Skip to main content

Advertisement

Log in

Death receptor 3 mediates necroptotic cell death

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Death receptor 3 (DR3) was initially identified as a T cell co-stimulatory and pro-inflammatory molecule, but further studies revealed a more complex role of DR3 and its ligand TL1A. Although being a death receptor, DR3 gained to date predominantly attention as a contributor to inflammation-driven diseases. In our study, we investigated the cell death pathways associated with DR3. We show that in addition to apoptosis, DR3 can robustly trigger necroptotic cell death and provide evidence for TL1A-induced, DR3-mediated necrosome assembly. DR3-mediated necroptosis critically depends on receptor-interacting protein 1 (RIP1) and RIP3, the core components of the necroptotic machinery, which activate the pseudo-kinase mixed lineage kinase domain-like, the prototypic downstream effector molecule of necroptosis. Moreover, we demonstrate that DR3-mediated necroptotic cell death is accompanied by, but does not depend on generation of reactive oxygen species. In sum, we identify DR3 as a novel necroptosis-inducing death receptor and thereby lay ground for elucidating the (patho-) physiological relevance of DR3-mediated necroptotic cell death in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  2. Linkermann A, Green DR (2014) Necroptosis. N Engl J Med 370(5):455–465. doi:10.1056/NEJMra1310050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Steller H (1995) Mechanisms and genes of cellular suicide. Science 267(5203):1445–1449. doi:10.1126/science.7878463

    Article  CAS  PubMed  Google Scholar 

  4. Ashkenazi A, Salvesen G (2014) Regulated cell death: signaling and mechanisms. Annu Rev Cell Dev Biol 30:337–356. doi:10.1146/annurev-cellbio-100913-013226

    Article  CAS  PubMed  Google Scholar 

  5. Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ, Han J (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325(5938):332–336. doi:10.1126/science.1172308

    Article  CAS  PubMed  Google Scholar 

  6. He S, Wang L, Miao L, Wang T, Du F, Zhao L, Wang X (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137(6):1100–1111. doi:10.1016/j.cell.2009.05.021

    Article  CAS  PubMed  Google Scholar 

  7. Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, Chan FK (2009) Phosphorylation-driven assembly of the RIP1–RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137(6):1112–1123. doi:10.1016/j.cell.2009.05.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL, Schneider P, Seed B, Tschopp J (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1(6):489–495. doi:10.1038/82732

    Article  CAS  PubMed  Google Scholar 

  9. Laster SM, Wood JG, Gooding LR (1988) Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. J Immunol 141(8):2629–2634

    CAS  PubMed  Google Scholar 

  10. Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114(2):181–190. doi:10.1016/S0092-8674(03)00521-X

    Article  CAS  PubMed  Google Scholar 

  11. Dillon CP, Weinlich R, Rodriguez DA, Cripps JG, Quarato G, Gurung P, Verbist KC, Brewer TL, Llambi F, Gong YN, Janke LJ, Kelliher MA, Kanneganti TD, Green DR (2014) RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell 157(5):1189–1202. doi:10.1016/j.cell.2014.04.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J, Gillard JW, Jaquith JB, Morris SJ, Barker PA (2008) cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 30(6):689–700. doi:10.1016/j.molcel.2008.05.014

    Article  CAS  PubMed  Google Scholar 

  13. Varfolomeev E, Goncharov T, Fedorova AV, Dynek JN, Zobel K, Deshayes K, Fairbrother WJ, Vucic D (2008) c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation. J Biol Chem 283(36):24295–24299. doi:10.1074/jbc.C800128200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mahoney DJ, Cheung HH, Mrad RL, Plenchette S, Simard C, Enwere E, Arora V, Mak TW, Lacasse EC, Waring J, Korneluk RG (2008) Both cIAP1 and cIAP2 regulate TNFalpha-mediated NF-kappaB activation. Proc Natl Acad Sci USA 105(33):11778–11783. doi:10.1073/pnas.0711122105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang L, Du F, Wang X (2008) TNF-alpha induces two distinct caspase-8 activation pathways. Cell 133(4):693–703. doi:10.1016/j.cell.2008.03.036

    Article  CAS  PubMed  Google Scholar 

  16. O’Donnell MA, Legarda-Addison D, Skountzos P, Yeh WC, Ting AT (2007) Ubiquitination of RIP1 regulates an NF-kappaB-independent cell-death switch in TNF signaling. Curr Biol 17(5):418–424. doi:10.1016/j.cub.2007.01.027

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dondelinger Y, Jouan-Lanhouet S, Divert T, Theatre E, Bertin J, Gough PJ, Giansanti P, Heck AJ, Dejardin E, Vandenabeele P, Bertrand MJ (2015) NF-kappaB-independent role of IKKalpha/IKKbeta in preventing RIPK1 kinase-dependent apoptotic and necroptotic cell death during TNF signaling. Mol Cell 60(1):63–76. doi:10.1016/j.molcel.2015.07.032

    Article  CAS  PubMed  Google Scholar 

  18. Li J, McQuade T, Siemer AB, Napetschnig J, Moriwaki K, Hsiao YS, Damko E, Moquin D, Walz T, McDermott A, Chan FK, Wu H (2012) The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 150(2):339–350. doi:10.1016/j.cell.2012.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM, Gerber SA, Lugovskoy A, Yuan J (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4(5):313–321. doi:10.1038/nchembio.83

    Article  CAS  PubMed  Google Scholar 

  20. Zhao J, Jitkaew S, Cai Z, Choksi S, Li Q, Luo J, Liu ZG (2012) Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci USA 109(14):5322–5327. doi:10.1073/pnas.1200012109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X, Wang X (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148(1–2):213–227. doi:10.1016/j.cell.2011.11.031

    Article  CAS  PubMed  Google Scholar 

  22. Murphy JM, Czabotar PE, Hildebrand JM, Lucet IS, Zhang JG, Alvarez-Diaz S, Lewis R, Lalaoui N, Metcalf D, Webb AI, Young SN, Varghese LN, Tannahill GM, Hatchell EC, Majewski IJ, Okamoto T, Dobson RC, Hilton DJ, Babon JJ, Nicola NA, Strasser A, Silke J, Alexander WS (2013) The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39(3):443–453. doi:10.1016/j.immuni.2013.06.018

    Article  CAS  PubMed  Google Scholar 

  23. Rodriguez DA, Weinlich R, Brown S, Guy C, Fitzgerald P, Dillon CP, Oberst A, Quarato G, Low J, Cripps JG, Chen T, Green DR (2016) Characterization of RIPK3-mediated phosphorylation of the activation loop of MLKL during necroptosis. Cell Death Differ 23(1):76–88. doi:10.1038/cdd.2015.70

    Article  CAS  PubMed  Google Scholar 

  24. Cai Z, Jitkaew S, Zhao J, Chiang HC, Choksi S, Liu J, Ward Y, Wu LG, Liu ZG (2014) Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol 16(1):55–65. doi:10.1038/ncb2883

    Article  CAS  PubMed  Google Scholar 

  25. Migone TS, Zhang J, Luo X, Zhuang L, Chen C, Hu B, Hong JS, Perry JW, Chen SF, Zhou JX, Cho YH, Ullrich S, Kanakaraj P, Carrell J, Boyd E, Olsen HS, Hu G, Pukac L, Liu D, Ni J, Kim S, Gentz R, Feng P, Moore PA, Ruben SM, Wei P (2002) TL1A is a TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell costimulator. Immunity 16(3):479–492. doi:10.1016/S1074-7613(02)00283-2

    Article  CAS  PubMed  Google Scholar 

  26. Richard AC, Ferdinand JR, Meylan F, Hayes ET, Gabay O, Siegel RM (2015) The TNF-family cytokine TL1A: from lymphocyte costimulator to disease co-conspirator. J Leukoc Biol 98(3):333–345. doi:10.1189/jlb.3RI0315-095R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wen L, Zhuang L, Luo X, Wei P (2003) TL1A-induced NF-kappaB activation and c-IAP2 production prevent DR3-mediated apoptosis in TF-1 cells. J Biol Chem 278(40):39251–39258. doi:10.1074/jbc.M305833200

    Article  CAS  PubMed  Google Scholar 

  28. Chinnaiyan AM, O’Rourke K, Yu GL, Lyons RH, Garg M, Duan DR, Xing L, Gentz R, Ni J, Dixit VM (1996) Signal transduction by DR3, a death domain-containing receptor related to TNFR-1 and CD95. Science 274(5289):990–992. doi:10.1126/science.274.5289.990

    Article  CAS  PubMed  Google Scholar 

  29. Bittner S, Knoll G, Fullsack S, Kurz M, Wajant H, Ehrenschwender M (2016) Soluble TL1A is sufficient for activation of death receptor 3. FEBS J 283(2):323–336. doi:10.1111/febs.13576

    Article  CAS  PubMed  Google Scholar 

  30. Ehrenschwender M, Bittner S, Seibold K, Wajant H (2014) XIAP-targeting drugs re-sensitize PIK3CA-mutated colorectal cancer cells for death receptor-induced apoptosis. Cell Death Dis 5:e1570. doi:10.1038/cddis.2014.534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Feng S, Yang Y, Mei Y, Ma L, Zhu DE, Hoti N, Castanares M, Wu M (2007) Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell Signal 19(10):2056–2067. doi:10.1016/j.cellsig.2007.05.016

    Article  CAS  PubMed  Google Scholar 

  32. Yoon S, Bogdanov K, Kovalenko A, Wallach D (2016) Necroptosis is preceded by nuclear translocation of the signaling proteins that induce it. Cell Death Differ 23(2):253–260. doi:10.1038/cdd.2015.92

    Article  CAS  PubMed  Google Scholar 

  33. Li D, Xu T, Cao Y, Wang H, Li L, Chen S, Wang X, Shen Z (2015) A cytosolic heat shock protein 90 and cochaperone CDC37 complex is required for RIP3 activation during necroptosis. Proc Natl Acad Sci USA 112(16):5017–5022. doi:10.1073/pnas.1505244112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vanden Berghe T, Kalai M, van Loo G, Declercq W, Vandenabeele P (2003) Disruption of HSP90 function reverts tumor necrosis factor-induced necrosis to apoptosis. J Biol Chem 278(8):5622–5629. doi:10.1074/jbc.M208925200

    Article  CAS  PubMed  Google Scholar 

  35. Fearns C, Pan Q, Mathison JC, Chuang TH (2006) Triad3A regulates ubiquitination and proteasomal degradation of RIP1 following disruption of Hsp90 binding. J Biol Chem 281(45):34592–34600. doi:10.1074/jbc.M604019200

    Article  CAS  PubMed  Google Scholar 

  36. Lewis J, Devin A, Miller A, Lin Y, Rodriguez Y, Neckers L, Liu ZG (2000) Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-kappaB activation. J Biol Chem 275(14):10519–10526. doi:10.1074/jbc.275.14.10519

    Article  CAS  PubMed  Google Scholar 

  37. Vanlangenakker N, Vanden Berghe T, Bogaert P, Laukens B, Zobel K, Deshayes K, Vucic D, Fulda S, Vandenabeele P, Bertrand MJ (2011) cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production. Cell Death Differ 18(4):656–665. doi:10.1038/cdd.2010.138

    Article  CAS  PubMed  Google Scholar 

  38. Dondelinger Y, Aguileta MA, Goossens V, Dubuisson C, Grootjans S, Dejardin E, Vandenabeele P, Bertrand MJ (2013) RIPK3 contributes to TNFR1-mediated RIPK1 kinase-dependent apoptosis in conditions of cIAP1/2 depletion or TAK1 kinase inhibition. Cell Death Differ 20(10):1381–1392. doi:10.1038/cdd.2013.94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ting AT, Bertrand MJ (2016) More to life than NF-kappaB in TNFR1 signaling. Trends Immunol 37(8):535–545. doi:10.1016/j.it.2016.06.002

    Article  CAS  PubMed  Google Scholar 

  40. Vanden Berghe T, Vanlangenakker N, Parthoens E, Deckers W, Devos M, Festjens N, Guerin CJ, Brunk UT, Declercq W, Vandenabeele P (2010) Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ 17(6):922–930. doi:10.1038/cdd.2009.184

    Article  CAS  PubMed  Google Scholar 

  41. Shulga N, Pastorino JG (2012) GRIM-19-mediated translocation of STAT3 to mitochondria is necessary for TNF-induced necroptosis. J Cell Sci 125(Pt 12):2995–3003. doi:10.1242/jcs.103093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shindo R, Kakehashi H, Okumura K, Kumagai Y, Nakano H (2013) Critical contribution of oxidative stress to TNFalpha-induced necroptosis downstream of RIPK1 activation. Biochem Biophys Res Commun 436(2):212–216. doi:10.1016/j.bbrc.2013.05.075

    Article  CAS  PubMed  Google Scholar 

  43. Kim YS, Morgan MJ, Choksi S, Liu ZG (2007) TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mol Cell 26(5):675–687. doi:10.1016/j.molcel.2007.04.021

    Article  CAS  PubMed  Google Scholar 

  44. Schenk B, Fulda S (2015) Reactive oxygen species regulate Smac mimetic/TNFalpha-induced necroptotic signaling and cell death. Oncogene 34(47):5796–5806. doi:10.1038/onc.2015.35

    Article  CAS  PubMed  Google Scholar 

  45. Tait SW, Oberst A, Quarato G, Milasta S, Haller M, Wang R, Karvela M, Ichim G, Yatim N, Albert ML, Kidd G, Wakefield R, Frase S, Krautwald S, Linkermann A, Green DR (2013) Widespread mitochondrial depletion via mitophagy does not compromise necroptosis. Cell Rep 5(4):878–885. doi:10.1016/j.celrep.2013.10.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 15(2):135–147. doi:10.1038/nrm3737

    Article  CAS  PubMed  Google Scholar 

  47. Degterev A, Linkermann A (2016) Generation of small molecules to interfere with regulated necrosis. Cell Mol Life Sci 73(11–12):2251–2267. doi:10.1007/s00018-016-2198-x

    Article  CAS  PubMed  Google Scholar 

  48. Burne MJ, Elghandour A, Haq M, Saba SR, Norman J, Condon T, Bennett F, Rabb H (2001) IL-1 and TNF independent pathways mediate ICAM-1/VCAM-1 up-regulation in ischemia reperfusion injury. J Leukoc Biol 70(2):192–198

    CAS  PubMed  Google Scholar 

  49. Fulda S (2016) Regulation of necroptosis signaling and cell death by reactive oxygen species. Biol Chem 397(7):657–660. doi:10.1515/hsz-2016-0102

    CAS  PubMed  Google Scholar 

  50. Wang J, Al-Lamki RS, Zhu X, Liu H, Pober JS, Bradley JR (2014) TL1-A can engage death receptor-3 and activate NF-kappa B in endothelial cells. BMC Nephrol 15(1):1–10. doi:10.1186/1471-2369-15-178

    Article  PubMed  PubMed Central  Google Scholar 

  51. Linkermann A, Bräsen JH, Himmerkus N, Liu S, Huber TB, Kunzendorf U, Krautwald S (2012) Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury. Kidney Int 81(8):751–761. doi:10.1038/ki.2011.450

    Article  CAS  PubMed  Google Scholar 

  52. Fotin-Mleczek M, Henkler F, Samel D, Reichwein M, Hausser A, Parmryd I, Scheurich P, Schmid JA, Wajant H (2002) Apoptotic crosstalk of TNF receptors: TNF-R2-induces depletion of TRAF2 and IAP proteins and accelerates TNF-R1-dependent activation of caspase-8. J Cell Sci 115(Pt 13):2757–2770

    CAS  PubMed  Google Scholar 

  53. Petersen SL, Chen TT, Lawrence DA, Marsters SA, Gonzalvez F, Ashkenazi A (2015) TRAF2 is a biologically important necroptosis suppressor. Cell Death Differ 22(11):1846–1857. doi:10.1038/cdd.2015.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Karl I, Jossberger-Werner M, Schmidt N, Horn S, Goebeler M, Leverkus M, Wajant H, Giner T (2014) TRAF2 inhibits TRAIL- and CD95L-induced apoptosis and necroptosis. Cell Death Dis 5:e1444. doi:10.1038/cddis.2014.404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vanden Berghe T, Hassannia B, Vandenabeele P (2016) An outline of necrosome triggers. Cell Mol Life Sci 73(11–12):2137–2152. doi:10.1007/s00018-016-2189-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

ME is supported by grants from Deutsche Forschungsgemeinschaft (DFG Grant EH 465/2-1), the Roggenbuck Stiftung and the Medical Faculty of the University of Regensburg (“ReForM-B”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Ehrenschwender.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bittner, S., Knoll, G. & Ehrenschwender, M. Death receptor 3 mediates necroptotic cell death. Cell. Mol. Life Sci. 74, 543–554 (2017). https://doi.org/10.1007/s00018-016-2355-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2355-2

Keywords

Navigation