end-dependent translation initiation of mammalian mRNAs. Nucleic Acids Res 37:6135–6147. doi:10.1093/nar/gkp665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shatsky IN, Dmitriev SE, Andreev DE, Terenin IM (2014) Transcriptome-wide studies uncover the diversity of modes of mRNA recruitment to eukaryotic ribosomes. Crit Rev Biochem Mol Biol 49:164–177. doi:10.3109/10409238.2014.887051

    Article  CAS  PubMed  Google Scholar 

  42. Kaminski A, Belsham GJ, Jackson RJ (1994) Translation of encephalomyocarditis virus RNA: parameters influencing the selection of the internal initiation site. EMBO J 13:1673–1681

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Rijnbrand RC, Abbink TE, Haasnoot PC et al (1996) The influence of AUG codons in the hepatitis C virus 5′ nontranslated region on translation and mapping of the translation initiation window. Virology 226:47–56. doi:10.1006/viro.1996.0626

    Article  CAS  PubMed  Google Scholar 

  44. Pilipenko EV, Gmyl AP, Maslova SV et al (1994) Starting window, a distinct element in the cap-independent internal initiation of translation on picornaviral RNA. J Mol Biol 241:398–414. doi:10.1006/jmbi.1994.1516

    Article  CAS  PubMed  Google Scholar 

  45. López de Quinto S, Martinez-Salas E (1997) Conserved structural motifs located in distal loops of aphthovirus internal ribosome entry site domain 3 are required for internal initiation of translation. J Virol 71:4171–4175

    PubMed  PubMed Central  Google Scholar 

  46. Robertson ME, Seamons RA, Belsham GJ (1999) A selection system for functional internal ribosome entry site (IRES) elements: analysis of the requirement for a conserved GNRA tetraloop in the encephalomyocarditis virus IRES. RNA 5:1167–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rijnbrand R, Bredenbeek P, van der Straaten T et al (1995) Almost the entire 5′ non-translated region of hepatitis C virus is required for cap-independent translation. FEBS Lett 365:115–119. doi:10.1016/0014-5793(95)00458-L

    Article  CAS  PubMed  Google Scholar 

  48. Wilson JE, Powell MJ, Hoover SE, Sarnow P (2000) Naturally occurring dicistronic cricket paralysis virus RNA is regulated by two internal ribosome entry sites. Mol Cell Biol 20:4990–4999. doi:10.1128/MCB.20.14.4990-4999.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hoffman MA, Palmenberg AC (1995) Mutational analysis of the J-K stem-loop region of the encephalomyocarditis virus IRES. J Virol 69:4399–4406

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Terenin IM, Dmitriev SE, Andreev DE et al (2005) A cross-kingdom internal ribosome entry site reveals a simplified mode of internal ribosome entry. Mol Cell Biol 25:7879–7888. doi:10.1128/MCB.25.17.7879-7888.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Groppelli E, Belsham GJ, Roberts LO (2007) Identification of minimal sequences of the Rhopalosiphum padi virus 5′ untranslated region required for internal initiation of protein synthesis in mammalian, plant and insect translation systems. J Gen Virol 88:1583–1588. doi:10.1099/vir.0.82682-0

    Article  CAS  PubMed  Google Scholar 

  52. Woolaway KE, Lazaridis K, Belsham GJ et al (2001) The 5′ untranslated region of Rhopalosiphum padi virus contains an internal ribosome entry site which functions efficiently in mammalian, plant, and insect translation systems. J Virol 75:10244–10249. doi:10.1128/JVI.75.21.10244-10249.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Abaeva IS, Pestova TV, Hellen CUT (2016) Attachment of ribosomal complexes and retrograde scanning during initiation on the Halastavi árva virus IRES. Nucleic Acids Res 44:2362–2377. doi:10.1093/nar/gkw016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sogorin EA, Agalarov SC, Spirin AS (2013) Internal initiation of polyuridylic acid translation in bacterial cell-free system. Biochem Mosc 78:1354–1357. doi:10.1134/S0006297913120055

    Article  CAS  Google Scholar 

  55. Weill L, James L, Ulryck N et al (2010) A new type of IRES within gag coding region recruits three initiation complexes on HIV-2 genomic RNA. Nucleic Acids Res 38:1367–1381. doi:10.1093/nar/gkp1109

    Article  CAS  PubMed  Google Scholar 

  56. de Breyne S, Chamond N, Decimo D et al (2012) In vitro studies reveal that different modes of initiation on HIV-1 mRNA have different levels of requirement for eukaryotic initiation factor 4F. FEBS J 279:3098–3111. doi:10.1111/j.1742-4658.2012.08689.x

    Article  PubMed  CAS  Google Scholar 

  57. Locker N, Chamond N, Sargueil B (2011) A conserved structure within the HIV gag open reading frame that controls translation initiation directly recruits the 40S subunit and eIF3. Nucleic Acids Res 39:2367–2377. doi:10.1093/nar/gkq1118

    Article  CAS  PubMed  Google Scholar 

  58. Ricci EP, Herbreteau CH, Decimo D et al (2008) In vitro expression of the HIV-2 genomic RNA is controlled by three distinct internal ribosome entry segments that are regulated by the HIV protease and the Gag polyprotein. RNA 14:1443–1455. doi:10.1261/rna.813608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Herbreteau CH, Weill L, Decimo D et al (2005) HIV-2 genomic RNA contains a novel type of IRES located downstream of its initiation codon. Nat Struct Mol Biol 12:1001–1007. doi:10.1038/nsmb1011

    Article  CAS  PubMed  Google Scholar 

  60. Hughes MJ, Andrews DW (1997) A single nucleotide is a sufficient 5′ untranslated region for translation in an eukaryotic in vitro system. FEBS Lett 414:19–22. doi:10.1016/S0014-5793(97)00965-4

    Article  CAS  PubMed  Google Scholar 

  61. Andreev DE, Terenin IM, Dunaevsky YE et al (2006) A leaderless mRNA can bind to mammalian 80S ribosomes and direct polypeptide synthesis in the absence of translation initiation factors. Mol Cell Biol 26:3164–3169. doi:10.1128/MCB.26.8.3164-3169.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dmitriev SE, Terenin IM, Andreev DE et al (2010) GTP-independent tRNA delivery to the ribosomal P-site by a novel eukaryotic translation factor. J Biol Chem 285:26779–26787. doi:10.1074/jbc.M110.119693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Balakin AG, Skripkin EA, Shatsky IN, Bogdanov AA (1992) Unusual ribosome binding properties of mRNA encoding bacteriophage lambda repressor. Nucleic Acids Res 20:563–571. doi:10.1093/nar/20.3.563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schwartz S, Felber BK, Pavlakis GN (1992) Mechanism of translation of monocistronic and multicistronic human immunodeficiency virus type 1 mRNAs. Mol Cell Biol 12:207–219. doi:10.1128/MCB.12.1.207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fouillot N, Tlouzeau S, Rossignol JM, Jean-Jean O (1993) Translation of the hepatitis B virus P gene by ribosomal scanning as an alternative to internal initiation. J Virol 67:4886–4895

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang X-Q, Rothnagel JA (2004) 5′-untranslated regions with multiple upstream AUG codons can support low-level translation via leaky scanning and reinitiation. Nucleic Acids Res 32:1382–1391. doi:10.1093/nar/gkh305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Terenin IM, Akulich KA, Andreev DE et al (2016) Sliding of a 43S ribosomal complex from the recognized AUG codon triggered by a delay in eIF2-bound GTP hydrolysis. Nucleic Acids Res 44:1882–1893. doi:10.1093/nar/gkv1514

    Article  PubMed  Google Scholar 

  68. Jackson RJ, Hellen CUT, Pestova TV (2012) Termination and post-termination events in eukaryotic translation. Adv Protein Chem Struct Biol 86:45–93. doi:10.1016/B978-0-12-386497-0.00002-5

    Article  CAS  PubMed  Google Scholar 

  69. Alisch RS, Garcia-Perez JL, Muotri AR et al (2006) Unconventional translation of mammalian LINE-1 retrotransposons. Genes Dev 20:210–224. doi:10.1101/gad.1380406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dmitriev SE, Andreev DE, Terenin IM et al (2007) Efficient translation initiation directed by the 900-nucleotide-long and GC-rich 5′ untranslated region of the human retrotransposon LINE-1 mRNA is strictly cap dependent rather than internal ribosome entry site mediated. Mol Cell Biol 27:4685–4697. doi:10.1128/MCB.02138-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dmitriev SE, Andreev DE, Adyanova ZV et al (2009) Efficient cap-dependent in vitro and in vivo translation of mammalian mRNAs with long and highly structured 5′-untranslated regions. Mol Biol (Mosk) 43:108–113. doi:10.1134/S0026893309010154

    Article  CAS  Google Scholar 

  72. Berkhout B, Arts K, Abbink TEM (2011) Ribosomal scanning on the 5′-untranslated region of the human immunodeficiency virus RNA genome. Nucleic Acids Res 39:5232–5244. doi:10.1093/nar/gkr113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Belsham GJ, Nielsen I, Normann P et al (2008) Monocistronic mRNAs containing defective hepatitis C virus-like picornavirus internal ribosome entry site elements in their 5′ untranslated regions are efficiently translated in cells by a cap-dependent mechanism. RNA 14:1671–1680. doi:10.1261/rna.1039708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Vassilenko KS, Alekhina OM, Dmitriev SE et al (2011) Unidirectional constant rate motion of the ribosomal scanning particle during eukaryotic translation initiation. Nucleic Acids Res 39:5555–5567. doi:10.1093/nar/gkr147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kozak M (1989) Circumstances and mechanisms of inhibition of translation by secondary structure in eucaryotic mRNAs. Mol Cell Biol 9:5134–5142. doi:10.1128/MCB.9.11.5134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Babendure JR, Babendure JL, Ding J-H, Tsien RY (2006) Control of mammalian translation by mRNA structure near caps. RNA 12:851–861. doi:10.1261/rna.2309906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Muckenthaler M, Gray NK, Hentze MW (1998) IRP-1 binding to ferritin mRNA prevents the recruitment of the small ribosomal subunit by the cap-binding complex eIF4F. Mol Cell 2:383–388. doi:10.1016/S1097-2765(00)80282-8

    Article  CAS  PubMed  Google Scholar 

  78. Baird SD, Turcotte M, Korneluk RG, Holcík M (2006) Searching for IRES. RNA 12:1755–1785. doi:10.1261/rna.157806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ji Z, Song R, Regev A, Struhl K (2015) Many lncRNAs, 5′UTRs, and pseudogenes are translated and some are likely to express functional proteins. Elife 4:e08890. doi:10.7554/eLife.08890

    PubMed  PubMed Central  Google Scholar 

  80. Yanagiya A, Suyama E, Adachi H et al (2012) Translational homeostasis via the mRNA cap-binding protein, eIF4E. Mol Cell 46:847–858. doi:10.1016/j.molcel.2012.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Svitkin YV, Herdy B, Costa-Mattioli M et al (2005) Eukaryotic translation initiation factor 4E availability controls the switch between cap-dependent and internal ribosomal entry site-mediated translation. Mol Cell Biol 25:10556–10565. doi:10.1128/MCB.25.23.10556-10565.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mothe-Satney I, Yang D, Fadden P et al (2000) Multiple mechanisms control phosphorylation of PHAS-I in five (S/T)P sites that govern translational repression. Mol Cell Biol 20:3558–3567. doi:10.1128/MCB.20.10.3558-3567.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Thoreen CC, Chantranupong L, Keys HR et al (2012) A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485:109–113. doi:10.1038/nature11083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hsieh AC, Liu Y, Edlind MP et al (2012) The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485:55–61. doi:10.1038/nature10912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Marr MT, D’Alessio JA, Puig O, Tjian R (2007) IRES-mediated functional coupling of transcription and translation amplifies insulin receptor feedback. Genes Dev 21:175–183. doi:10.1101/gad.1506407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Beaudoin ME, Poirel V-J, Krushel LA (2008) Regulating amyloid precursor protein synthesis through an internal ribosomal entry site. Nucleic Acids Res 36:6835–6847. doi:10.1093/nar/gkn792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Blau L, Knirsh R, Ben-Dror I et al (2012) Aberrant expression of c-Jun in glioblastoma by internal ribosome entry site (IRES)-mediated translational activation. Proc Natl Acad Sci USA 109:E2875–E2884. doi:10.1073/pnas.1203659109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dobson T, Chen J, Krushel LA (2013) Dysregulating IRES-dependent translation contributes to overexpression of oncogenic Aurora A Kinase. Mol Cancer Res 11:887–900. doi:10.1158/1541-7786.MCR-12-0707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Othman Z, Sulaiman MK, Willcocks MM et al (2014) Functional analysis of Kaposi’s sarcoma-associated herpesvirus vFLIP expression reveals a new mode of IRES-mediated translation. RNA 20:1803–1814. doi:10.1261/rna.045328.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sun J, Conn CS, Han Y et al (2011) PI3K-mTORC1 attenuates stress response by inhibiting cap-independent Hsp70 translation. J Biol Chem 286:6791–6800. doi:10.1074/jbc.M110.172882

    Article  CAS  PubMed  Google Scholar 

  91. Barco A, Feduchi E, Carrasco L (2000) A stable HeLa cell line that inducibly expresses poliovirus 2A(pro): effects on cellular and viral gene expression. J Virol 74:2383–2392. doi:10.1128/JVI.74.5.2383-2392.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Amorim R, Costa SM, Cavaleiro NP et al (2014) HIV-1 transcripts use IRES-initiation under conditions where Cap-dependent translation is restricted by poliovirus 2A protease. PLoS One 9:e88619. doi:10.1371/journal.pone.0088619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Chau DHW, Yuan J, Zhang H et al (2007) Coxsackievirus B3 proteases 2A and 3C induce apoptotic cell death through mitochondrial injury and cleavage of eIF4GI but not DAP5/p97/NAT1. Apoptosis 12:513–524. doi:10.1007/s10495-006-0013-0

    Article  CAS  PubMed  Google Scholar 

  94. Badura M, Braunstein S, Zavadil J, Schneider RJ (2012) DNA damage and eIF4G1 in breast cancer cells reprogram translation for survival and DNA repair mRNAs. Proc Natl Acad Sci USA 109:18767–18772. doi:10.1073/pnas.1203853109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ramírez-Valle F, Braunstein S, Zavadil J et al (2008) eIF4GI links nutrient sensing by mTOR to cell proliferation and inhibition of autophagy. J Cell Biol 181:293–307. doi:10.1083/jcb.200710215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Bushell M, Poncet D, Marissen WE et al (2000) Cleavage of polypeptide chain initiation factor eIF4GI during apoptosis in lymphoma cells: characterisation of an internal fragment generated by caspase-3-mediated cleavage. Cell Death Differ 7:628–636. doi:10.1038/sj.cdd.4400699

    Article  CAS  PubMed  Google Scholar 

  97. Andreev DE, Dmitriev SE, Zinovkin R et al (2012) The 5′ untranslated region of Apaf-1 mRNA directs translation under apoptosis conditions via a 5′ end-dependent scanning mechanism. FEBS Lett 586:4139–4143. doi:10.1016/j.febslet.2012.10.010

    Article  CAS  PubMed  Google Scholar 

  98. Venkatesan A, Sharma R, Dasgupta A (2003) Cell cycle regulation of hepatitis C and encephalomyocarditis virus internal ribosome entry site-mediated translation in human embryonic kidney 293 cells. Virus Res 94:85–95. doi:10.1016/S0168-1702(03)00136-9

    Article  CAS  PubMed  Google Scholar 

  99. Qin X, Sarnow P (2004) Preferential translation of internal ribosome entry site-containing mRNAs during the mitotic cycle in mammalian cells. J Biol Chem 279:13721–13728. doi:10.1074/jbc.M312854200

    Article  CAS  PubMed  Google Scholar 

  100. Fan H, Penman S (1970) Regulation of protein synthesis in mammalian cells. II. Inhibition of protein synthesis at the level of initiation during mitosis. J Mol Biol 50:655–670

    Article  CAS  PubMed  Google Scholar 

  101. Stumpf CR, Moreno MV, Olshen AB et al (2013) The translational landscape of the mammalian cell cycle. Mol Cell 52:574–582. doi:10.1016/j.molcel.2013.09.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Coldwell MJ, Cowan JL, Vlasak M et al (2013) Phosphorylation of eIF4GII and 4E-BP1 in response to nocodazole treatment: a reappraisal of translation initiation during mitosis. Cell Cycle 12:3615–3628. doi:10.4161/cc.26588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Pyronnet S, Dostie J, Sonenberg N (2001) Suppression of cap-dependent translation in mitosis. Genes Dev 15:2083–2093. doi:10.1101/gad.889201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Shuda M, Velásquez C, Cheng E et al (2015) CDK1 substitutes for mTOR kinase to activate mitotic cap-dependent protein translation. Proc Natl Acad Sci USA 112:5875–5882. doi:10.1073/pnas.1505787112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sivan G, Kedersha N, Elroy-Stein O (2007) Ribosomal slowdown mediates translational arrest during cellular division. Mol Cell Biol 27:6639–6646. doi:10.1128/MCB.00798-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sivan G, Aviner R, Elroy-Stein O (2011) Mitotic modulation of translation elongation factor 1 leads to hindered tRNA delivery to ribosomes. J Biol Chem 286:27927–27935. doi:10.1074/jbc.M111.255810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kieft JS (2008) Viral IRES RNA structures and ribosome interactions. Trends Biochem Sci 33:274–283. doi:10.1016/j.tibs.2008.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Malys N, McCarthy JEG (2011) Translation initiation: variations in the mechanism can be anticipated. Cell Mol Life Sci 68:991–1003. doi:10.1007/s00018-010-0588-z

    Article  CAS  PubMed  Google Scholar 

  109. Williamson AR (1969) The attachment of polyuridylic acid to reticulocyte ribosomes. Biochem J 111:515–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Iwasaki K (1982) Translation of poly(A) in eukaryotic cell-free systems. J Biochem 91:1617–1627

    Article  CAS  PubMed  Google Scholar 

  111. Kolupaeva VG, Unbehaun A, Lomakin IB et al (2005) Binding of eukaryotic initiation factor 3 to ribosomal 40S subunits and its role in ribosomal dissociation and anti-association. RNA 11:470–486. doi:10.1261/rna.7215305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Seal SN, Schmidt A, Marcus A (1989) Ribosome binding to inosine-substituted mRNAs in the absence of ATP and mRNA factors. J Biol Chem 264:7363–7368

    CAS  PubMed  Google Scholar 

  113. Bai Y, Zhou K, Doudna JA (2013) Hepatitis C virus 3′UTR regulates viral translation through direct interactions with the host translation machinery. Nucleic Acids Res 41:7861–7874. doi:10.1093/nar/gkt543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Asnani M, Pestova TV, Hellen CUT (2016) Initiation on the divergent Type I cadicivirus IRES: factor requirements and interactions with the translation apparatus. Nucleic Acids Res 44:3390–3407. doi:10.1093/nar/gkw074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Skabkin MA, Skabkina OV, Dhote V et al (2010) Activities of Ligatin and MCT-1/DENR in eukaryotic translation initiation and ribosomal recycling. Genes Dev 24:1787–1801. doi:10.1101/gad.1957510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Xue S, Tian S, Fujii K et al (2015) RNA regulons in Hox 5′ UTRs confer ribosome specificity to gene regulation. Nature 517:33–38. doi:10.1038/nature14010

    Article  CAS  PubMed  Google Scholar 

  117. Allam H, Ali N (2010) Initiation factor eIF2-independent mode of c-Src mRNA translation occurs via an internal ribosome entry site. J Biol Chem 285:5713–5725. doi:10.1074/jbc.M109.029462

    Article  CAS  PubMed  Google Scholar 

  118. Pestova TV, Shatsky IN, Fletcher SP et al (1998) A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes Dev 12:67–83. doi:10.1101/gad.12.1.67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sizova DV, Kolupaeva VG, Pestova TV et al (1998) Specific interaction of eukaryotic translation initiation factor 3 with the 5′ nontranslated regions of hepatitis C virus and classical swine fever virus RNAs. J Virol 72:4775–4782

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Nousch M, Reed V, Bryson-Richardson RJ et al (2007) The eIF4G-homolog p97 can activate translation independent of caspase cleavage. RNA 13:374–384. doi:10.1261/rna.372307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. De Gregorio E, Preiss T, Hentze MW (1999) Translation driven by an eIF4G core domain in vivo. EMBO J 18:4865–4874. doi:10.1093/emboj/18.17.4865

    Article  PubMed  PubMed Central  Google Scholar 

  122. Kozak M (1980) Influence of mRNA secondary structure on binding and migration of 40S ribosomal subunits. Cell 19:79–90. doi:10.1016/0092-8674(80)90390-6

    Article  CAS  PubMed  Google Scholar 

  123. Morgan MA, Shatkin AJ (1980) Initiation of reovirus transcription by inosine 5′-triphosphate and properties of 7-methylinosine-capped, inosine-substituted messenger ribonucleic acids. Biochemistry 19:5960–5966

    Article  CAS  PubMed  Google Scholar 

  124. Seal SN, Schmidt A, Sonenberg N, Marcus A (1985) Initiation factors eIF4A and C1 from wheat germ and the formation of mRNA X ribosome complexes. Arch Biochem Biophys 238:146–153

    Article  CAS  PubMed  Google Scholar 

  125. Pestova TV, Kolupaeva VG (2002) The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes Dev 16:2906–2922. doi:10.1101/gad.1020902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhang J, Zhao F, Zhao Y et al (2011) Hypoxia induces an increase in intracellular magnesium via transient receptor potential melastatin 7 (TRPM7) channels in rat hippocampal neurons in vitro. J Biol Chem 286:20194–20207. doi:10.1074/jbc.M110.148494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tashiro M, Inoue H, Konishi M (2014) Physiological pathway of magnesium influx in rat ventricular myocytes. Biophys J 107:2049–2058. doi:10.1016/j.bpj.2014.09.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Shenvi CL, Dong KC, Friedman EM et al (2005) Accessibility of 18S rRNA in human 40S subunits and 80S ribosomes at physiological magnesium ion concentrations—implications for the study of ribosome dynamics. RNA 11:1898–1908. doi:10.1261/rna.2192805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Pestova TV, Borukhov SI, Hellen CU (1998) Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons. Nature 394:854–859. doi:10.1038/29703

    Article  CAS  PubMed  Google Scholar 

  130. Otto GA, Lukavsky PJ, Lancaster AM et al (2002) Ribosomal proteins mediate the hepatitis C virus IRES-HeLa 40S interaction. RNA 8:913–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Thakor N, Holcík M (2012) IRES-mediated translation of cellular messenger RNA operates in eIF2α-independent manner during stress. Nucleic Acids Res 40:541–552. doi:10.1093/nar/gkr701

    Article  CAS  PubMed  Google Scholar 

  132. Chamond N, Deforges J, Ulryck N, Sargueil B (2014) 40S recruitment in the absence of eIF4G/4A by EMCV IRES refines the model for translation initiation on the archetype of Type II IRESs. Nucleic Acids Res 42:10373–10384. doi:10.1093/nar/gku720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kolupaeva VG, Lomakin IB, Pestova TV, Hellen CUT (2003) Eukaryotic initiation factors 4G and 4A mediate conformational changes downstream of the initiation codon of the encephalomyocarditis virus internal ribosomal entry site. Mol Cell Biol 23:687–698. doi:10.1128/MCB.23.2.687-698.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Soto Rifo R, Rubilar PS, Limousin T et al (2012) DEAD-box protein DDX3 associates with eIF4F to promote translation of selected mRNAs. EMBO J 31:3745–3756. doi:10.1038/emboj.2012.220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Pisarev AV, Chard LS, Kaku Y et al (2004) Functional and structural similarities between the internal ribosome entry sites of hepatitis C virus and porcine teschovirus, a picornavirus. J Virol 78:4487–4497. doi:10.1128/JVI.78.9.4487-4497.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Pánek J, Kolár M, Vohradský J, Shivaya Valásek L (2013) An evolutionary conserved pattern of 18S rRNA sequence complementarity to mRNA 5′ UTRs and its implications for eukaryotic gene translation regulation. Nucleic Acids Res 41:7625–7634. doi:10.1093/nar/gkt548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Deforges J, Locker N, Sargueil B (2015) mRNAs that specifically interact with eukaryotic ribosomal subunits. Biochimie 114:48–57. doi:10.1016/j.biochi.2014.12.008

    Article  CAS  PubMed  Google Scholar 

  138. Stupina VA, Yuan X, Meskauskas A et al (2011) Ribosome binding to a 5′ translational enhancer is altered in the presence of the 3′ untranslated region in cap-independent translation of turnip crinkle virus. J Virol 85:4638–4653. doi:10.1128/JVI.00005-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Stupina VA, Meskauskas A, McCormack JC et al (2008) The 3′ proximal translational enhancer of Turnip crinkle virus binds to 60S ribosomal subunits. RNA 14:2379–2393. doi:10.1261/rna.1227808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Chappell SA, Edelman GM, Mauro VP (2004) Biochemical and functional analysis of a 9-nt RNA sequence that affects translation efficiency in eukaryotic cells. Proc Natl Acad Sci USA 101:9590–9594. doi:10.1073/pnas.0308759101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Dresios J, Chappell SA, Zhou W, Mauro VP (2006) An mRNA–rRNA base-pairing mechanism for translation initiation in eukaryotes. Nat Struct Mol Biol 13:30–34. doi:10.1038/nsmb1031

    Article  CAS  PubMed  Google Scholar 

  142. Panopoulos P, Mauro VP (2008) Antisense masking reveals contributions of mRNA–rRNA base pairing to translation of Gtx and FGF2 mRNAs. J Biol Chem 283:33087–33093. doi:10.1074/jbc.M804904200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chappell SA, Edelman GM, Mauro VP (2000) A 9-nt segment of a cellular mRNA can function as an internal ribosome entry site (IRES) and when present in linked multiple copies greatly enhances IRES activity. Proc Natl Acad Sci USA 97:1536–1541. doi:10.1073/pnas.97.4.1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kozak M (2001) New ways of initiating translation in eukaryotes? Mol Cell Biol 21:1899–1907. doi:10.1128/MCB.21.6.1899-1907.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Severin J, Lizio M, Harshbarger J et al (2014) Interactive visualization and analysis of large-scale sequencing datasets using ZENBU. Nat Biotechnol 32:217–219. doi:10.1038/nbt.2840

    Article  CAS  PubMed  Google Scholar 

  146. Dreos R, Ambrosini G, Périer RC, Bucher P (2015) The Eukaryotic Promoter Database: expansion of EPDnew and new promoter analysis tools. Nucleic Acids Res 43:D92–D96. doi:10.1093/nar/gku1111

    Article  PubMed  Google Scholar 

  147. Riley A, Jordan LE, Holcík M (2010) Distinct 5′ UTRs regulate XIAP expression under normal growth conditions and during cellular stress. Nucleic Acids Res 38:4665–4674. doi:10.1093/nar/gkq241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Arribere JA, Gilbert WV (2013) Roles for transcript leaders in translation and mRNA decay revealed by transcript leader sequencing. Genome Res 23:977–987. doi:10.1101/gr.150342.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wang X, Hou J, Quedenau C, Chen W (2016) Pervasive isoform-specific translational regulation via alternative transcription start sites in mammals. Molecular Systems Biology 12:875. doi:10.15252/msb.20166941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Floor SN, Doudna JA (2016) Tunable protein synthesis by transcript isoforms in human cells. Elife 5:e10921. doi:10.7554/eLife.1

    Article  PubMed  PubMed Central  Google Scholar 

  151. Andreev DE, Terenin IM, Dmitriev SE, Shatsky IN (2016) Pros and cons of pDNA and mRNA transfection to study mRNA translation in mammalian cells. Gene 578:1–6. doi:10.1016/j.gene.2015.12.008

    Article  CAS  PubMed  Google Scholar 

  152. Lemp NA, Hiraoka K, Kasahara N, Logg CR (2012) Cryptic transcripts from a ubiquitous plasmid origin of replication confound tests for cis-regulatory function. Nucleic Acids Res 40:7280–7290. doi:10.1093/nar/gks451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Vopalensky V, Masek T, Horvath O et al (2008) Firefly luciferase gene contains a cryptic promoter. RNA 14:1720–1729. doi:10.1261/rna.831808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Weingarten-Gabbay S, Elias-Kirma S, Nir R et al (2016) Systematic discovery of cap-independent translation sequences in human and viral genomes. Science 351:aad4939–aad4939. doi:10.1126/science.aad4939

  155. van Eden ME, Byrd MP, Sherrill KW, Lloyd RE (2004) Demonstrating internal ribosome entry sites in eukaryotic mRNAs using stringent RNA test procedures. RNA 10:720–730

    Article  PubMed  CAS  Google Scholar 

  156. Jiang H, Coleman J, Miskimins R et al (2007) Cap-independent translation through the p27 5′-UTR. Nucleic Acids Res 35:4767–4778. doi:10.1093/nar/gkm512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Olivares E, Landry DM, Cáceres CJ et al (2014) The 5′ untranslated region of the human T-cell lymphotropic virus type 1 mRNA enables cap-independent translation initiation. J Virol 88:5936–5955. doi:10.1128/JVI.00279-14

    Article  PubMed  PubMed Central  Google Scholar 

  158. Bert AG, Grépin R, Vadas MA, Goodall GJ (2006) Assessing IRES activity in the HIF-1alpha and other cellular 5′ UTRs. RNA 12:1074–1083. doi:10.1261/rna.2320506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. de Almeida RA, Heuser T, Blaschke R et al (2006) Control of MYEOV protein synthesis by upstream open reading frames. J Biol Chem 281:695–704. doi:10.1074/jbc.M511467200

    Article  PubMed  CAS  Google Scholar 

  160. Dumas E, Staedel C, Colombat M et al (2003) A promoter activity is present in the DNA sequence corresponding to the hepatitis C virus 5′ UTR. Nucleic Acids Res 31:1275–1281. doi:10.1093/nar/gkg199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Elango N, Li Y, Shivshankar P, Katz MS (2006) Expression of RUNX2 isoforms: involvement of cap-dependent and cap-independent mechanisms of translation. J Cell Biochem 99:1108–1121. doi:10.1002/jcb.20909

    Article  CAS  PubMed  Google Scholar 

  162. Gendra E, Colgan DF, Meany B, Konarska MM (2007) A sequence motif in the simian virus 40 (SV40) early core promoter affects alternative splicing of transcribed mRNA. J Biol Chem 282:11648–11657. doi:10.1074/jbc.M611126200

    Article  CAS  PubMed  Google Scholar 

  163. Zid BM, O’Shea EK (2014) Promoter sequences direct cytoplasmic localization and translation of mRNAs during starvation in yeast. Nature 514:117–121. doi:10.1038/nature13578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Bregman A, Avraham-Kelbert M, Barkai O et al (2011) Promoter elements regulate cytoplasmic mRNA decay. Cell 147:1473–1483. doi:10.1016/j.cell.2011.12.005

    Article  CAS  PubMed  Google Scholar 

  165. Kedersha N, Anderson P (2002) Stress granules: sites of mRNA triage that regulate mRNA stability and translatability. Biochem Soc Trans 30:963–969. doi:10.1042/bst0300963

    Article  CAS  PubMed  Google Scholar 

  166. Stöhr N, Lederer M, Reinke C et al (2006) ZBP1 regulates mRNA stability during cellular stress. J Cell Biol 175:527–534. doi:10.1083/jcb.200608071

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Drinnenberg IA, Weinberg DE, Xie KT et al (2009) RNAi in budding yeast. Science 326:544–550. doi:10.1126/science.1176945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Benard L (2004) Inhibition of 5′ to 3′ mRNA degradation under stress conditions in Saccharomyces cerevisiae: from GCN4 to MET16. RNA 10:458–468. doi:10.1261/rna.5183804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Gilbert WV, Zhou K, Butler TK, Doudna JA (2007) Cap-independent translation is required for starvation-induced differentiation in yeast. Science 317:1224–1227. doi:10.1126/science.1144467

    Article  CAS  PubMed  Google Scholar 

  170. Olson CM, Donovan MR, Spellberg MJ, Marr MT (2013) The insulin receptor cellular IRES confers resistance to eIF4A inhibition. Elife 2:e00542. doi:10.7554/eLife.00542

    PubMed  PubMed Central  Google Scholar 

  171. Zhao Y, Qin W, Zhang J-P et al (2013) HCV IRES-mediated core expression in zebrafish. PLoS One 8:e56985. doi:10.1371/journal.pone.0056985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Masek T, Vopalensky V, Horvath O et al (2007) Hepatitis C virus internal ribosome entry site initiates protein synthesis at the authentic initiation codon in yeast. J Gen Virol 88:1992–2002. doi:10.1099/vir.0.82782-0

    Article  CAS  PubMed  Google Scholar 

  173. Rosenfeld AB, Racaniello VR (2010) Components of the multifactor complex needed for internal initiation by the IRES of hepatitis C virus in Saccharomyces cerevisiae. RNA Biol 7:596–605. doi:10.4161/rna.7.5.13096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Coward P, Dasgupta A (1992) Yeast cells are incapable of translating RNAs containing the poliovirus 5′ untranslated region: evidence for a translational inhibitor. J Virol 66:286–295

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Evstafieva AG, Beletsky AV, Borovjagin AV, Bogdanov AA (1993) Internal ribosome entry site of encephalomyocarditis virus RNA is unable to direct translation in Saccharomyces cerevisiae. FEBS Lett 335:273–276

    Article  CAS  PubMed  Google Scholar 

  176. Dorokhov YL, Skulachev MV, Ivanov PA et al (2002) Polypurine (A)-rich sequences promote cross-kingdom conservation of internal ribosome entry. Proc Natl Acad Sci USA 99:5301–5306. doi:10.1073/pnas.082107599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Pestova TV, Shatsky IN, Hellen CU (1996) Functional dissection of eukaryotic initiation factor 4F: the 4A subunit and the central domain of the 4G subunit are sufficient to mediate internal entry of 43S preinitiation complexes. Mol Cell Biol 16:6870–6878. doi:10.1128/MCB.16.12.6870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Thompson SR, Gulyas KD, Sarnow P (2001) Internal initiation in Saccharomyces cerevisiae mediated by an initiator tRNA/eIF2-independent internal ribosome entry site element. Proc Natl Acad Sci USA 98:12972–12977. doi:10.1073/pnas.241286698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Jünemann C, Song Y, Bassili G et al (2007) Picornavirus internal ribosome entry site elements can stimulate translation of upstream genes. J Biol Chem 282:132–141. doi:10.1074/jbc.M608750200

    Article  PubMed  CAS  Google Scholar 

  180. Byrd MP, Zamora M, Lloyd RE (2005) Translation of eukaryotic translation initiation factor 4GI (eIF4GI) proceeds from multiple mRNAs containing a novel cap-dependent internal ribosome entry site (IRES) that is active during poliovirus infection. J Biol Chem 280:18610–18622. doi:10.1074/jbc.M414014200

    Article  CAS  PubMed  Google Scholar 

  181. Honda M, Kaneko S, Matsushita E et al (2000) Cell cycle regulation of hepatitis C virus internal ribosomal entry site-directed translation. Gastroenterology 118:152–162

    Article  CAS  PubMed  Google Scholar 

  182. van Eden ME, Byrd MP, Sherrill KW, Lloyd RE (2004) Translation of cellular inhibitor of apoptosis protein 1 (c-IAP1) mRNA is IRES mediated and regulated during cell stress. RNA 10:469–481

    Article  PubMed  CAS  Google Scholar 

  183. Gallie DR, Ling J, Niepel M et al (2000) The role of 5′-leader length, secondary structure and PABP concentration on cap and poly(A) tail function during translation in Xenopus oocytes. Nucleic Acids Res 28:2943–2953. doi:10.1093/nar/28.15.2943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Mardanova ES, Zamchuk LA, Skulachev MV, Ravin NV (2008) The 5′ untranslated region of the maize alcohol dehydrogenase gene contains an internal ribosome entry site. Gene 420:11–16. doi:10.1016/j.gene.2008.04.008

    Article  CAS  PubMed  Google Scholar 

  185. Kozak M (1989) The scanning model for translation: an update. J Cell Biol 108:229–241. doi:10.1083/jcb.108.2.229

    Article  CAS  PubMed  Google Scholar 

  186. Konarska M, Filipowicz W, Domdey H, Gross HJ (1981) Binding of ribosomes to linear and circular forms of the 5′-terminal leader fragment of tobacco-mosaic-virus RNA. Eur J Biochem 114:221–227. doi:10.1111/j.1432-1033.1981.tb05139.x

    Article  CAS  PubMed  Google Scholar 

  187. Kozak M (1979) Inability of circular mRNA to attach to eukaryotic ribosomes. Nature 280:82–85. doi:10.1038/280082a0

    Article  CAS  PubMed  Google Scholar 

  188. Chen CY, Sarnow P (1995) Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 268:415–417. doi:10.1126/science.7536344

    Article  CAS  PubMed  Google Scholar 

  189. Chen CY, Sarnow P (1998) Internal ribosome entry sites tests with circular mRNAs. Methods Mol Biol 77:355–363. doi:10.1385/0-89603-397-X:355

    CAS  PubMed  Google Scholar 

  190. Abe N, Matsumoto K, Nishihara M et al (2015) Rolling circle translation of circular RNA in living human cells. Sci Rep 5:16435. doi:10.1038/srep16435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Arias C, Weisburd B, Stern-Ginossar N et al (2014) KSHV 2.0: a comprehensive annotation of the Kaposi’s sarcoma-associated herpesvirus genome using next-generation sequencing reveals novel genomic and functional features. PLoS Pathog 10:e1003847. doi:10.1371/journal.ppat.1003847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Grainger L, Cicchini L, Rak M et al (2010) Stress-inducible alternative translation initiation of human cytomegalovirus latency protein pUL138. J Virol 84:9472–9486. doi:10.1128/JVI.00855-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Talbot SJ, Weiss RA, Kellam P, Boshoff C (1999) Transcriptional analysis of human herpesvirus-8 open reading frames 71, 72, 73, K14, and 74 in a primary effusion lymphoma cell line. Virology 257:84–94. doi:10.1006/viro.1999.9672

    Article  CAS  PubMed  Google Scholar 

  194. Kozak M (1987) Effects of intercistronic length on the efficiency of reinitiation by eucaryotic ribosomes. Mol Cell Biol 7:3438–3445. doi:10.1128/MCB.7.10.3438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Bieleski L, Talbot SJ (2001) Kaposi’s sarcoma-associated herpesvirus vCyclin open reading frame contains an internal ribosome entry site. J Virol 75:1864–1869. doi:10.1128/JVI.75.4.1864-1869.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Low W, Harries M, Ye H et al (2001) Internal ribosome entry site regulates translation of Kaposi’s sarcoma-associated herpesvirus FLICE inhibitory protein. J Virol 75:2938–2945. doi:10.1128/JVI.75.6.2938-2945.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Stern-Ginossar N, Weisburd B, Michalski A et al (2012) Decoding human cytomegalovirus. Science 338:1088–1093. doi:10.1126/science.1227919

    Article  CAS  PubMed  Google Scholar 

  198. Cornelis S, Bruynooghe Y, Denecker G et al (2000) Identification and characterization of a novel cell cycle-regulated internal ribosome entry site. Mol Cell 5:597–605. doi:10.1016/S1097-2765(00)80239-7

    Article  CAS  PubMed  Google Scholar 

  199. Haimov O, Sinvani H, Dikstein R (2015) Cap-dependent, scanning-free translation initiation mechanisms. Biochim Biophys Acta 1849:1313–1318. doi:10.1016/j.bbagrm.2015.09.006

    Article  CAS  PubMed  Google Scholar 

  200. Chappell SA, Edelman GM, Mauro VP (2006) Ribosomal tethering and clustering as mechanisms for translation initiation. Proc Natl Acad Sci USA 103:18077–18082. doi:10.1073/pnas.0608212103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Thoma C, Fraterman S, Gentzel M et al (2008) Translation initiation by the c-myc mRNA internal ribosome entry sequence and the poly(A) tail. RNA 14:1579–1589. doi:10.1261/rna.1043908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Kaiser C, Dobrikova EY, Bradrick SS et al (2008) Activation of cap-independent translation by variant eukaryotic initiation factor 4G in vivo. RNA 14:2170–2182. doi:10.1261/rna.1171808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Carrington JC, Freed DD (1990) Cap-independent enhancement of translation by a plant potyvirus 5′ nontranslated region. J Virol 64:1590–1597

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Wellensiek BP, Larsen AC, Stephens B et al (2013) Genome-wide profiling of human cap-independent translation-enhancing elements. Nat Methods 10:747–750. doi:10.1038/nmeth.2522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Soto Rifo R, Ricci EP, Décimo D et al (2007) Back to basics: the untreated rabbit reticulocyte lysate as a competitive system to recapitulate cap/poly(A) synergy and the selective advantage of IRES-driven translation. Nucleic Acids Res 35:e121. doi:10.1093/nar/gkm682

    Article  PubMed  CAS  Google Scholar 

  206. Novoa I, Martínez-Abarca F, Fortes P et al (1997) Cleavage of p220 by purified poliovirus 2A(pro) in cell-free systems: effects on translation of capped and uncapped mRNAs. Biochemistry 36:7802–7809. doi:10.1021/bi9631172

    Article  CAS  PubMed  Google Scholar 

  207. Monette A, Valiente-Echeverría F, Rivero M et al (2013) Dual Mechanisms of Translation Initiation of the Full-Length HIV-1 mRNA Contribute to Gag Synthesis. PLoS One 8:e68108. doi:10.1371/journal.pone.0068108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Brasey A, Lopez-Lastra M, Ohlmann T et al (2003) The leader of human immunodeficiency virus type 1 genomic RNA harbors an internal ribosome entry segment that is active during the G2/M phase of the cell cycle. J Virol 77:3939–3949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Ventoso I, Blanco R, Perales C, Carrasco L (2001) HIV-1 protease cleaves eukaryotic initiation factor 4G and inhibits cap-dependent translation. Proc Natl Acad Sci USA 98:12966–12971. doi:10.1073/pnas.231343498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Perales C, Carrasco L, Ventoso I (2003) Cleavage of eIF4G by HIV-1 protease: effects on translation. FEBS Lett 533:89–94

    Article  CAS  PubMed  Google Scholar 

  211. Castelló A, Franco D, Moral-López P et al (2009) HIV- 1 protease inhibits Cap- and poly(A)-dependent translation upon eIF4GI and PABP cleavage. PLoS One 4:e7997. doi:10.1371/journal.pone.0007997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Terenin IM, Dmitriev SE, Andreev DE, Shatsky IN (2008) Eukaryotic translation initiation machinery can operate in a bacterial-like mode without eIF2. Nat Struct Mol Biol 15:836–841. doi:10.1038/nsmb.1445

    Article  CAS  PubMed  Google Scholar 

  213. Anastasina M, Terenin I, Butcher SJ, Kainov DE (2014) A technique to increase protein yield in a rabbit reticulocyte lysate translation system. Biotechniques 56:36–39. doi:10.2144/000114125

    Article  CAS  PubMed  Google Scholar 

  214. Stoneley M, Paulin FE, Le Quesne JP et al (1998) C-Myc 5′ untranslated region contains an internal ribosome entry segment. Oncogene 16:423–428. doi:10.1038/sj.onc.1201763

    Article  CAS  PubMed  Google Scholar 

  215. Reynolds JE, Kaminski A, Kettinen HJ et al (1995) Unique features of internal initiation of hepatitis C virus RNA translation. EMBO J 14:6010–6020

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Fletcher SP, Ali IK, Kaminski A et al (2002) The influence of viral coding sequences on pestivirus IRES activity reveals further parallels with translation initiation in prokaryotes. RNA 8:1558–1571

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Andreev DE, O’Connor PBF, Fahey C et al (2015) Translation of 5′ leaders is pervasive in genes resistant to eIF2 repression. Elife 4:e03971. doi:10.7554/eLife.03971

    Article  PubMed  PubMed Central  Google Scholar 

  218. Wei CM, Gershowitz A, Moss B (1975) Methylated nucleotides block 5′ terminus of HeLa cell messenger RNA. Cell 4:379–386. doi:10.1016/0092-8674(75)90158-0

    Article  CAS  PubMed  Google Scholar 

  219. Furuichi Y, Morgan M, Shatkin AJ et al (1975) Methylated, blocked 5 termini in HeLa cell mRNA. Proc Natl Acad Sci USA 72:1904–1908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Keith JM, Ensinger MJ, Mose B (1978) HeLa cell RNA (2′-O-methyladenosine-N6-)-methyltransferase specific for the capped 5′-end of messenger RNA. J Biol Chem 253:5033–5039

    CAS  PubMed  Google Scholar 

  221. Kuge H, Brownlee GG, Gershon PD, Richter JD (1998) Cap ribose methylation of c-mos mRNA stimulates translation and oocyte maturation in Xenopus laevis. Nucleic Acids Res 26:3208–3214. doi:10.1093/nar/26.13.3208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Muthukrishnan S, Moss B, Cooper JA, Maxwell ES (1978) Influence of 5′-terminal cap structure on the initiation of translation of vaccinia virus mRNA. J Biol Chem 253:1710–1715

    CAS  PubMed  Google Scholar 

  223. Bélanger F, Stepinski J, Darzynkiewicz E, Pelletier J (2010) Characterization of hMTr1, a human Cap1 2′-O-ribose methyltransferase. J Biol Chem 285:33037–33044. doi:10.1074/jbc.M110.155283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Sripati CE, Groner Y, Warner JR (1976) Methylated, blocked 5′ termini of yeast mRNA. J Biol Chem 251:2898–2904

    CAS  PubMed  Google Scholar 

  225. Daffis S, Szretter KJ, Schriewer J et al (2010) 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature 468:452–456. doi:10.1038/nature09489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Kumar P, Sweeney TR, Skabkin MA et al (2014) Inhibition of translation by IFIT family members is determined by their ability to interact selectively with the 5′-terminal regions of cap0-, cap1- and 5′ ppp-mRNAs. Nucleic Acids Res 42:3228–3245. doi:10.1093/nar/gkt1321

    Article  CAS  PubMed  Google Scholar 

  227. Preskey D, Allison TF, Jones M et al (2016) Synthetically modified mRNA for efficient and fast human iPS cell generation and direct transdifferentiation to myoblasts. Biochem Biophys Res Commun 437:743–751. doi:10.1016/j.bbrc.2015.09.102

    Article  CAS  Google Scholar 

  228. Warren L, Wang J (2013) Feeder-free reprogramming of human fibroblasts with messenger RNA. Curr Protoc Stem Cell Biol 27:4A.6.1–4A.6.27. doi:10.1002/9780470151808.sc04a06s27

  229. Rohani L, Fabian C, Holland H et al (2016) Generation of human induced pluripotent stem cells using non-synthetic mRNA. Stem Cell Res 16:662–672. doi:10.1016/j.scr.2016.03.008

    Article  CAS  PubMed  Google Scholar 

  230. Fuerst TR, Moss B (1989) Structure and stability of mRNA synthesized by vaccinia virus-encoded bacteriophage T7 RNA polymerase in mammalian cells. Importance of the 5′ untranslated leader. J Mol Biol 206:333–348. doi:10.1016/0022-2836(89)90483-X

    Article  CAS  PubMed  Google Scholar 

  231. Bahar Halpern K, Veprik A, Rubins N et al (2012) GPR41 gene expression is mediated by internal ribosome entry site (IRES)-dependent translation of bicistronic mRNA encoding GPR40 and GPR41 proteins. J Biol Chem 287:20154–20163. doi:10.1074/jbc.M112.358887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Hornung V, Ellegast J, Kim S et al (2006) 5′-Triphosphate RNA is the ligand for RIG-I. Science 314:994–997. doi:10.1126/science.1132505

    Article  PubMed  Google Scholar 

  233. Nallagatla SR, Hwang J, Toroney R et al (2007) 5′-triphosphate-dependent activation of PKR by RNAs with short stem-loops. Science 318:1455–1458. doi:10.1126/science.1147347

    Article  CAS  PubMed  Google Scholar 

  234. Anderson BR, Karikó K, Weissman D (2013) Nucleofection induces transient eIF2α phosphorylation by GCN2 and PERK. Gene Ther 20:136–142. doi:10.1038/gt.2012.5

    Article  CAS  PubMed  Google Scholar 

  235. Barreau C, Dutertre S, Paillard L, Osborne HB (2006) Liposome-mediated RNA transfection should be used with caution. RNA 12:1790–1793. doi:10.1261/rna.191706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Chiu W-W, Kinney RM, Dreher TW (2005) Control of translation by the 5′- and 3′-terminal regions of the dengue virus genome. J Virol 79:8303–8315. doi:10.1128/JVI.79.13.8303-8315.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Bradrick SS, Walters RW, Gromeier M (2006) The hepatitis C virus 3′-untranslated region or a poly(A) tract promote efficient translation subsequent to the initiation phase. Nucleic Acids Res 34:1293–1303. doi:10.1093/nar/gkl019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Kopeina GS, Afonina ZA, Gromova KV et al (2008) Step-wise formation of eukaryotic double-row polyribosomes and circular translation of polysomal mRNA. Nucleic Acids Res 36:2476–2488. doi:10.1093/nar/gkm1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Afonina ZA, Myasnikov AG, Khabibullina NF et al (2013) Topology of mRNA chain in isolated eukaryotic double-row polyribosomes. Biochem Mosc 78:445–454. doi:10.1134/S0006297913050027

    Article  CAS  Google Scholar 

  240. Asselbergs FA, Peters W, Venrooij WJ, Bloemendal H (1978) Diminished sensitivity of re-initiation of translation to inhibition by cap analogues in reticulocyte lysates. Eur J Biochem 88:483–488

    Article  CAS  PubMed  Google Scholar 

  241. Amrani N, Ghosh S, Mangus DA, Jacobson A (2008) Translation factors promote the formation of two states of the closed-loop mRNP. Nature 453:1276–1280. doi:10.1038/nature06974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Nelson EM, Winkler MM (1987) Regulation of mRNA entry into polysomes. Parameters affecting polysome size and the fraction of mRNA in polysomes. J Biol Chem 262:11501–11506

    CAS  PubMed  Google Scholar 

  243. Thoma C, Ostareck-Lederer A, Hentze MW (2004) A poly(A) tail-responsive in vitro system for cap- or IRES-driven translation from HeLa cells. Methods Mol Biol 257:171–180. doi:10.1385/1-59259-750-5:171

    CAS  PubMed  Google Scholar 

  244. Bergamini G, Preiss T, Hentze MW (2000) Picornavirus IRESes and the poly(A) tail jointly promote cap-independent translation in a mammalian cell-free system. RNA 6:1781–1790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Svitkin YV, Sonenberg N (2004) An efficient system for cap- and poly(A)-dependent translation in vitro. Methods Mol Biol 257:155–170. doi:10.1385/1-59259-750-5:155

    CAS  PubMed  Google Scholar 

  246. Lyons SM, Achorn C, Kedersha NL et al (2016) YB-1 regulates tiRNA-induced Stress Granule formation but not translational repression. Nucleic Acids Res 44:6949–6960. doi:10.1093/nar/gkw418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Dmitriev SE, Bykova NV, Andreev DE, Terenin IM (2006) Adequate system for studying translation initiation on the human retrotransposon L1 mRNA in vitro. Mol Biol 40:20–24. doi:10.1134/S0026893306010043

    Article  CAS  Google Scholar 

  248. Pestova TV, Kolupaeva VG, Lomakin IB et al (2001) Molecular mechanisms of translation initiation in eukaryotes. Proc Natl Acad Sci USA 98:7029–7036. doi:10.1073/pnas.111145798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Stumpf CR, Ruggero D (2011) The cancerous translation apparatus. Curr Opin Genet Dev 21:474–483. doi:10.1016/j.gde.2011.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Ruggero D (2013) Translational control in cancer etiology. Cold Spring Harb Perspect Biol 5:a012336. doi:10.1101/cshperspect.a012336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  251. Horvilleur E, Wilson LA, Bastide A et al (2015) Cap-independent translation in hematological malignancies. Front Oncol 5:293. doi:10.3389/fonc.2015.00293

    Article  PubMed  PubMed Central  Google Scholar 

  252. Didiot M-C, Hewett J, Varin T et al (2013) Identification of cardiac glycoside molecules as inhibitors of c-Myc IRES-mediated translation. J Biomol Screen 18:407–419. doi:10.1177/1087057112466698

    Article  PubMed  CAS  Google Scholar 

  253. Shi Y, Yang Y, Hoang B et al (2016) Therapeutic potential of targeting IRES-dependent c-myc translation in multiple myeloma cells during ER stress. Oncogene 35:1015–1024. doi:10.1038/onc.2015.156

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Vasili Hauryliuk for critical reading of the manuscript. The work was supported by grants from Russian Science Foundation to Ivan N. Shatsky (16-14-10065) and Russian Foundation for Basic Research to Ilya M. Terenin (13-04-00903a and 16-04-0162816).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ilya M. Terenin or Ivan N. Shatsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terenin, I.M., Smirnova, V.V., Andreev, D.E. et al. A researcher’s guide to the galaxy of IRESs. Cell. Mol. Life Sci. 74, 1431–1455 (2017). https://doi.org/10.1007/s00018-016-2409-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2409-5

Keywords

Navigation