Skip to main content

Advertisement

Log in

Post-translational modifications in mitochondria: protein signaling in the powerhouse

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

There is an intimate interplay between cellular metabolism and the pathophysiology of disease. Mitochondria are essential to maintaining and regulating metabolic function of cells and organs. Mitochondrial dysfunction is implicated in diverse diseases, such as cardiovascular disease, diabetes and metabolic syndrome, neurodegeneration, cancer, and aging. Multiple reversible post-translational protein modifications are located in the mitochondria that are responsive to nutrient availability and redox conditions, and which can act in protein–protein interactions to modify diverse mitochondrial functions. Included in this are physiologic redox signaling via reactive oxygen and nitrogen species, phosphorylation, O-GlcNAcylation, acetylation, and succinylation, among others. With the advent of mass proteomic screening techniques, there has been a vast increase in the array of known mitochondrial post-translational modifications and their protein targets. The functional significance of these processes in disease etiology, and the pathologic response to their disruption, are still under investigation. However, many of these reversible modifications act as regulatory mechanisms in mitochondria and show promise for mitochondrial-targeted therapeutic strategies. This review addresses the current knowledge of post-translational processing and signaling mechanisms in mitochondria, and their implications in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. DeBerardinis RJ, Thompson CB (2012) Cellular metabolism and disease: what do metabolic outliers teach us? Cell 148(6):1132–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148(6):1145–1159

    Article  CAS  PubMed  Google Scholar 

  3. Salminen A et al (2012) Mitochondrial dysfunction and oxidative stress activate inflammasomes: impact on the aging process and age-related diseases. Cell Mol Life Sci 69(18):2999–3013

    Article  CAS  PubMed  Google Scholar 

  4. Walters AM, Porter GA Jr, Brookes PS (2012) Mitochondria as a drug target in ischemic heart disease and cardiomyopathy. Circ Res 111(9):1222–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zsurka G, Kunz WS (2013) Mitochondrial involvement in neurodegenerative diseases. IUBMB Life 65(3):263–272

    Article  CAS  PubMed  Google Scholar 

  6. Cardaci S, Ciriolo MR (2012) TCA cycle defects and cancer: when metabolism tunes redox state. Int J Cell Biol 2012:161837

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Desideri E, Vegliante R, Ciriolo MR (2015) Mitochondrial dysfunctions in cancer: genetic defects and oncogenic signaling impinging on TCA cycle activity. Cancer Lett 356(2 Pt A):217–223

    Article  CAS  PubMed  Google Scholar 

  8. Lesnefsky EJ et al (2001) Mitochondrial dysfunction in cardiac disease: ischemia–reperfusion, aging, and heart failure. J Mol Cell Cardiol 33(6):1065–1089

    Article  CAS  PubMed  Google Scholar 

  9. Huss JM, Kelly DP (2005) Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Invest 115(3):547–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bugger H et al (2010) Proteomic remodelling of mitochondrial oxidative pathways in pressure overload-induced heart failure. Cardiovasc Res 85(2):376–384

    Article  CAS  PubMed  Google Scholar 

  11. Boudina S et al (2005) Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity. Circulation 112(17):2686–2695

    Article  PubMed  Google Scholar 

  12. Koc EC, Koc H (2012) Regulation of mammalian mitochondrial translation by post-translational modifications. Biochim Biophys Acta 1819(9–10):1055–1066

    Article  CAS  PubMed  Google Scholar 

  13. Papanicolaou KN, O’Rourke B, Brian Foster D (2014) Metabolism leaves its mark on the powerhouse: recent progress in post-translational modifications of lysine in mitochondria. Front Physiol 5:301

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhao S et al (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327(5968):1000–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Menzies KJ et al (2016) Protein acetylation in metabolism-metabolites and cofactors. Nat Rev Endocrinol 12:43–60

    Article  CAS  PubMed  Google Scholar 

  16. Song BJ et al (2014) Mitochondrial dysfunction and tissue injury by alcohol, high fat, nonalcoholic substances and pathological conditions through post-translational protein modifications. Redox Biol 3:109–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hofer A, Wenz T (2014) Post-translational modification of mitochondria as a novel mode of regulation. Exp Gerontol 56:202–220

    Article  CAS  PubMed  Google Scholar 

  18. Gould N et al (2013) Regulation of protein function and signaling by reversible cysteine S-nitrosylation. J Biol Chem 288(37):26473–26479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Teague WM et al (1979) Function of phosphorylation sites on pyruvate dehydrogenase. Biochem Biophys Res Commun 87(1):244–252

    Article  CAS  PubMed  Google Scholar 

  20. Tibaldi E et al (2008) Src-Tyrosine kinases are major agents in mitochondrial tyrosine phosphorylation. J Cell Biochem 104(3):840–849

    Article  CAS  PubMed  Google Scholar 

  21. Hebert-Chatelain E (2013) Src kinases are important regulators of mitochondrial functions. Int J Biochem Cell Biol 45(1):90–98

    Article  CAS  PubMed  Google Scholar 

  22. Hebert-Chatelain E et al (2012) Preservation of NADH ubiquinone-oxidoreductase activity by Src kinase-mediated phosphorylation of NDUFB10. Biochim Biophys Acta 1817(5):718–725

    Article  CAS  PubMed  Google Scholar 

  23. Papa S et al (1996) The nuclear-encoded 18 kDa (IP) AQDQ subunit of bovine heart complex I is phosphorylated by the mitochondrial cAMP-dependent protein kinase. FEBS Lett 379(3):299–301

    Article  CAS  PubMed  Google Scholar 

  24. Papa S et al (2001) Mutation in the NDUFS4 gene of complex I abolishes cAMP-dependent activation of the complex in a child with fatal neurological syndrome. FEBS Lett 489(2–3):259–262

    Article  CAS  PubMed  Google Scholar 

  25. He L, Lemasters JJ (2005) Dephosphorylation of the Rieske iron-sulfur protein after induction of the mitochondrial permeability transition. Biochem Biophys Res Commun 334(3):829–837

    Article  CAS  PubMed  Google Scholar 

  26. Augereau O et al (2005) Identification of tyrosine-phosphorylated proteins of the mitochondrial oxidative phosphorylation machinery. Cell Mol Life Sci 62(13):1478–1488

    Article  CAS  PubMed  Google Scholar 

  27. Acin-Perez R et al (2011) Protein phosphorylation and prevention of cytochrome oxidase inhibition by ATP: coupled mechanisms of energy metabolism regulation. Cell Metab 13(6):712–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Acin-Perez R et al (2011) A phosphodiesterase 2A isoform localized to mitochondria regulates respiration. J Biol Chem 286(35):30423–30432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Miyazaki T et al (2003) Regulation of cytochrome c oxidase activity by c-Src in osteoclasts. J Cell Biol 160(5):709–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Boerner JL et al (2004) Phosphorylation of Y845 on the epidermal growth factor receptor mediates binding to the mitochondrial protein cytochrome c oxidase subunit II. Mol Cell Biol 24(16):7059–7071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ding Y et al (2012) Receptor tyrosine kinase ErbB2 translocates into mitochondria and regulates cellular metabolism. Nat Commun 3:1271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Lewandrowski U et al (2008) Identification of new tyrosine phosphorylated proteins in rat brain mitochondria. FEBS Lett 582(7):1104–1110

    Article  CAS  PubMed  Google Scholar 

  33. Yuan S et al (2008) Voltage-dependent anion channel 1 is involved in endostatin-induced endothelial cell apoptosis. FASEB J 22(8):2809–2820

    Article  CAS  PubMed  Google Scholar 

  34. Wegrzyn J et al (2009) Function of mitochondrial Stat3 in cellular respiration. Science 323(5915):793–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Heusch G et al (2011) Mitochondrial STAT3 activation and cardioprotection by ischemic postconditioning in pigs with regional myocardial ischemia/reperfusion. Circ Res 109(11):1302–1308

    Article  CAS  PubMed  Google Scholar 

  36. Boengler K et al (2008) The myocardial JAK/STAT pathway: from protection to failure. Pharmacol Ther 120(2):172–185

    Article  CAS  PubMed  Google Scholar 

  37. Paulsen CE, Carroll KS (2013) Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem Rev 113(7):4633–4679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kramer PA et al (2015) The measurement of reversible redox dependent post-translational modifications and their regulation of mitochondrial and skeletal muscle function. Front Physiol 6:347

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mailloux RJ, Jin X, Willmore WG (2014) Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions. Redox Biol 2:123–139

    Article  CAS  PubMed  Google Scholar 

  40. Levonen AL et al (2014) Redox regulation of antioxidants, autophagy, and the response to stress: implications for electrophile therapeutics. Free Radic Biol Med 71:196–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Victorino VJ, Mencalha AL, Panis C (2015) Post-translational modifications disclose a dual role for redox stress in cardiovascular pathophysiology. Life Sci 129:42–47

    Article  CAS  PubMed  Google Scholar 

  42. Rhee SG (2006) Cell signaling. H2O2, a necessary evil for cell signaling. Science 312(5782):1882–1883

    Article  PubMed  Google Scholar 

  43. Kornfeld OS et al (2015) Mitochondrial reactive oxygen species at the heart of the matter: new therapeutic approaches for cardiovascular diseases. Circ Res 116(11):1783–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen YR, Zweier JL (2014) Cardiac mitochondria and reactive oxygen species generation. Circ Res 114(3):524–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Saitoh S et al (2006) Hydrogen peroxide: a feed-forward dilator that couples myocardial metabolism to coronary blood flow. Arterioscler Thromb Vasc Biol 26(12):2614–2621

    Article  CAS  PubMed  Google Scholar 

  46. Chang AH et al (2014) Respiratory substrates regulate S-nitrosylation of mitochondrial proteins through a thiol-dependent pathway. Chem Res Toxicol 27(5):794–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chouchani ET et al (2010) Identification of S-nitrosated mitochondrial proteins by S-nitrosothiol difference in gel electrophoresis (SNO-DIGE): implications for the regulation of mitochondrial function by reversible S-nitrosation. Biochem J 430(1):49–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Martinez-Ruiz A, Lamas S (2004) S-nitrosylation: a potential new paradigm in signal transduction. Cardiovasc Res 62(1):43–52

    Article  CAS  PubMed  Google Scholar 

  49. Murphy E et al (2014) Signaling by S-nitrosylation in the heart. J Mol Cell Cardiol 73:18–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Piantadosi CA (2012) Regulation of mitochondrial processes by protein S-nitrosylation. Biochim Biophys Acta 1820(6):712–721

    Article  CAS  PubMed  Google Scholar 

  51. Doulias PT et al (2013) Nitric oxide regulates mitochondrial fatty acid metabolism through reversible protein S-nitrosylation. Sci Signal 6(256):rs1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Brown GC (2001) Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochim Biophys Acta 1504(1):46–57

    Article  CAS  PubMed  Google Scholar 

  53. Sarti P et al (2003) Nitric oxide and mitochondrial complex IV. IUBMB Life 55(10–11):605–611

    CAS  PubMed  Google Scholar 

  54. Nguyen TT et al (2011) Cysteine 203 of cyclophilin D is critical for cyclophilin D activation of the mitochondrial permeability transition pore. J Biol Chem 286(46):40184–40192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Murray CI et al (2011) Site-mapping of in vitro S-nitrosation in cardiac mitochondria: implications for cardioprotection. Mol Cell Proteomics 10(3):M110 004721

    Article  PubMed  CAS  Google Scholar 

  56. Matsumoto A et al (2003) Screening for nitric oxide-dependent protein–protein interactions. Science 301(5633):657–661

    Article  CAS  PubMed  Google Scholar 

  57. Prime TA et al (2009) A mitochondria-targeted S-nitrosothiol modulates respiration, nitrosates thiols, and protects against ischemia–reperfusion injury. Proc Natl Acad Sci USA 106(26):10764–10769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lima B et al (2009) Endogenous S-nitrosothiols protect against myocardial injury. Proc Natl Acad Sci USA 106(15):6297–6302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Burwell LS et al (2006) Direct evidence for S-nitrosation of mitochondrial complex I. Biochem J 394(Pt 3):627–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chouchani ET et al (2013) Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat Med 19(6):753–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hart GW et al (2011) Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem 80:825–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang Z, Gucek M, Hart GW (2008) Cross-talk between GlcNAcylation and phosphorylation: site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc. Proc Natl Acad Sci USA 105(37):13793–13798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Copeland RJ, Bullen JW, Hart GW (2008) Cross-talk between GlcNAcylation and phosphorylation: roles in insulin resistance and glucose toxicity. Am J Physiol Endocrinol Metab 295(1):E17–E28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ma J, Hart GW (2014) O-GlcNAc profiling: from proteins to proteomes. Clin Proteomics 11(1):8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Banerjee PS, Ma J, Hart GW (2015) Diabetes-associated dysregulation of O-GlcNAcylation in rat cardiac mitochondria. Proc Natl Acad Sci USA 112(19):6050–6055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hanover JA et al (2003) Mitochondrial and nucleocytoplasmic isoforms of O-linked GlcNAc transferase encoded by a single mammalian gene. Arch Biochem Biophys 409(2):287–297

    Article  CAS  PubMed  Google Scholar 

  67. Love DC et al (2003) Mitochondrial and nucleocytoplasmic targeting of O-linked GlcNAc transferase. J Cell Sci 116(Pt 4):647–654

    Article  CAS  PubMed  Google Scholar 

  68. Gawlowski T et al (2012) Modulation of dynamin-related protein 1 (DRP1) function by increased O-linked-beta-N-acetylglucosamine modification (O-GlcNAc) in cardiac myocytes. J Biol Chem 287(35):30024–30034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cao W et al (2013) Discovery and confirmation of O-GlcNAcylated proteins in rat liver mitochondria by combination of mass spectrometry and immunological methods. PLoS One 8(10):e76399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ngoh GA et al (2008) Non-canonical glycosyltransferase modulates post-hypoxic cardiac myocyte death and mitochondrial permeability transition. J Mol Cell Cardiol 45(2):313–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hu Y et al (2009) Increased enzymatic O-GlcNAcylation of mitochondrial proteins impairs mitochondrial function in cardiac myocytes exposed to high glucose. J Biol Chem 284(1):547–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Johnsen VL et al (2013) Enhanced cardiac protein glycosylation (O-GlcNAc) of selected mitochondrial proteins in rats artificially selected for low running capacity. Physiol Genomics 45(1):17–25

    Article  CAS  PubMed  Google Scholar 

  73. Tan EP et al (2014) Altering O-linked beta-N-acetylglucosamine cycling disrupts mitochondrial function. J Biol Chem 289(21):14719–14730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shin SH, Love DC, Hanover JA (2011) Elevated O-GlcNAc-dependent signaling through inducible mOGT expression selectively triggers apoptosis. Amino Acids 40(3):885–893

    Article  CAS  PubMed  Google Scholar 

  75. Fricovsky ES et al (2012) Excess protein O-GlcNAcylation and the progression of diabetic cardiomyopathy. Am J Physiol Regul Integr Comp Physiol 303(7):R689–R699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bennett CE et al (2013) Exercise training mitigates aberrant cardiac protein O-GlcNAcylation in streptozotocin-induced diabetic mice. Life Sci 92(11):657–663

    Article  CAS  PubMed  Google Scholar 

  77. Schwer B et al (2002) The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J Cell Biol 158(4):647–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Michishita E et al (2005) Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 16(10):4623–4635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Anderson KA, Hirschey MD (2012) Mitochondrial protein acetylation regulates metabolism. Essays Biochem 52:23–35

    Article  CAS  PubMed  Google Scholar 

  80. Scott I et al (2012) Identification of a molecular component of the mitochondrial acetyltransferase programme: a novel role for GCN5L1. Biochem J 443(3):655–661

    Article  CAS  PubMed  Google Scholar 

  81. Wagner GR, Payne RM (2013) Widespread and enzyme-independent Nepsilon-acetylation and Nepsilon-succinylation of proteins in the chemical conditions of the mitochondrial matrix. J Biol Chem 288(40):29036–29045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pougovkina O et al (2014) Mitochondrial protein acetylation is driven by acetyl-CoA from fatty acid oxidation. Hum Mol Genet 23(13):3513–3522

    Article  CAS  PubMed  Google Scholar 

  83. Haigis MC et al (2006) SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126(5):941–954

    Article  CAS  PubMed  Google Scholar 

  84. Ahuja N et al (2007) Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase. J Biol Chem 282(46):33583–33592

    Article  CAS  PubMed  Google Scholar 

  85. Bharathi SS et al (2013) Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site. J Biol Chem 288(47):33837–33847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hirschey MD et al (2010) SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464(7285):121–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ozden O et al (2014) SIRT3 deacetylates and increases pyruvate dehydrogenase activity in cancer cells. Free Radic Biol Med 76:163–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Schwer B et al (2006) Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc Natl Acad Sci USA 103(27):10224–10229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Someya S et al (2010) Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143(5):802–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cimen H et al (2010) Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry 49(2):304–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Finley LWS et al (2011) Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PLoS One 6(8):e23295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ahn B-H et al (2008) A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci 105(38):14447–14452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shinmura K et al (2011) Caloric restriction primes mitochondria for ischemic stress by deacetylating specific mitochondrial proteins of the electron transport chain. Circ Res 109(4):396–406

    Article  CAS  PubMed  Google Scholar 

  94. Rardin MJ et al (2013) Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proc Natl Acad Sci USA 110(16):6601–6606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hafner AV et al (2010) Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging (Albany NY) 2(12):914–923

    Article  CAS  Google Scholar 

  96. Fernandes J et al (2015) Lysine acetylation activates mitochondrial aconitase in the heart. Biochemistry 54(25):4008–4018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Vassilopoulos A et al (2014) SIRT3 deacetylates ATP synthase F1 complex proteins in response to nutrient- and exercise-induced stress. Antioxid Redox Signal 21:551–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bao J et al (2010) SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity. Free Radic Biol Med 49(7):1230–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ahn BH, Kim HS, Song S, Lee IH, Liu J, Vassilopoulos A, Deng CX, Finkel T (2008) A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. PNAS 105:14447–14452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hallows WC, Lee S, Denu JM (2006) Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci 103(27):10230–10235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Shimazu T et al (2010) SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab 12(6):654–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Laurent G et al (2013) SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol Cell 50(5):686–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Shulga N, Wilson-Smith R, Pastorino JG (2010) Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria. J Cell Sci 123(Pt 6):894–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jing E et al (2013) Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation. Diabetes 62(10):3404–3417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chen Y et al (2011) Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS. EMBO Rep 12(6):534–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Qiu X et al (2010) Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 12(6):662–667

    Article  CAS  PubMed  Google Scholar 

  107. Tao R et al (2010) Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell 40(6):893–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cheng Y et al (2013) Interaction of Sirt3 with OGG1 contributes to repair of mitochondrial DNA and protects from apoptotic cell death under oxidative stress. Cell Death Dis 4:e731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Winnik S et al (2015) Protective effects of sirtuins in cardiovascular diseases: from bench to bedside. Eur Heart J 36:3404–3412

    Article  PubMed  PubMed Central  Google Scholar 

  110. Chen CJ et al (2013) SIRT3 protects cardiomyocytes from oxidative stress-mediated cell death by activating NF-kappaB. Biochem Biophys Res Commun 430(2):798–803

    Article  CAS  PubMed  Google Scholar 

  111. Cheung KG et al (2015) Sirtuin-3 (SIRT3) protein attenuates doxorubicin-induced oxidative stress and improves mitochondrial respiration in H9c2 cardiomyocytes. J Biol Chem 290(17):10981–10993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tseng AH, Shieh SS, Wang DL (2013) SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage. Free Radic Biol Med 63:222–234

    Article  CAS  PubMed  Google Scholar 

  113. Chen TS et al (2015) Mouse SIRT3 attenuates hypertrophy-related lipid accumulation in the heart through the deacetylation of LCAD. PLoS One 10(3):e0118909

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP (2009) Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest 119:2758–2771

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Koentges C et al (2015) SIRT3 deficiency impairs mitochondrial and contractile function in the heart. Basic Res Cardiol 110(4):36

    Article  PubMed  CAS  Google Scholar 

  116. Porter GA et al (2014) SIRT3 deficiency exacerbates ischemia–reperfusion injury: implication for aged hearts. Am J Physiol Heart Circ Physiol 306(12):H1602–H1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Park J et al (2013) SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell 50(6):919–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rardin MJ et al (2013) SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab 18(6):920–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nishida Y et al (2015) SIRT5 regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target. Mol Cell 59(2):321–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lin ZF et al (2013) SIRT5 desuccinylates and activates SOD1 to eliminate ROS. Biochem Biophys Res Commun 441(1):191–195

    Article  CAS  PubMed  Google Scholar 

  121. Tan M et al (2014) Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab 19(4):605–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hottiger MO et al (2010) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 35(4):208–219

    Article  CAS  PubMed  Google Scholar 

  123. Szanto M et al (2012) Poly(ADP-ribose) polymerase-2: emerging transcriptional roles of a DNA-repair protein. Cell Mol Life Sci 69(24):4079–4092

    Article  CAS  PubMed  Google Scholar 

  124. Krietsch J et al (2013) Reprogramming cellular events by poly(ADP-ribose)-binding proteins. Mol Aspects Med 34(6):1066–1087

    Article  CAS  PubMed  Google Scholar 

  125. Ame JC et al (1999) PARP-2, A novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase. J Biol Chem 274(25):17860–17868

    Article  CAS  PubMed  Google Scholar 

  126. Ame JC, Spenlehauer C, de Murcia G (2004) The PARP superfamily. BioEssays 26(8):882–893

    Article  CAS  PubMed  Google Scholar 

  127. Schreiber V et al (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7(7):517–528

    Article  CAS  PubMed  Google Scholar 

  128. Cohen-Armon M (2007) PARP-1 activation in the ERK signaling pathway. Trends Pharmacol Sci 28(11):556–560

    Article  CAS  PubMed  Google Scholar 

  129. Bai P (2015) Biology of poly(ADP-ribose) polymerases: the factotums of cell maintenance. Mol Cell 58(6):947–958

    Article  CAS  PubMed  Google Scholar 

  130. Hassa PO et al (2005) Acetylation of poly(ADP-ribose) polymerase-1 by p300/CREB-binding protein regulates coactivation of NF-kappaB-dependent transcription. J Biol Chem 280(49):40450–40464

    Article  CAS  PubMed  Google Scholar 

  131. Burkle A, Virag L (2013) Poly(ADP-ribose): PARadigms and PARadoxes. Mol Aspects Med 34(6):1046–1065

    Article  PubMed  CAS  Google Scholar 

  132. Rouleau M et al (2010) PARP inhibition: PARP1 and beyond. Nat Rev Cancer 10(4):293–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Messner S et al (2009) Sumoylation of poly(ADP-ribose) polymerase 1 inhibits its acetylation and restrains transcriptional coactivator function. FASEB J 23(11):3978–3989

    Article  CAS  PubMed  Google Scholar 

  134. Mashimo M, Kato J, Moss J (2014) Structure and function of the ARH family of ADP-ribosyl-acceptor hydrolases. DNA Repair (Amst) 23:88–94

    Article  CAS  Google Scholar 

  135. Min W, Wang ZQ (2009) Poly (ADP-ribose) glycohydrolase (PARG) and its therapeutic potential. Front Biosci (Landmark Ed) 14:1619–1626

    Article  CAS  Google Scholar 

  136. Brunyanszki A et al (2016) Mitochondrial poly(ADP-ribose) polymerase: the Wizard of Oz at work. Free Radic Biol Med. doi:10.1016/j.freeradbiomed.2016.02.024 (Epub ahead of print)

  137. Bai P et al (2015) Poly(ADP-ribose) polymerases as modulators of mitochondrial activity. Trends Endocrinol Metab 26(2):75–83

    Article  CAS  PubMed  Google Scholar 

  138. Szczesny B et al (2014) Opposing roles of mitochondrial and nuclear PARP1 in the regulation of mitochondrial and nuclear DNA integrity: implications for the regulation of mitochondrial function. Nucleic Acids Res 42(21):13161–13173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Andrabi SA et al (2014) Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis. Proc Natl Acad Sci USA 111(28):10209–10214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Niere M et al (2008) Functional localization of two poly(ADP-ribose)-degrading enzymes to the mitochondrial matrix. Mol Cell Biol 28(2):814–824

    Article  CAS  PubMed  Google Scholar 

  141. Cipriani G et al (2005) Nuclear poly(ADP-ribose) polymerase-1 rapidly triggers mitochondrial dysfunction. J Biol Chem 280(17):17227–17234

    Article  CAS  PubMed  Google Scholar 

  142. Sims JL, Berger SJ, Berger NA (1981) Effects of nicotinamide on NAD and poly(ADP-ribose) metabolism in DNA-damaged human lymphocytes. J Supramol Struct Cell Biochem 16(3):281–288

    Article  CAS  PubMed  Google Scholar 

  143. Haenni SS et al (2008) Identification of lysines 36 and 37 of PARP-2 as targets for acetylation and auto-ADP-ribosylation. Int J Biochem Cell Biol 40(10):2274–2283

    Article  CAS  PubMed  Google Scholar 

  144. Canto C, Sauve AA, Bai P (2013) Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes. Mol Aspects Med 34(6):1168–1201

    Article  CAS  PubMed  Google Scholar 

  145. Pillai JB et al (2005) Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activity. J Biol Chem 280(52):43121–43130

    Article  CAS  PubMed  Google Scholar 

  146. Bai P et al (2011) PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab 13(4):461–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Gao J et al (2016) Deacetylation of MnSOD by PARP-regulated SIRT3 protects retinal capillary endothelial cells from hyperglycemia-induced damage. Biochem Biophys Res Commun 472(3):425–431

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by grants from the National Institutes of Health (NHLBI) 1F31HL126489-01A1 to ARS, and the Muscular Dystrophy Association (MDA) and the Friedreich’s Ataxia Research Alliance (FARA) to RMP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mark Payne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stram, A.R., Payne, R.M. Post-translational modifications in mitochondria: protein signaling in the powerhouse. Cell. Mol. Life Sci. 73, 4063–4073 (2016). https://doi.org/10.1007/s00018-016-2280-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2280-4

Keywords

Navigation