Skip to main content

Advertisement

Log in

Roadblocks and resolutions in eukaryotic translation

  • Review Article
  • Published:

From Nature Reviews Molecular Cell Biology

View current issue Sign up to alerts

Abstract

During protein synthesis, ribosomes encounter many roadblocks, the outcomes of which are largely determined by substrate availability, amino acid features and reaction kinetics. Prolonged ribosome stalling is likely to be resolved by ribosome rescue or quality control pathways, whereas shorter stalling is likely to be resolved by ongoing productive translation. How ribosome function is affected by such hindrances can therefore have a profound impact on the translational output (yield) of a particular mRNA. In this Review, we focus on these roadblocks and the resumption of normal translation elongation rather than on alternative fates wherein the stalled ribosome triggers degradation of the mRNA and the incomplete protein product. We discuss the fundamental stages of the translation process in eukaryotes, from elongation through ribosome recycling, with particular attention to recent discoveries of the complexity of the genetic code and regulatory elements that control gene expression, including ribosome stalling during elongation, the role of mRNA context in translation termination and mechanisms of ribosome rescue that resemble recycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Overview of eukaryotic translation.
Fig. 2: Translation elongation and resolution of ribosome stalling.
Fig. 3: Translation termination and the role of mRNP context.
Fig. 4: Ribosome recycling and rescue.

Similar content being viewed by others

References

  1. Hinnebusch, A. G. The scanning mechanism of eukaryotic translation initiation. Annu. Rev. Biochem. 83, 779–812 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Hinnebusch, A. G. & Lorsch, J. R. The mechanism of eukaryotic translation initiation: new insights and challenges. Cold Spring Harb. Perspect. Biol. 4, a011544 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jackson, R. J., Hellen, C. U. & Pestova, T. V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 11, 113–127 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sonenberg, N. & Hinnebusch, A. G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731–745 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Carvalho, M. D., Carvalho, J. F. & Merrick, W. C. Biological characterization of various forms of elongation factor 1 from rabbit reticulocytes. Arch. Biochem. Biophys. 234, 603–611 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. Fischer, N. et al. Structure of the E. coli ribosome-EF-Tu complex at <3 A resolution by Cs-corrected cryo-EM. Nature 520, 567–570 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Shao, S. et al. Decoding mammalian ribosome-mRNA states by translational GTPase complexes. Cell 167, 1229–1240 (2016). Study describing high-resolution cryo-EM structures of mammalian ribosomes bound by factors involved in translation elongation, termination and ribosome rescue.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zaher, H. S. & Green, R. Fidelity at the molecular level: lessons from protein synthesis. Cell 136, 746–762 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beringer, M. & Rodnina, M. V. The ribosomal peptidyl transferase. Mol. Cell 26, 311–321 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Behrmann, E. et al. Structural snapshots of actively translating human ribosomes. Cell 161, 845–857 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Budkevich, T. et al. Structure and dynamics of the mammalian ribosomal pretranslocation complex. Mol. Cell 44, 214–224 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moazed, D. & Noller, H. F. Intermediate states in the movement of transfer RNA in the ribosome. Nature 342, 142–148 (1989).

    Article  CAS  PubMed  Google Scholar 

  13. Ferguson, A. et al. Functional dynamics within the human ribosome regulate the rate of active protein synthesis. Mol. Cell 60, 475–486 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Spahn, C. M. et al. Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. EMBO J. 23, 1008–1019 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Taylor, D. J. et al. Structures of modified eEF2 80S ribosome complexes reveal the role of GTP hydrolysis in translocation. EMBO J. 26, 2421–2431 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ling, C. & Ermolenko, D. N. Structural insights into ribosome translocation. Wiley Interdiscip. Rev. RNA 7, 620–636 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shoji, S., Walker, S. E. & Fredrick, K. Ribosomal translocation: one step closer to the molecular mechanism. ACS Chem. Biol. 4, 93–107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ermolenko, D. N. & Noller, H. F. mRNA translocation occurs during the second step of ribosomal intersubunit rotation. Nat. Struct. Mol. Biol. 18, 457–462 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ramrath, D. J. et al. Visualization of two transfer RNAs trapped in transit during elongation factor G-mediated translocation. Proc. Natl Acad. Sci. USA 110, 20964–20969 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ratje, A. H. et al. Head swivel on the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sites. Nature 468, 713–716 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Andersen, C. B. et al. Structure of eEF3 and the mechanism of transfer RNA release from the E-site. Nature 443, 663–668 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Triana-Alonso, F. J., Chakraburtty, K. & Nierhaus, K. H. The elongation factor 3 unique in higher fungi and essential for protein biosynthesis is an E site factor. J. Biol. Chem. 270, 20473–20478 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Gamble, C. E., Brule, C. E., Dean, K. M., Fields, S. & Grayhack, E. J. Adjacent codons act in concert to modulate translation efficiency in yeast. Cell 166, 679–690 (2016). Study finding that the order of certain codon pairs inhibits translation, suggesting potential communication between tRNAs inside the ribosome during elongation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Juszkiewicz, S. & Hegde, R. S. Initiation of quality control during poly(A) translation requires site-specific ribosome ubiquitination. Mol. Cell 65, 743–750.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Matsuo, Y. et al. Ubiquitination of stalled ribosome triggers ribosome-associated quality control. Nat. Commun. 8, 159 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sundaramoorthy, E. et al. ZNF598 and RACK1 regulate mammalian ribosome-associated quality control function by mediating regulatory 40S ribosomal ubiquitylation. Mol. Cell 65, 751–760 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Silva, G. M., Finley, D. & Vogel, C. K63 polyubiquitination is a new modulator of the oxidative stress response. Nat. Struct. Mol. Biol. 22, 116–123 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pavlov, M. Y. et al. Slow peptide bond formation by proline and other N-alkylamino acids in translation. Proc. Natl Acad. Sci. USA 106, 50–54 (2009).

    Article  PubMed  Google Scholar 

  29. Wohlgemuth, I., Brenner, S., Beringer, M. & Rodnina, M. V. Modulation of the rate of peptidyl transfer on the ribosome by the nature of substrates. J. Biol. Chem. 283, 32229–32235 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Doerfel, L. K. et al. EF-P is essential for rapid synthesis of proteins containing consecutive proline residues. Science 339, 85–88 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Gutierrez, E. et al. eIF5A promotes translation of polyproline motifs. Mol. Cell 51, 35–45 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ude, S. et al. Translation elongation factor EF-P alleviates ribosome stalling at polyproline stretches. Science 339, 82–85 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Woolstenhulme, C. J. et al. Nascent peptides that block protein synthesis in bacteria. Proc. Natl Acad. Sci. USA 110, E878–E887 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Woolstenhulme, C. J., Guydosh, N. R., Green, R. & Buskirk, A. R. High-precision analysis of translational pausing by ribosome profiling in bacteria lacking EFP. Cell Rep. 11, 13–21 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kulak, N. A., Pichler, G., Paron, I., Nagaraj, N. & Mann, M. Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat. Methods 11, 319–324 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Schnier, J., Schwelberger, H. G., Smit-McBride, Z., Kang, H. A. & Hershey, J. W. Translation initiation factor 5 A and its hypusine modification are essential for cell viability in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 3105–3114 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Park, M. H., Cooper, H. L. & Folk, J. E. Identification of hypusine, an unusual amino acid, in a protein from human lymphocytes and of spermidine as its biosynthetic precursor. Proc. Natl Acad. Sci. USA 78, 2869–2873 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Benne, R. & Hershey, J. W. The mechanism of action of protein synthesis initiation factors from rabbit reticulocytes. J. Biol. Chem. 253, 3078–3087 (1978).

    CAS  PubMed  Google Scholar 

  39. Kemper, W. M., Berry, K. W. & Merrick, W. C. Purification and properties of rabbit reticulocyte protein synthesis initiation factors M2Bα and M2Bβ. J. Biol. Chem. 251, 5551–5557 (1976).

    CAS  PubMed  Google Scholar 

  40. Schreier, M. H., Erni, B. & Staehelin, T. Initiation of mammalian protein synthesis. I. Purification and characterization of seven initiation factors. J. Mol. Biol. 116, 727–753 (1977).

    Article  CAS  PubMed  Google Scholar 

  41. Gregio, A. P., Cano, V. P., Avaca, J. S., Valentini, S. R. & Zanelli, C. F. eIF5A has a function in the elongation step of translation in yeast. Biochem. Biophys. Res. Commun. 380, 785–790 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Henderson, A. & Hershey, J. W. Eukaryotic translation initiation factor (eIF) 5A stimulates protein synthesis in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 108, 6415–6419 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Saini, P., Eyler, D. E., Green, R. & Dever, T. E. Hypusine-containing protein eIF5A promotes translation elongation. Nature 459, 118–121 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Melnikov, S. et al. Crystal structure of hypusine-containing translation factor eIF5A bound to a rotated eukaryotic ribosome. J. Mol. Biol. 428, 3570–3576 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schmidt, C. et al. Structure of the hypusinylated eukaryotic translation factor eIF-5A bound to the ribosome. Nucleic Acids Res. 44, 1944–1951 (2016). Study describing high-resolution cryo-EM structure of yeast 80S ribosome bound by eIF5A that reveals mechanistic information regarding the relevance of eIF5A in global translation elongation and termination.

    Article  PubMed  Google Scholar 

  46. Schuller, A. P., Wu, C. C., Dever, T. E. & Buskirk, A. R. & Green, R. eIF5A functions globally in translation elongation and termination. Mol. Cell 66, 194–205 (2017). Study describing the characterization of eIF5A as a general translation factor involved in both elongation and termination using a combination of ribosome profiling and in vitro reconstituted biochemistry.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pelechano, V. & Alepuz, P. eIF5A facilitates translation termination globally and promotes the elongation of many non polyproline-specific tripeptide sequences. Nucleic Acids Res. 45, 7326–7338 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. von der Haar, T. A quantitative estimation of the global translational activity in logarithmically growing yeast cells. BMC Syst. Biol. 2, 87 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rossi, D. et al. Evidence for a negative cooperativity between eIF5A and eEF2 on binding to the ribosome. PLoS ONE 11, e0154205 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gnirke, A., Geigenmuller, U., Rheinberger, H. J. & Nierhaus, L. H. The allosteric three-site model for the ribosomal elongation cycle. Analysis with a heteropolymeric mRNA. J. Biol. Chem. 264, 7291–7301 (1989).

    CAS  PubMed  Google Scholar 

  51. Nierhaus, K. H. The allosteric three-site model for the ribosomal elongation cycle: features and future. Biochemistry 29, 4997–5008 (1990).

    Article  CAS  PubMed  Google Scholar 

  52. Choi, J. & Puglisi, J. D. Three tRNAs on the ribosome slow translation elongation. Proc. Natl Acad. Sci. USA 114, 13691–13696 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zaher, H. S. & Green, R. Quality control by the ribosome following peptide bond formation. Nature 457, 161–166 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Plotkin, J. B. & Kudla, G. Synonymous but not the same: the causes and consequences of codon bias. Nat. Rev. Genet. 12, 32–42 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Quax, T. E., Claassens, N. J., Soll, D. & van der Oost, J. Codon bias as a means to fine-tune gene expression. Mol. Cell 59, 149–161 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ikemura, T. & Ozeki, H. Codon usage and transfer RNA contents: organism-specific codon-choice patterns in reference to the isoacceptor contents. Cold Spring Harb. Symp. Quant. Biol. 47, 1087–1097 (1983).

    Article  PubMed  Google Scholar 

  57. dos Reis, M., Savva, R. & Wernisch, L. Solving the riddle of codon usage preferences: a test for translational selection. Nucleic Acids Res. 32, 5036–5044 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pechmann, S. & Frydman, J. Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding. Nature Struct. Mol. Biol. 20, 237–243 (2013).

    Article  CAS  Google Scholar 

  59. Sharp, P. M. & Li, W. H. The Codon Adaptation Index — a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15, 1281–1295 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sabi, R. & Tuller, T. Modelling the efficiency of codon-tRNA interactions based on codon usage bias. DNA Res. 21, 511–526 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sabi, R., Volvovitch Daniel, R. & Tuller, T. stAIcalc: tRNA adaptation index calculator based on species-specific weights. Bioinformatics 33, 589–591 (2017).

    CAS  PubMed  Google Scholar 

  62. Dana, A. & Tuller, T. The effect of tRNA levels on decoding times of mRNA codons. Nucleic Acids Res. 42, 9171–9181 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hussmann, J. A., Patchett, S., Johnson, A., Sawyer, S. & Press, W. H. Understanding biases in ribosome profiling experiments reveals signatures of translation dynamics in yeast. PLoS Genet. 11, e1005732 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yu, C. H. et al. Codon usage influences the local rate of translation elongation to regulate co-translational protein folding. Mol. Cell 59, 744–754 (2015). Study finding that codon choice affects translation elongation kinetics and co-translational folding using a combination of biochemistry and ribosome profiling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gardin, J. et al. Measurement of average decoding rates of the 61 sense codons in vivo. eLife 3, e03735 (2014).

    Article  PubMed Central  Google Scholar 

  66. Elf, J., Nilsson, D., Tenson, T. & Ehrenberg, M. Selective charging of tRNA isoacceptors explains patterns of codon usage. Science 300, 1718–1722 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Gallant, J. A. & Lindsley, D. Ribosomes can slide over and beyond “hungry” codons, resuming protein chain elongation many nucleotides downstream. Proc. Natl Acad. Sci. USA 95, 13771–13776 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gurvich, O. L., Baranov, P. V., Gesteland, R. F. & Atkins, J. F. Expression levels influence ribosomal frameshifting at the tandem rare arginine codons AGG_AGG and AGA_AGA in Escherichia coli. J. Bacteriol. 187, 4023–4032 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kane, J. F. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr. Opin. Biotechnol. 6, 494–500 (1995).

    Article  CAS  PubMed  Google Scholar 

  70. Temperley, R., Richter, R., Dennerlein, S., Lightowlers, R. N. & Chrzanowska-Lightowlers, Z. M. Hungry codons promote frameshifting in human mitochondrial ribosomes. Science 327, 301 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Graille, M. & Seraphin, B. Surveillance pathways rescuing eukaryotic ribosomes lost in translation. Nat. Rev. Mol. Cell Biol. 13, 727–735 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Hanson, G. & Coller, J. Codon optimality, bias and usage in translation and mRNA decay. Nat. Rev. Mol. Cell Biol. 19, 20–30 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Belew, A. T. et al. Ribosomal frameshifting in the CCR5 mRNA is regulated by mi–RNAs and the NMD pathway. Nature 512, 265–269 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Biswas, P., Jiang, X., Pacchia, A. L., Dougherty, J. P. & Peltz, S. W. The human immunodeficiency virus type 1 ribosomal frameshifting site is an invariant sequence determinant and an important target for antiviral therapy. J. Virol. 78, 2082–2087 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Caliskan, N. et al. Conditional switch between frameshifting regimes upon translation of dnaX mRNA. Mol. Cell 66, 558–567.e4 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Namy, O., Moran, S. J., Stuart, D. I., Gilbert, R. J. & Brierley, I. A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting. Nature 441, 244–247 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yan, S., Wen, J. D., Bustamante, C. & Tinoco, I. Jr. Ribosome excursions during mRNA translocation mediate broad branching of frameshift pathways. Cell 160, 870–881 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Koutmou, K. S. et al. Ribosomes slide on lysine-encoding homopolymeric A stretches. eLife 4, e05534 (2015).

    Article  PubMed Central  Google Scholar 

  79. Dinman, J. D. Mechanisms and implications of programmed translational frameshifting. Wiley Interdiscip. Rev. RNA 3, 661–673 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jacks, T. et al. Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature 331, 280–283 (1988).

    Article  CAS  PubMed  Google Scholar 

  81. Wilson, W. et al. HIV expression strategies: ribosomal frameshifting is directed by a short sequence in both mammalian and yeast systems. Cell 55, 1159–1169 (1988).

    Article  CAS  PubMed  Google Scholar 

  82. Dever, T. E. & Green, R. The elongation, termination, and recycling phases of translation in eukaryotes. Cold Spring Harb. Perspect. Biol. 4, a013706 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Song, H. et al. The crystal structure of human eukaryotic release factor eRF1 — mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell 100, 311–321 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Frolova, L. et al. A highly conserved eukaryotic protein family possessing properties of polypeptide chain release factor. Nature 372, 701–703 (1994).

    Article  CAS  PubMed  Google Scholar 

  85. Brown, A., Shao, S., Murray, J., Hegde, R. S. & Ramakrishnan, V. Structural basis for stop codon recognition in eukaryotes. Nature 524, 493–496 (2015). Study describing the high-resolution cryo-EM structure of a mammalian-terminating ribosome that reveals the molecular basis of stop codon recognition by eRF1 and the role of the +4 nucleotide.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Matheisl, S., Berninghausen, O., Becker, T. & Beckmann, R. Structure of a human translation termination complex. Nucleic Acids Res. 43, 8615–8626 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. des Georges, A. et al. Structure of the mammalian ribosomal pre-termination complex associated with eRF1.eRF3. GDPNP. Nucleic Acids Res. 42, 3409–3418 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Frolova, L. Y. et al. Mutations in the highly conserved GGQ motif of class 1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-tRNA hydrolysis. RNA 5, 1014–1020 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Korostelev, A. A. Structural aspects of translation termination on the ribosome. RNA 17, 1409–1421 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Frolova, L. et al. Eukaryotic polypeptide chain release factor eRF3 is an eRF1- and ribosome-dependent guanosine triphosphatase. RNA 2, 334–341 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kong, C. et al. Crystal structure and functional analysis of the eukaryotic class II release factor eRF3 from S. pombe. Mol. Cell 14, 233–245 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Alkalaeva, E. Z., Pisarev, A. V., Frolova, L. Y., Kisselev, L. L. & Pestova, T. V. In vitro reconstitution of eukaryotic translation reveals cooperativity between release factors eRF1 and eRF3. Cell 125, 1125–1136 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Eyler, D. E. & Green, R. Distinct response of yeast ribosomes to a miscoding event during translation. RNA 17, 925–932 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Salas-Marco, J. & Bedwell, D. M. GTP hydrolysis by eRF3 facilitates stop codon decoding during eukaryotic translation termination. Mol. Cell. Biol. 24, 7769–7778 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Eyler, D. E., Wehner, K. A. & Green, R. Eukaryotic release factor 3 is required for multiple turnovers of peptide release catalysis by eukaryotic release factor 1. J. Biol. Chem. 288, 29530–29538 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Khoshnevis, S. et al. The iron-sulphur protein RNase L inhibitor functions in translation termination. EMBO Rep. 11, 214–219 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Pisarev, A. V. et al. The role of ABCE1 in eukaryotic posttermination ribosomal recycling. Mol. Cell 37, 196–210 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Shoemaker, C. J. & Green, R. Kinetic analysis reveals the ordered coupling of translation termination and ribosome recycling in yeast. Proc. Natl Acad. Sci. USA 108, E1392–1398 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Preis, A. et al. Cryoelectron microscopic structures of eukaryotic translation termination complexes containing eRF1-eRF3 or eRF1-ABCE1. Cell Rep. 8, 59–65 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Beznoskova, P. et al. Translation initiation factors eIF3 and HCR1 control translation termination and stop codon read-through in yeast cells. PLoS Genet. 9, e1003962 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Beznoskova, P., Wagner, S., Jansen, M. E., von der Haar, T. & Valasek, L. S. Translation initiation factor eIF3 promotes programmed stop codon readthrough. Nucleic Acids Res. 43, 5099–5111 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ingolia, N. T., Lareau, L. F. & Weissman, J. S. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147, 789–802 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Brown, C. M., Stockwell, P. A., Trotman, C. N. & Tate, W. P. Sequence analysis suggests that tetra-nucleotides signal the termination of protein synthesis in eukaryotes. Nucleic Acids Res. 18, 6339–6345 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bonetti, B., Fu, L., Moon, J. & Bedwell, D. M. The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae. J. Mol. Biol. 251, 334–345 (1995).

    Article  CAS  PubMed  Google Scholar 

  105. Beznoskova, P., Gunisova, S. & Valasek, L. S. Rules of UGA-N decoding by near-cognate tRNAs and analysis of readthrough on short uORFs in yeast. RNA 22, 456–466 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Floquet, C., Hatin, I., Rousset, J. P. & Bidou, L. Statistical analysis of readthrough levels for nonsense mutations in mammalian cells reveals a major determinant of response to gentamicin. PLoS Genet. 8, e1002608 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Roy, B., Leszyk, J. D., Mangus, D. A. & Jacobson, A. Nonsense suppression by near-cognate tRNAs employs alternative base pairing at codon positions 1 and 3. Proc. Natl Acad. Sci. USA 112, 3038–3043 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Baranov, P. V., Atkins, J. F. & Yordanova, M. M. Augmented genetic decoding: global, local and temporal alterations of decoding processes and codon meaning. Nat. Rev. Genet. 16, 517–529 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Dunn, J. G., Foo, C. K., Belletier, N. G., Gavis, E. R. & Weissman, J. S. Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster. eLife 2, e01179 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Schueren, F. & Thoms, S. Functional translational readthrough: a systems biology perspective. PLoS Genet. 12, e1006196 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mottagui-Tabar, S., Tuite, M. F. & Isaksson, L. A. The influence of 5’ codon context on translation termination in Saccharomyces cerevisiae. Eur. J. Biochem. 257, 249–254 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. Harrell, L., Melcher, U. & Atkins, J. F. Predominance of six different hexanucleotide recoding signals 3′ of read-through stop codons. Nucleic Acids Res. 30, 2011–2017 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Namy, O., Hatin, I. & Rousset, J. P. Impact of the six nucleotides downstream of the stop codon on translation termination. EMBO Rep. 2, 787–793 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yordanova, M. M. et al. AMD1 mRNA employs ribosome stalling as a mechanism for molecular memory formation. Nature 553, 356–360 (2018).

    Article  CAS  PubMed  Google Scholar 

  115. Janzen, D. M., Frolova, L. & Geballe, A. P. Inhibition of translation termination mediated by an interaction of eukaryotic release factor 1 with a nascent peptidyl-tRNA. Mol. Cell. Biol. 22, 8562–8570 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. McClary, B. et al. Inhibition of eukaryotic translation by the antitumor natural product agelastatin A. Cell Chem. Biol. 24, 605–613.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hoshino, S., Imai, M., Kobayashi, T., Uchida, N. & Katada, T. The eukaryotic polypeptide chain releasing factor (eRF3/GSPT) carrying the translation termination signal to the 3′-Poly(A) tail of mRNA. Direct association of erf3/GSPT with polyadenylate-binding protein. J. Biol. Chem. 274, 16677–16680 (1999).

    Article  CAS  PubMed  Google Scholar 

  118. Ivanov, P. V., Gehring, N. H., Kunz, J. B., Hentze, M. W. & Kulozik, A. E. Interactions between UPF1, eRFs, PABP and the exon junction complex suggest an integrated model for mammalian NMD pathways. EMBO J. 27, 736–747 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Uchida, N., Hoshino, S., Imataka, H., Sonenberg, N. & Katada, T. A novel role of the mammalian GSPT/eRF3 associating with poly(A)-binding protein in Cap/Poly(A)-dependent translation. J. Biol. Chem. 277, 50286–50292 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Ivanov, A. et al. PABP enhances release factor recruitment and stop codon recognition during translation termination. Nucleic Acids Res. 44, 7766–7776 (2016). Study describing the identification of a direct role for PABP in stimulating translation termination by increasing the efficiency of recruitment of eRF1–eRF3 to the ribosome in a reconstituted biochemical system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Amrani, N. et al. A faux 3′-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay. Nature 432, 112–118 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Heaphy, S. M., Mariotti, M., Gladyshev, V. N., Atkins, J. F. & Baranov, P. V. Novel ciliate genetic code variants including the reassignment of all three stop codons to sense codons in Condylostoma magnum. Mol. Biol. Evol. 33, 2885–2889 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Swart, E. C., Serra, V., Petroni, G. & Nowacki, M. Genetic codes with no dedicated stop codon: context-dependent translation termination. Cell 166, 691–702 (2016). Study establishing a link between stop codon context, PABP proximity and the efficiency of translation termination in organisms where all 64 codons can code for amino acids.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zahonova, K., Kostygov, A. Y., Sevcikova, T., Yurchenko, V. & Elias, M. An unprecedented non-canonical nuclear genetic code with all three termination codons reassigned as sense codons. Curr. Biol. 26, 2364–2369 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Capecchi, M. R., Hughes, S. H. & Wahl, G. M. Yeast super-suppressors are altered tRNAs capable of translating a nonsense codon in vitro. Cell 6, 269–277 (1975).

    Article  CAS  PubMed  Google Scholar 

  126. Lobanov, A. V. et al. Position-dependent termination and widespread obligatory frameshifting in Euplotes translation. Nat. Struct. Mol. Biol. 24, 61–68 (2017).

    Article  CAS  PubMed  Google Scholar 

  127. Castello, A. et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149, 1393–1406 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Eswarappa, S. M. et al. Programmed translational readthrough generates antiangiogenic VEGF-Ax. Cell 157, 1605–1618 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gonzalez, C. I., Ruiz-Echevarria, M. J., Vasudevan, S., Henry, M. F. & Peltz, S. W. The yeast hnRNP-like protein Hrp1/Nab4 marks a transcript for nonsense-mediated mRNA decay. Mol. Cell 5, 489–499 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Ruiz-Echevarria, M. J. & Peltz, S. W. The RNA binding protein Pub1 modulates the stability of transcripts containing upstream open reading frames. Cell 101, 741–751 (2000).

    Article  CAS  PubMed  Google Scholar 

  131. Chester, A. et al. The apolipoprotein B mRNA editing complex performs a multifunctional cycle and suppresses nonsense-mediated decay. EMBO J. 22, 3971–3982 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ge, Z., Quek, B. L., Beemon, K. L. & Hogg, J. R. Polypyrimidine tract binding protein 1 protects mRNAs from recognition by the nonsense-mediated mRNA decay pathway. eLife 5, e11155 (2016). Study detailing the role of PTBP1 in protecting mRNAs from nonsense-mediated decay, potentially by affecting translation termination.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Karcher, A., Schele, A. & Hopfner, K. P. X-Ray structure of the complete ABC enzyme ABCE1 from Pyrococcus abyssi. J. Biol. Chem. 283, 7962–7971 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Barthelme, D. et al. Ribosome recycling depends on a mechanistic link between the FeS cluster domain and a conformational switch of the twin-ATPase ABCE1. Proc. Natl Acad. Sci. USA 108, 3228–3233 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Pisarev, A. V., Hellen, C. U. & Pestova, T. V. Recycling of eukaryotic posttermination ribosomal complexes. Cell 131, 286–299 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dmitriev, S. E. et al. GTP-independent tRNA delivery to the ribosomal P-site by a novel eukaryotic translation factor. J. Biol. Chem. 285, 26779–26787 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Skabkin, M. A. et al. Activities of Ligatin and MCT-1/DENR in eukaryotic translation initiation and ribosomal recycling. Genes Dev. 24, 1787–1801 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Young, D. J., Guydosh, N. R., Zhang, F., Hinnebusch, A. G. & Green, R. Rli1/ABCE1 recycles terminating ribosomes and controls translation reinitiation in 3′UTRs in vivo. Cell 162, 872–884 (2015). Study detailing the in vivo role of ABCE1 in ribosome recycling and the role of Dom34 in rescuing inefficiently recycled ribosomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Andersen, D. S. & Leevers, S. J. The essential Drosophila ATP-binding cassette domain protein, pixie, binds the 40 S ribosome in an ATP-dependent manner and is required for translation initiation. J. Biol. Chem. 282, 14752–14760 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Chen, Z. Q. et al. The essential vertebrate ABCE1 protein interacts with eukaryotic initiation factors. J. Biol. Chem. 281, 7452–7457 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Dong, J. et al. The essential ATP-binding cassette protein RLI1 functions in translation by promoting preinitiation complex assembly. J. Biol. Chem. 279, 42157–42168 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Heuer, A. et al. Structure of the 40S-ABCE1 post-splitting complex in ribosome recycling and translation initiation. Nat. Struct. Mol. Biol. 24, 453–460 (2017). Study describing the high-resolution cryo-EM structure of the 40S–ABCE1 complex that provides mechanistic details into a potential dual role for ABCE1 in both ribosome recycling and translation initiation.

    Article  CAS  PubMed  Google Scholar 

  143. Simonetti, A. et al. eIF3 peripheral subunits rearrangement after mRNA binding and start-codon recognition. Mol. Cell 63, 206–217 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Mancera-Martinez, E., Brito Querido, J., Valasek, L. S., Simonetti, A. & Hashem, Y. ABCE1: A special factor that orchestrates translation at the crossroad between recycling and initiation. RNA Biol. 14, 1279–1285 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Schuller, A. P. & Green, R. The ABC(E1)s of ribosome recycling and reinitiation. Mol. Cell 66, 578–580 (2017).

    Article  CAS  PubMed  Google Scholar 

  146. Brandman, O. & Hegde, R. S. Ribosome-associated protein quality control. Nature Struct. Mol. Biol. 23, 7–15 (2016).

    Article  CAS  Google Scholar 

  147. Joazeiro, C. A. P. Ribosomal stalling during translation: providing substrates for ribosome-associated protein quality control. Annu. Rev. Cell Dev. Biol. 33, 343–368 (2017).

    Article  CAS  PubMed  Google Scholar 

  148. Doma, M. K. & Parker, R. Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature 440, 561–564 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Graille, M., Chaillet, M. & van Tilbeurgh, H. Structure of yeast Dom34: a protein related to translation termination factor Erf1 and involved in No-Go decay. J. Biol. Chem. 283, 7145–7154 (2008).

    Article  CAS  PubMed  Google Scholar 

  150. Lee, H. H. et al. Structural and functional insights into Dom34, a key component of no-go mRNA decay. Mol. Cell 27, 938–950 (2007).

    Article  CAS  PubMed  Google Scholar 

  151. Carr-Schmid, A., Pfund, C., Craig, E. A. & Kinzy, T. G. Novel G-protein complex whose requirement is linked to the translational status of the cell. Mol. Cell. Biol. 22, 2564–2574 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Chen, L. et al. Structure of the Dom34-Hbs1 complex and implications for no-go decay. Nat. Struct. Mol. Biol. 17, 1233–1240 (2010).

    Article  CAS  PubMed  Google Scholar 

  153. Kalisiak, K. et al. A short splicing isoform of HBS1L links the cytoplasmic exosome and SKI complexes in humans. Nucleic Acids Res. 45, 2068–2080 (2017).

    CAS  PubMed  Google Scholar 

  154. Kowalinski, E. et al. Structure of a cytoplasmic 11-subunit RNA exosome complex. Mol. Cell 63, 125–134 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ishimura, R. et al. RNA function. Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration. Science 345, 455–459 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Shoemaker, C. J., Eyler, D. E. & Green, R. Dom34:Hbs1 promotes subunit dissociation and peptidyl-tRNA drop-off to initiate no-go decay. Science 330, 369–372 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Pisareva, V. P., Skabkin, M. A., Hellen, C. U., Pestova, T. V. & Pisarev, A. V. Dissociation by Pelota, Hbs1 and ABCE1 of mammalian vacant 80S ribosomes and stalled elongation complexes. EMBO J. 30, 1804–1817 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Guydosh, N. R. & Green, R. Dom34 rescues ribosomes in 3′ untranslated regions. Cell 156, 950–962 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Guydosh, N. R. & Green, R. Translation of poly(A) tails leads to precise mRNA cleavage. RNA 23, 749–761 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Tsuboi, T. et al. Dom34:hbs1 plays a general role in quality-control systems by dissociation of a stalled ribosome at the 3′ end of aberrant mRNA. Mol. Cell 46, 518–529 (2012).

    Article  CAS  PubMed  Google Scholar 

  161. Guydosh, N. R., Kimmig, P., Walter, P. & Green, R. Regulated Ire1-dependent mRNA decay requires no-go mRNA degradation to maintain endoplasmic reticulum homeostasis in S. pombe. eLife 6, e29216 (2017). Study defining a role for Dom34–Hbs1 in the Ire1-mediated unfolded protein response using yeast genetics and ribosome profiling.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Brandman, O. et al. A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress. Cell 151, 1042–1054 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Bhattacharya, A., McIntosh, K. B., Willis, I. M. & Warner, J. R. Why Dom34 stimulates growth of cells with defects of 40S ribosomal subunit biosynthesis. Mol. Cell. Biol. 30, 5562–5571 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. van den Elzen, A. M., Schuller, A., Green, R. & Seraphin, B. Dom34-Hbs1 mediated dissociation of inactive 80S ribosomes promotes restart of translation after stress. EMBO J. 33, 265–276 (2014).

    PubMed  Google Scholar 

  165. Balagopal, V. & Parker, R. Stm1 modulates translation after 80S formation in Saccharomyces cerevisiae. RNA 17, 835–842 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Van Dyke, N., Baby, J. & Van Dyke, M. W. Stm1p, a ribosome-associated protein, is important for protein synthesis in Saccharomyces cerevisiae under nutritional stress conditions. J. Mol. Biol. 358, 1023–1031 (2006).

    Article  CAS  PubMed  Google Scholar 

  167. Van Dyke, N., Chanchorn, E. & Van Dyke, M. W. The Saccharomyces cerevisiae protein Stm1p facilitates ribosome preservation during quiescence. Biochem. Biophys. Res. Commun. 430, 745–750 (2013).

    Article  CAS  PubMed  Google Scholar 

  168. Ben-Shem, A. et al. The structure of the eukaryotic ribosome at 3.0 A resolution. Science 334, 1524–1529 (2011).

    Article  CAS  PubMed  Google Scholar 

  169. Mills, E. W., Green, R. & Ingolia, N. T. Slowed decay of mRNAs enhances platelet specific translation. Blood 129, e38–e48 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Mills, E. W., Wangen, J., Green, R. & Ingolia, N. T. Dynamic regulation of a ribosome rescue pathway in erythroid cells and platelets. Cell Rep. 17, 1–10 (2016). Study describing the identification of unusual ribosome distributions on 3′ UTRs in erythroid cells and platelets and a link to defects in ribosome recycling and rescue in these tissues.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Mills, E. W. & Green, R. Ribosomopathies: There’s strength in numbers. Science 358, eaan2755 (2017).

    Article  CAS  PubMed  Google Scholar 

  172. Popp, M. W. & Maquat, L. E. Organizing principles of mammalian nonsense-mediated mRNA decay. Annu. Rev. Genet. 47, 139–165 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Kervestin, S. & Jacobson, A. NMD: a multifaceted response to premature translational termination. Nat. Rev. Mol. Cell Biol. 13, 700–712 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Holbrook, J. A., Neu-Yilik, G., Hentze, M. W. & Kulozik, A. E. Nonsense-mediated decay approaches the clinic. Nat. Genet. 36, 801–808 (2004).

    Article  CAS  PubMed  Google Scholar 

  175. He, F., Peltz, S. W., Donahue, J. L., Rosbash, M. & Jacobson, A. Stabilization and ribosome association of unspliced pre-mRNAs in a yeast upf1- mutant. Proc. Natl Acad. Sci. USA 90, 7034–7038 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Mitrovich, Q. M. & Anderson, P. Unproductively spliced ribosomal protein mRNAs are natural targets of mRNA surveillance in C. elegans. Genes Dev. 14, 2173–2184 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Mendell, J. T., Sharifi, N. A., Meyers, J. L., Martinez-Murillo, F. & Dietz, H. C. Nonsense surveillance regulates expression of diverse classes of mammalian transcripts and mutes genomic noise. Nat. Genet. 36, 1073–1078 (2004).

    Article  CAS  PubMed  Google Scholar 

  178. Welch, E. M. & Jacobson, A. An internal open reading frame triggers nonsense-mediated decay of the yeast SPT10 mRNA. EMBO J. 18, 6134–6145 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Marquardt, S., Hazelbaker, D. Z. & Buratowski, S. Distinct RNA degradation pathways and 3′ extensions of yeast non-coding RNA species. Transcription 2, 145–154 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Smith, J. E. et al. Translation of small open reading frames within unannotated RNA transcripts in Saccharomyces cerevisiae. Cell Rep. 7, 1858–1866 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Le Hir, H., Gatfield, D., Izaurralde, E. & Moore, M. J. The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J. 20, 4987–4997 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Melero, R. et al. The cryo-EM structure of the UPF-EJC complex shows UPF1 poised toward the RNA 3′ end. Nat. Struct. Mol. Biol. 19, 498–505 (2012).

    Article  CAS  PubMed  Google Scholar 

  183. Peltz, S. W., Brown, A. H. & Jacobson, A. mRNA destabilization triggered by premature translational termination depends on at least three cis-acting sequence elements and one trans-acting factor. Genes Dev. 7, 1737–1754 (1993).

    Article  CAS  PubMed  Google Scholar 

  184. Narla, A. & Ebert, B. L. Ribosomopathies: human disorders of ribosome dysfunction. Blood 115, 3196–3205 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Draptchinskaia, N. et al. The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nat. Genet. 21, 169–175 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.P.S. and R.G. researched data for the article, made substantial contributions to the discussion of content, wrote the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Rachel Green.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

P site

Peptidyl site of the ribosome, which binds the tRNA attached to the elongating peptide chain.

Aminoacyl-tRNAs

tRNA molecules charged with their corresponding amino acids.

E site

Exit site of the ribosome, which binds the deacylated (uncharged) tRNA after translocation and before this tRNA dissociates from the ribosome.

A site

Aminoacyl site of the ribosome, which binds the incoming aminoacyl-tRNA for peptide-bond formation.

Peptidyl-tRNA

tRNA molecule covalently attached to the nascent polypeptide.

Ribosome rescue

Mechanism of ribosomal subunit dissociation when translation stalling cannot be resolved.

Hypusine

A unique lysine post-translational modification of eIF5A that is crucial for its translation elongation and termination functions.

Peptidyl-transferase centre

The active site of the ribosome where peptide-bond formation and peptide release occur during translation.

Ribosome profiling

High-throughput sequencing method that provides a global snapshot of translating ribosomes in the cell by mapping mRNA fragments protected by ribosomes.

5PSeq

Technique to identify mRNAs that contain phosphorylated 5′ ends resulting from exonucleolytic (5′ to 3′) mRNA degradation pathways.

Förster resonance energy transfer

(FRET). Biophysical technique to monitor molecular dynamics that relies on energy transfer between two fluorescent molecules located close in space.

Aminoacylation

Chemical reaction whereby a tRNA molecule is ‘charged’ with its corresponding amino acid.

Near-cognate tRNA

tRNA molecule that is not a perfect match to the codon; usually unmatched at one position of the codon.

Wobble decoding

Codon–anticodon interactions typically at the third (3′) position of the codon that do not follow strict Watson–Crick base pairing rules.

Unfolded protein response

Cellular stress response that is activated upon the accumulation of unfolded or misfolded proteins in the endoplasmic reticulum.

Ribosomopathies

Broad group of human disorders resulting from ribosomal protein haploinsufficiency or defects in ribosome biogenesis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuller, A.P., Green, R. Roadblocks and resolutions in eukaryotic translation. Nat Rev Mol Cell Biol 19, 526–541 (2018). https://doi.org/10.1038/s41580-018-0011-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-018-0011-4

  • Springer Nature Limited

This article is cited by

Navigation