Skip to main content
Log in

G72 primate-specific gene: a still enigmatic element in psychiatric disorders

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Numerous studies have demonstrated a link between genetic markers on chromosome 13 and schizophrenia, bipolar affective disorder, and other psychiatric phenotypes. The G72/G30 genes (transcribed in opposite directions) are located on chromosome 13q33, a region demonstrating strong evidence for linkage with various neuropsychiatric disorders. G72/G30 was identified in 2002 as a schizophrenia susceptibility locus; however, subsequent association studies did not reach consensus on single SNPs within the locus. Simultaneously, a new vision for the genetic architecture of psychiatric disorders suggested that schizophrenia was a quantitative trait, therefore ascribable to potentially hundreds of genes and subjected to the vagaries of the environment. The main protein product of G72 gene is named pLG72 or d-amino acid oxidase activator DAOA (153 amino acids) and its function is still debated. Functional analyses, also showing controversial results, indicate that pLG72 contributes to N-methyl-d-aspartate receptor modulation by affecting activity of the flavoprotein d-amino acid oxidase, the enzyme responsible for degrading the neuromodulator d-serine. In this review we, for the first time, summarize findings from molecular genetic linkage and association studies concerning G72 gene, cellular and molecular studies on pLG72, and investigations performed on G72/G30 transgenic mice. This will help elucidate the role of psychosis susceptibility genes, which will have a major impact on our understanding of disease pathophysiology and thus change classification and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BAC :

Bacterial artificial chromosome

BOLD :

Blood oxygen level-dependent

CNS :

Central nervous system

CPZ :

Chlorpromazine

DAAO :

d-Amino acid oxidase

FA :

Fractional anisotropy

fMRI :

Functional magnetic resonance imaging

GWAS :

Genome-wide association studies

hDAAO :

Human d-amino acid oxidase

MRSB2 :

Mitochondrial methionine-R-sulfoxide reductase B2

MTG :

Middle temporal gyrus

NLS :

N-Lauroylsarcosine

NMDAR :

N-Methyl-d-aspartate type glutamate receptor

ORF :

Open-reading frames

PCP :

Phencyclidine

PPI :

Pre-pulse inhibition

SNP :

Single nucleotide polymorphism

ToM :

Theory of mind

References

  1. Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H et al (2002) Genetic and physiological data implicating the new human gene G72 and the gene for d-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA 99:13675–13680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schultz CC, Nenadic I, Koch K, Wagner G, Roebel M, Schachtzabel C et al (2011) Reduced cortical thickness is associated with the glutamatergic regulatory gene risk variant DAOA Arg30Lys in schizophrenia. Neuropsychopharmacology 36:1747–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Donohoe G, Morris DW, Robertson IH, McGhee KA, Murphy K, Kenny N et al (2007) DAOA ARG30LYS and verbal memory function in schizophrenia. Mol Psychiatry 12:795–796

    Article  CAS  PubMed  Google Scholar 

  4. Sullivan PF (2012) Puzzling over schizophrenia: schizophrenia as a pathway disease. Nat Med 18:210–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sacchi S, Caldinelli L, Cappelletti P, Pollegioni L, Molla G (2012) Structure–function relationships in human d-amino acid oxidase. Amino Acids 43:1833–1850

    Article  CAS  PubMed  Google Scholar 

  6. Pollegioni L, Sacchi S (2010) Metabolism of the neuromodulator d-serine. Cell Mol Life Sci 67:2387–2404

    Article  CAS  PubMed  Google Scholar 

  7. Mothet JP, Parent AT, Wolosker H, Brady RO Jr, Linden DJ, Ferris CD et al (2000) d-serine is an endogenous ligand for the glycine site of the N-methyl-d-aspartate receptor. Proc Natl Acad Sci USA 97:4926–4931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Panatier A, Theodosis DT, Mothet JP, Touquet B, Pollegioni L, Poulain DA et al (2006) Glia-derived d-serine controls NMDA receptor activity and synaptic memory. Cell 125:775–784

    Article  CAS  PubMed  Google Scholar 

  9. Papouin T, Ladépêche L, Ruel J, Sacchi S, Labasque M, Hanini M et al (2012) Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell 150:633–646

    Article  CAS  PubMed  Google Scholar 

  10. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  CAS  PubMed  Google Scholar 

  11. Bear MF, Malenka RC (1994) Synaptic plasticity: LTP and LTD. Curr Opin Neurobiol 4:389–399

    Article  CAS  PubMed  Google Scholar 

  12. Kvajo M, Dhilla A, Swor DE, Karayiorgou M, Gogos JA (2008) Evidence implicating the candidate schizophrenia/bipolar disorder susceptibility gene G72 in mitochondrial function. Mol Psychiatry 13:685–696

    Article  CAS  PubMed  Google Scholar 

  13. Hattori E, Liu C, Badner JA, Bonner TI, Christian SL, Maheshwari M et al (2003) Polymorphisms at the G72/G30 gene locus, on 13q33, are associated with bipolar disorder in two independent pedigree series. Am J Hum Genet 72:1131–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Korostishevsky M, Kaganovich M, Cholostoy A, Ashkenazi M, Ratner Y, Dahary D et al (2004) Is the G72/G30 locus associated with schizophrenia? Single nucleotide polymorphisms, haplotypes, and gene expression analysis. Biol Psychiatry 56:169–176

    Article  CAS  PubMed  Google Scholar 

  15. Lin CH, Chang HT, Chen YJ, Lin CH, Huang CH, Tun R et al (2014) Distinctively higher plasma G72 protein levels in patients with schizophrenia than in healthy individuals. Mol Psychiatry 19:636–637

    Article  CAS  PubMed  Google Scholar 

  16. Sacchi S, Bernasconi M, Martineau M, Mothet JP, Ruzzene M, Pilone MS et al (2008) pLG72 modulates intracellular d-serine levels through its interaction with d-amino acid oxidase: effect on schizophrenia susceptibility. J Biol Chem 283:22244–22256

    Article  CAS  PubMed  Google Scholar 

  17. Benzel I, Kew JN, Viknaraja R, Kelly F, de Belleroche J, Hirsch S et al (2008) Investigation of G72 (DAOA) expression in the human brain. BMC Psychiatry 8:94–107

    Article  PubMed  PubMed Central  Google Scholar 

  18. FANTOM Consortium and the RIKEN PMI and CLST (DGT), Forrest AR, Kawaji H, Rehli M, Baillie JK, de Hoon MJ et al (2014) A promoter-level mammalian expression atlas. Nature 507:462–470

    Article  Google Scholar 

  19. Lappalainen T, Sammeth M, Friedländer MR, ’t Hoen PA, Monlong J, Rivas MA et al (2013) Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501:506–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S et al (2013) The Genotype-Tissue Expression (GTEx) project. Nat Genet 45:580–585

    Article  CAS  Google Scholar 

  21. Ardlie KG, Deluca DS, Segrè AV, Sullivan TJ, Young TR, Gelfand ET et al (2015) Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348:648–660

    Article  Google Scholar 

  22. Molla G, Bernasconi M, Sacchi S, Pilone MS, Pollegioni L (2006) Expression in Escherichia coli and in vitro refolding of the human protein pLG72. Protein Expr Purif 46:150–155

    Article  CAS  PubMed  Google Scholar 

  23. Pollegioni L, Piubelli L, Sacchi S, Pilone MS, Molla G (2007) Physiological functions of d-amino acid oxidases: from yeast to humans. Cell Mol Life Sci 64:1373–1394

    Article  CAS  PubMed  Google Scholar 

  24. Caldinelli L, Molla G, Bracci L, Lelli B, Pileri S, Cappelletti P et al (2010) Effect of ligand binding on human d-amino acid oxidase: implications for the development of new drugs for schizophrenia treatment. Protein Sci 19:1500–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Katane M, Kawata T, Nakayama K, Saitoh Y, Kaneko Y, Matsuda S et al (2015) Characterization of the enzymatic and structural properties of human d-aspartate oxidase and comparison with those of the rat and mouse enzymes. Biol Pharm Bull 38:298–305

    Article  CAS  PubMed  Google Scholar 

  26. Sacchi S, Cappelletti P, Giovannardi S, Pollegioni L (2011) Evidence for the interaction of d-amino acid oxidase with pLG72 in a glial cell line. Mol Cell Neurosci 48:20–28

    Article  CAS  PubMed  Google Scholar 

  27. Cappelletti P, Campomenosi P, Pollegioni L, Sacchi S (2014) The degradation (by distinct pathways) of human d-amino acid oxidase and its interacting partner pLG72—two key proteins in d-serine catabolism in the brain. FEBS J 281:708–723

    Article  CAS  PubMed  Google Scholar 

  28. Otte DM, Raskó T, Wang M, Dreiseidler M, Drews E, Schrage H, Wojtalla A, Höhfeld J, Wanker E, Zimmer A (2014) Identification of the mitochondrial MSRB2 as a binding partner of LG72. Cell Mol Neurobiol 34:1123–1130

    Article  CAS  PubMed  Google Scholar 

  29. Wang M, Chen H-J, Zhang J, Li W, Xie X, Chang H-T (2015) Identification of pLG72-induced oxidative stress using systemic approaches. BioMed Res Int (Article ID 429253)

  30. Korde AS, Maragos WF (2012) Identification of an N-methyl-d-aspartate receptor in isolated nervous system mitochondria. J Biol Chem 287:35192–35200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Purcell SM, Moran JL, Fromer M, Ruderfer D, Solovieff N, Roussos P et al (2014) A polygenic burden of rare disruptive mutations in schizophrenia. Nature 506:185–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Otte DM, Bilkei-Gorzó A, Filiou MD, Turck CW, Yilmaz O, Holst MI et al (2009) Behavioral changes in G72/G30 transgenic mice. Eur Neuropsychopharmacol 19:339–348

    Article  CAS  PubMed  Google Scholar 

  33. Cheng L, Hattori E, Nakajima A, Woehrle NS, Opal MD, Zhang C et al (2014) Expression of the G72/G30 gene in transgenic mice induces behavioral changes. Mol Psychiatry 19:175–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Filiou MD, Teplytska L, Otte DM, Zimmer A, Turck CW (2012) Myelination and oxidative stress alterations in the cerebellum of the G72/G30 transgenic schizophrenia mouse model. J Psychiatr Res 46:1359–1365

    Article  PubMed  Google Scholar 

  35. Tkachev D, Mimmack ML, Ryan MM, Wayland M, Freeman T, Jones PB et al (2003) Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 362:798–805

    Article  CAS  PubMed  Google Scholar 

  36. Martins-de-Souza D, Gattaz WF, Schmitt A, Maccarrone G, Hunyadi-Gulyás E, Eberlin MN et al (2009) Proteomic analysis of dorsolateral prefrontal cortex indicates the involvement of cytoskeleton, oligodendrocyte, energy metabolism and new potential markers in schizophrenia. J Psychiatr Res 43:978–986

    Article  PubMed  Google Scholar 

  37. Martins-de-Souza D, Maccarrone G, Wobrock T, Zerr I, Gormanns P, Reckow S et al (2010) Proteome analysis of the thalamus and cerebrospinal fluid reveals glycolysis dysfunction and potential biomarkers candidates for schizophrenia. J Psychiatr Res 44:1176–1189

    Article  PubMed  Google Scholar 

  38. Wood PL, Filiou MD, Otte DM, Zimmer A, Turck CW (2014) Lipidomics reveals dysfunctional glycosynapses in schizophrenia and the G72/G30 transgenic mouse. Schizophr Res 159:365–369

    Article  PubMed  Google Scholar 

  39. Harris JG, Kongs S, Allensworth D, Martin L, Tregellas J, Sullivan B et al (2004) Effects of nicotine on cognitive deficits in schizophrenia. Neuropsychopharmacology 29:1378–1385

    Article  CAS  PubMed  Google Scholar 

  40. Hambsch B, Keyworth H, Lind J, Otte DM, Racz I, Kitchen I et al (2014) Chronic nicotine improves short-term memory selectively in a G72 mouse model of schizophrenia. Br J Pharmacol 171:1758–1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Otte DM, Sommersberg B, Kudin A, Guerrero C, Albayram O, Filiou MD et al (2011) N-acetyl cysteine treatment rescues cognitive deficits induced by mitochondrial dysfunction in G72/G30 transgenic mice. Neuropsychopharmacology 36:2233–2243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Goldberg TE, Straub RE, Callicott JH, Hariri A, Mattay VS, Bigelow L et al (2006) The G72/G30 gene complex and cognitive abnormalities in schizophrenia. Neuropsychopharmacology 31:2022–2032

    Article  CAS  PubMed  Google Scholar 

  43. Detera-Wadleigh SD, McMahon FJ (2006) G72/G30 in schizophrenia and bipolar disorder: review and meta-analysis. Biol Psychiatry 60:106–114

    Article  CAS  PubMed  Google Scholar 

  44. Allen NC, Bagade S, McQueen MB, Ioannidis JP, Kavvoura FK, Khoury MJ et al (2008) Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet 40:827–834

    Article  CAS  PubMed  Google Scholar 

  45. Mössner R, Schuhmacher A, Wagner M, Quednow BB, Frommann I, Kühn KU et al (2010) DAOA/G72 predicts the progression of prodromal syndromes to first episode psychosis. Eur Arch Psychiatry Clin Neurosci 260:209–225

    Article  PubMed  PubMed Central  Google Scholar 

  46. Schizophrenia Psychiatric Genome-Wide Association Study Consortium (2011) Genome-wide association study identifies five new schizophrenia loci. Nat Genet 43:969–976

    Article  Google Scholar 

  47. Sullivan PF, Daly MJ, O’Donovan M (2012) Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet 13:537–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schizophrenia working group of the Psychiatric Genomics Consortium (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:421–427

    Article  PubMed Central  Google Scholar 

  49. Hall J, Whalley HC, Moorhead TW, Baig BJ, McIntosh AM, Job DE et al (2008) Genetic variation in the DAOA (G72) gene modulates hippocampal function in subjects at high risk of schizophrenia. Biol Psychiatry 64:428–433

    Article  CAS  PubMed  Google Scholar 

  50. Krug A, Markov V, Krach S, Jansen A, Zerres K, Eggermann T et al (2011) Genetic variation in G72 correlates with brain activation in the right middle temporal gyrus in a verbal fluency task in healthy individuals. Hum Brain Mapp 32:118–126

    Article  PubMed  Google Scholar 

  51. Andreasen NC, Calarge CA, O’Leary DS (2008) Theory of mind and schizophrenia: a positron emission tomography study of medication-free patients. Schizophr Bull 34:708–719

    Article  PubMed  PubMed Central  Google Scholar 

  52. Brüne M, Ozgürdal S, Ansorge N, von Reventlow HG, Peters S, Nicolas V et al (2011) An fMRI study of “theory of mind” in at-risk states of psychosis: comparison with manifest schizophrenia and healthy controls. Neuroimage 55:329–337

    Article  PubMed  Google Scholar 

  53. Hartz SM, Ho BC, Andreasen NC, Librant A, Rudd D, Epping EA et al (2010) G72 influences longitudinal change in frontal lobe volume in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 153B:640–647

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Li D, He L (2007) G72/G30 genes and schizophrenia: a systematic meta-analysis of association studies. Genetics 175:917–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nickl-Jockschat T, Stöcker T, Krug A, Markov V, Maximov II, Huang R et al (2015) Genetic variation in the G72 gene is associated with increased frontotemporal fiber tract integrity. Eur Arch Psychiatry Clin Neurosci 265:291–301

    Article  PubMed  Google Scholar 

  56. Hashimoto R, Ohi K, Yamamori H, Yasuda Y, Fujimoto M, Umeda-Yano S et al (2015) Imaging genetics and psychiatric disorders. Curr Mol Med 15:168–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sumner JA, Powers A, Jovanovic T, Koenen K (2015) Genetic influences on the neural and physiological bases of acute threat: a research domain criteria (RDoC) perspective. Am J Med Genet Part B Neuropsychiatr.1718:44–64 doi:10.1002/ajmg.b.32384

    Google Scholar 

  58. Medland SE, Jahanshad N, Neale BM, Thompson PM (2014) Whole-genome analyses of whole-brain data: working within an expanded search space. Nat Neurosci 17:791–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. International Schizophrenia Consortium (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460:748–752

    PubMed Central  Google Scholar 

  60. Rujescu D, Ingason A, Cichon S, Pietiläinen OP, Barnes MR, Toulopoulou T et al (2009) Disruption of the neurexin 1 gene is associated with schizophrenia. Hum Mol Genet 18:988–996

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Vacic V, McCarthy S, Malhotra D, Murray F, Chou HH, Peoples A et al (2011) Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia. Nature 471:499–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Weiss KM (2008) Tilting at Quixotic Trait Loci (QTL): an evolutionary perspective on genetic causation. Genetics 179:1741–1756

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sacchi S, Rosini E, Pollegioni L, Molla G (2013) d-amino acid oxidase inhibitors as a novel class of drugs for schizophrenia therapy. Curr Pharm Des 19:2499–2511

    Article  CAS  PubMed  Google Scholar 

  64. Terry-Lorenzo RT, Masuda K, Sugao K, Fang QK, Orsini MA, Sacchi S et al (2015) High-throughput screening strategy identifies allosteric, covalent human d-amino acid oxidase inhibitor. J Biomol Screen 20:1218–1231

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The experimental work about pLG72 was supported by a grant from Fondo di Ateneo per la Ricerca to SS and LP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loredano Pollegioni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sacchi, S., Binelli, G. & Pollegioni, L. G72 primate-specific gene: a still enigmatic element in psychiatric disorders. Cell. Mol. Life Sci. 73, 2029–2039 (2016). https://doi.org/10.1007/s00018-016-2165-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2165-6

Keywords

Navigation