Skip to main content

Advertisement

Log in

Insulin/IGF signaling in Drosophila and other insects: factors that regulate production, release and post-release action of the insulin-like peptides

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Insulin, insulin-like growth factors (IGFs) and insulin-like peptides (ILPs) are important regulators of metabolism, growth, reproduction and lifespan, and mechanisms of insulin/IGF signaling (IIS) have been well conserved over evolution. In insects, between one and 38 ILPs have been identified in each species. Relatively few insect species have been investigated in depth with respect to ILP functions, and therefore we focus mainly on the well-studied fruitfly Drosophila melanogaster. In Drosophila eight ILPs (DILP1-8), but only two receptors (dInR and Lgr3) are known. DILP2, 3 and 5 are produced by a set of neurosecretory cells (IPCs) in the brain and their biosynthesis and release are controlled by a number of mechanisms differing between larvae and adults. Adult IPCs display cell-autonomous sensing of circulating glucose, coupled to evolutionarily conserved mechanisms for DILP release. The glucose-mediated DILP secretion is modulated by neurotransmitters and neuropeptides, as well as by factors released from the intestine and adipocytes. Larval IPCs, however, are indirectly regulated by glucose-sensing endocrine cells producing adipokinetic hormone, or by circulating factors from the intestine and fat body. Furthermore, IIS is situated within a complex physiological regulatory network that also encompasses the lipophilic hormones, 20-hydroxyecdysone and juvenile hormone. After release from IPCs, the ILP action can be modulated by circulating proteins that act either as protective carriers (binding proteins), or competitive inhibitors. Some of these proteins appear to have additional functions that are independent of ILPs. Taken together, the signaling with multiple ILPs is under complex control, ensuring tightly regulated IIS in the organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Banting FG, Best CH (1922) The internal secretion of the pancreas. J Lab Clin Med 7:251–266

    CAS  Google Scholar 

  2. Claeys I, Simonet G, Poels J, Van Loy T, Vercammen L, De Loof A, Vanden Broeck J (2002) Insulin-related peptides and their conserved signal transduction pathway. Peptides 23(4):807–816

    Article  PubMed  CAS  Google Scholar 

  3. Antonova Y, Arik AJ, Moore W, Riehle MR, Brown MR (2012) Insulin-like peptides: structure, signaling, and function. In: Gilbert LI (ed) Insect endocrinology. Elsevier/Academic Press, New York, pp 63–92

    Chapter  Google Scholar 

  4. Grönke S, Clarke DF, Broughton S, Andrews TD, Partridge L (2010) Molecular evolution and functional characterization of Drosophila insulin-like peptides. PLoS Genet 6(2):e1000857. doi:10.1371/journal.pgen.1000857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Garofalo RS (2002) Genetic analysis of insulin signaling in Drosophila. Trends Endocrinol Metab 13(4):156–162

    Article  PubMed  CAS  Google Scholar 

  6. Watanabe Y, Miyamoto Y, Matsuda T, Tanaka M (2011) Relaxin-3/INSL7 regulates the stress-response system in the rat hypothalamus. J Mol Neurosci 43(2):169–174. doi:10.1007/s12031-010-9468-0

    Article  PubMed  CAS  Google Scholar 

  7. Lok S, Johnston DS, Conklin D, Lofton-Day CE, Adams RL, Jelmberg AC, Whitmore TE, Schrader S, Griswold MD, Jaspers SR (2000) Identification of INSL6, a new member of the insulin family that is expressed in the testis of the human and rat. Biol Reprod 62(6):1593–1599

    Article  PubMed  CAS  Google Scholar 

  8. Chassin D, Laurent A, Janneau JL, Berger R, Bellet D (1995) Cloning of a new member of the insulin gene superfamily (INSL4) expressed in human placenta. Genomics 29(2):465–470. doi:10.1006/geno.1995.9980

    Article  PubMed  CAS  Google Scholar 

  9. Froesch ER, Zapf J (1985) Insulin-like growth factors and insulin: comparative aspects. Diabetologia 28(8):485–493

    Article  PubMed  CAS  Google Scholar 

  10. Hudson P, Haley J, John M, Cronk M, Crawford R, Haralambidis J, Tregear G, Shine J, Niall H (1983) Structure of a genomic clone encoding biologically active human relaxin. Nature 301(5901):628–631

    Article  PubMed  CAS  Google Scholar 

  11. Badisco L, Claeys I, Van Hiel M, Clynen E, Huybrechts J, Vandersmissen T, Van Soest S, Vanden Bosch L, Simonet G, Vanden Broeck J (2008) Purification and characterization of an insulin-related peptide in the desert locust, Schistocerca gregaria: immunolocalization, cDNA cloning, transcript profiling and interaction with neuroparsin. J Mol Endocrinol 40(3):137–150. doi:10.1677/JME-07-0161

    Article  PubMed  CAS  Google Scholar 

  12. Yoshida I, Moto K, Sakurai S, Iwami M (1998) A novel member of the bombyxin gene family: structure and expression of bombyxin G1 gene, an insulin-related peptide gene of the silkmoth Bombyx mori. Dev Genes Evol 208(7):407–410

    Article  PubMed  CAS  Google Scholar 

  13. Mizoguchi A, Okamoto N (2013) Insulin-like and IGF-like peptides in the silkmoth Bombyx mori: discovery, structure, secretion, and function. Front Physiol 4:217. doi:10.3389/fphys.2013.00217

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lagueux M, Lwoff L, Meister M, Goltzene F, Hoffmann JA (1990) cDNAs from neurosecretory cells of brains of Locusta migratoria (Insecta, Orthoptera) encoding a novel member of the superfamily of insulins. Eur J Biochem 187(1):249–254

    Article  PubMed  CAS  Google Scholar 

  15. Veenstra JA (2014) The contribution of the genomes of a termite and a locust to our understanding of insect neuropeptides and neurohormones. Front Physiol 5:454. doi:10.3389/fphys.2014.00454

    Article  PubMed  PubMed Central  Google Scholar 

  16. Brogiolo W, Stocker H, Ikeya T, Rintelen F, Fernandez R, Hafen E (2001) An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr Biol 11(4):213–221

    Article  PubMed  CAS  Google Scholar 

  17. Okamoto N, Nakamori R, Murai T, Yamauchi Y, Masuda A, Nishimura T (2013) A secreted decoy of InR antagonizes insulin/IGF signaling to restrict body growth in Drosophila. Genes Dev 27(1):87–97. doi:10.1101/gad.204479.112

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Slaidina M, Delanoue R, Grönke S, Partridge L, Leopold P (2009) A Drosophila insulin-like peptide promotes growth during nonfeeding states. Dev Cell 17(6):874–884. doi:10.1016/j.devcel.2009.10.009

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Colombani J, Andersen DS, Leopold P (2012) Secreted peptide Dilp8 coordinates Drosophila tissue growth with developmental timing. Science 336(6081):582–585. doi:10.1126/science.1216689

    Article  PubMed  CAS  Google Scholar 

  20. Garelli A, Gontijo AM, Miguela V, Caparros E, Dominguez M (2012) Imaginal discs secrete insulin-like peptide 8 to mediate plasticity of growth and maturation. Science 336(6081):579–582. doi:10.1126/science.1216735

    Article  PubMed  CAS  Google Scholar 

  21. Vanden Broeck J (2001) Neuropeptides and their precursors in the fruitfly, Drosophila melanogaster. Peptides 22(2):241–254

    Article  PubMed  CAS  Google Scholar 

  22. Okamoto N, Yamanaka N, Yagi Y, Nishida Y, Kataoka H, O’Connor MB, Mizoguchi A (2009) A fat body-derived IGF-like peptide regulates postfeeding growth in Drosophila. Dev Cell 17(6):885–891. doi:10.1016/j.devcel.2009.10.008

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Miguel-Aliaga I, Thor S, Gould AP (2008) Postmitotic specification of Drosophila insulinergic neurons from pioneer neurons. PLoS Biol 6(3):e58. doi:10.1371/journal.pbio.0060058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Yang CH, Belawat P, Hafen E, Jan LY, Jan YN (2008) Drosophila egg-laying site selection as a system to study simple decision-making processes. Science 319(5870):1679–1683. doi:10.1126/science.1151842

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Ikeya T, Galic M, Belawat P, Nairz K, Hafen E (2002) Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr Biol 12(15):1293–1300

    Article  PubMed  CAS  Google Scholar 

  26. Rulifson EJ, Kim SK, Nusse R (2002) Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science 296(5570):1118–1120. doi:10.1126/science.1070058296/5570/1118

    Article  PubMed  CAS  Google Scholar 

  27. Ward CW, Lawrence MC (2011) Landmarks in insulin research. Front Endocrinol (Lausanne) 2:76. doi:10.3389/fendo.2011.00076

    Google Scholar 

  28. Fernandez AM, Torres-Aleman I (2012) The many faces of insulin-like peptide signalling in the brain. Nat Rev Neurosci 13(4):225–239. doi:10.1038/nrn3209

    Article  PubMed  CAS  Google Scholar 

  29. Van Hiel MB, Vandersmissen HP, Proost P, Vanden Broeck J (2015) Cloning, constitutive activity and expression profiling of two receptors related to relaxin receptors in Drosophila melanogaster. Peptides 68:83–90. doi:10.1016/j.peptides.2014.07.014

    Article  PubMed  CAS  Google Scholar 

  30. Colombani J, Andersn DS, Boulan L, Boone E, Romero N, Virolle V, Tecxada M, Leopold P (2015) Drosophila Lgr3 couples organ growth with maturation and ensures developmental stability. Curr Biol. doi:10.1016/j.cub.2015.09.020

    PubMed  Google Scholar 

  31. Xu HJ, Xue J, Lu B, Zhang XC, Zhuo JC, He SF, Ma XF, Jiang YQ, Fan HW, Xu JY, Ye YX, Pan PL, Li Q, Bao YY, Nijhout HF, Zhang CX (2015) Two insulin receptors determine alternative wing morphs in planthoppers. Nature 519(7544):464–467. doi:10.1038/nature14286

    Article  PubMed  CAS  Google Scholar 

  32. Boucher P, Ditlecadet D, Dube C, Dufresne F (2010) Unusual duplication of the insulin-like receptor in the crustacean Daphnia pulex. BMC Evol Biol 10:305. doi:10.1186/1471-2148-10-305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Teleman AA (2010) Molecular mechanisms of metabolic regulation by insulin in Drosophila. Biochem J 425(1):13–26. doi:10.1042/BJ20091181

    Article  CAS  Google Scholar 

  34. Goberdhan DC, Wilson C (2003) The functions of insulin signaling: size isn’t everything, even in Drosophila. Differentiation 71(7):375–397

    Article  PubMed  CAS  Google Scholar 

  35. Braeckman BP, Houthoofd K, Vanfleteren JR (2001) Insulin-like signaling, metabolism, stress resistance and aging in Caenorhabditis elegans. Mech Ageing Dev 122(7):673–693

    Article  PubMed  CAS  Google Scholar 

  36. Baumeister R, Schaffitzel E, Hertweck M (2006) Endocrine signaling in Caenorhabditis elegans controls stress response and longevity. J Endocrinol 190(2):191–202. doi:10.1677/joe.1.06856

    Article  PubMed  CAS  Google Scholar 

  37. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366(6454):461–464. doi:10.1038/366461a0

    Article  PubMed  CAS  Google Scholar 

  38. Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E, Leevers SJ, Partridge L (2001) Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292(5514):104–106. doi:10.1126/science.1057991292/5514/104

    Article  PubMed  CAS  Google Scholar 

  39. Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS (2001) A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292(5514):107–110. doi:10.1126/science.1057987292/5514/107

    Article  PubMed  CAS  Google Scholar 

  40. Fontana L, Partridge L, Longo VD (2010) Extending healthy life span–from yeast to humans. Science 328(5976):321–326. doi:10.1126/science.1172539

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 120(4):449–460. doi:10.1016/j.cell.2005.02.002

    Article  PubMed  CAS  Google Scholar 

  42. McLeod CJ, Wang L, Wong C, Jones DL (2010) Stem cell dynamics in response to nutrient availability. Curr Biol 20(23):2100–2105. doi:10.1016/j.cub.2010.10.038

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Sousa-Nunes R, Yee LL, Gould AP (2011) Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. Nature 471(7339):508–512. doi:10.1038/nature09867

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Padmanabha D, Baker KD (2014) Drosophila gains traction as a repurposed tool to investigate metabolism. Trends Endocrinol Metabol. doi:10.1016/j.tem.2014.03.011

    Google Scholar 

  45. Owusu-Ansah E, Perrimon N (2014) Modeling metabolic homeostasis and nutrient sensing in Drosophila: implications for aging and metabolic diseases. Dis Model Mech 7(3):343–350. doi:10.1242/dmm.012989

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Géminard G, Arquier N, Layalle S, Bourouis M, Slaidina M, Delanoue R, Bjordal M, Ohanna M, Ma M, Colombani J, Léopold P (2006) Control of metabolism and growth through insulin-like peptides in Drosophila. Diabetes 55:S5–S8

    Article  CAS  Google Scholar 

  47. Giannakou ME, Partridge L (2007) Role of insulin-like signalling in Drosophila lifespan. Trends Biochem Sci 32(4):180–188. doi:10.1016/j.tibs.2007.02.007

    Article  PubMed  CAS  Google Scholar 

  48. Grewal SS (2009) Insulin/TOR signaling in growth and homeostasis: a view from the fly world. Int J Biochem Cell Biol 41(5):1006–1010. doi:10.1016/j.biocel.2008.10.010

    Article  PubMed  CAS  Google Scholar 

  49. Tatar M, Post S, Yu K (2014) Nutrient control of Drosophila longevity. Trends Endocrinol Metabol 25(10):509–517. doi:10.1016/j.tem.2014.02.006

    Article  CAS  Google Scholar 

  50. Sim C, Denlinger DL (2008) Insulin signaling and FOXO regulate the overwintering diapause of the mosquito Culex pipiens. Proc Natl Acad Sci USA 105(18):6777–6781. doi:10.1073/pnas.0802067105

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Kubrak OI, Kucerova L, Theopold U, Nassel DR (2014) The sleeping beauty: how reproductive diapause affects hormone signaling, metabolism, immune response and somatic maintenance in Drosophila melanogaster. PLoS ONE 9(11):e113051. doi:10.1371/journal.pone.0113051

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Hahn DA, Denlinger DL (2011) Energetics of insect diapause. Ann Rev Entomol 56:103–121. doi:10.1146/annurev-ento-112408-085436

    Article  CAS  Google Scholar 

  53. McElwee JJ, Schuster E, Blanc E, Thornton J, Gems D (2006) Diapause-associated metabolic traits reiterated in long-lived daf-2 mutants in the nematode Caenorhabditis elegans. Mech Ageing Dev 127(5):458–472. doi:10.1016/j.mad.2006.01.006

    Article  PubMed  CAS  Google Scholar 

  54. Root CM, Ko KI, Jafari A, Wang JW (2011) Presynaptic facilitation by neuropeptide signaling mediates odor-driven food search. Cell 145(1):133–144. doi:10.1016/j.cell.2011.02.008

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Crocker A, Shahidullah M, Levitan IB, Sehgal A (2010) Identification of a neural circuit that underlies the effects of octopamine on sleep:wake behavior. Neuron 65(5):670–681. doi:10.1016/j.neuron.2010.01.032

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Corl AB, Rodan AR, Heberlein U (2005) Insulin signaling in the nervous system regulates ethanol intoxication in Drosophila melanogaster. Nat Neurosci 8(1):18–19. doi:10.1038/nn1363

    Article  PubMed  CAS  Google Scholar 

  57. Luo J, Lushchak OV, Goergen P, Williams MJ, Nassel DR (2014) Drosophila insulin-producing cells are differentially modulated by serotonin and octopamine receptors and affect social behavior. PLoS ONE 9(6):e99732. doi:10.1371/journal.pone.0099732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Bader R, Sarraf-Zadeh L, Peters M, Moderau N, Stocker H, Kohler K, Pankratz MJ, Hafen E (2013) The IGFBP7 homolog Imp-L2 promotes insulin signaling in distinct neurons of the Drosophila brain. J Cell Sci 126(Pt 12):2571–2576. doi:10.1242/jcs.120261

    Article  PubMed  CAS  Google Scholar 

  59. Honegger B, Galic M, Kohler K, Wittwer F, Brogiolo W, Hafen E, Stocker H (2008) Imp-L2, a putative homolog of vertebrate IGF-binding protein 7, counteracts insulin signaling in Drosophila and is essential for starvation resistance. J Biol 7(3):10. doi:10.1186/jbiol72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Sarraf-Zadeh L, Christen S, Sauer U, Cognigni P, Miguel-Aliaga I, Stocker H, Kohler K, Hafen E (2013) Local requirement of the Drosophila insulin binding protein imp-L2 in coordinating developmental progression with nutritional conditions. Dev Biol 381(1):97–106. doi:10.1016/j.ydbio.2013.06.008

    Article  PubMed  CAS  Google Scholar 

  61. Sloth Andersen A, Hertz Hansen P, Schaffer L, Kristensen C (2000) A new secreted insect protein belonging to the immunoglobulin superfamily binds insulin and related peptides and inhibits their activities. J Biol Chem 275(22):16948–16953. doi:10.1074/jbc.M001578200

    Article  PubMed  CAS  Google Scholar 

  62. Kwon Y, Song W, Droujinine IA, Hu Y, Asara JM, Perrimon N (2015) Systemic organ wasting induced by localized expression of the secreted insulin/IGF antagonist ImpL2. Dev Cell 33(1):36–46. doi:10.1016/j.devcel.2015.02.012

    Article  PubMed  CAS  Google Scholar 

  63. Figueroa-Clarevega A, Bilder D (2015) Malignant Drosophila tumors interrupt insulin signaling to induce cachexia-like wasting. Dev Cell 33(1):47–55. doi:10.1016/j.devcel.2015.03.001

    Article  PubMed  CAS  Google Scholar 

  64. Cao C, Brown MR (2001) Localization of an insulin-like peptide in brains of two flies. Cell Tissue Res 304(2):317–321

    Article  PubMed  CAS  Google Scholar 

  65. Van de Velde S, Badisco L, Claeys I, Verleyen P, Chen X, Vanden Bosch L, Vanden Broeck J, Smagghe G (2007) Insulin-like peptides in Spodoptera littoralis (Lepidoptera): detection, localization and identification. Gen Comp Endocrinol 153(1–3):72–79. doi:10.1016/j.ygcen.2007.05.001

    Article  PubMed  CAS  Google Scholar 

  66. Marquez AG, Pietri JE, Smithers HM, Nuss A, Antonova Y, Drexler AL, Riehle MA, Brown MR, Luckhart S (2011) Insulin-like peptides in the mosquito Anopheles stephensi: identification and expression in response to diet and infection with Plasmodium falciparum. Gen Comp Endocrinol 173(2):303–312. doi:10.1016/j.ygcen.2011.06.005

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. Riehle MA, Fan Y, Cao C, Brown MR (2006) Molecular characterization of insulin-like peptides in the yellow fever mosquito, Aedes aegypti: expression, cellular localization, and phylogeny. Peptides 27(11):2547–2560. doi:10.1016/j.peptides.2006.07.016

    Article  PubMed  CAS  Google Scholar 

  68. Vafopoulou X, Steel CG (2012) Insulin-like and testis ecdysiotropin neuropeptides are regulated by the circadian timing system in the brain during larval-adult development in the insect Rhodnius prolixus (Hemiptera). Gen Comp Endocrinol 179(2):277–288. doi:10.1016/j.ygcen.2012.08.018

    Article  PubMed  CAS  Google Scholar 

  69. Okamoto N, Yamanaka N, Endo Y, Kataoka H, Mizoguchi A (2011) Spatiotemporal patterns of IGF-like peptide expression in the silkmoth Bombyx mori predict its pleiotropic actions. Gen Comp Endocrinol 173(1):171–182. doi:10.1016/j.ygcen.2011.05.009

    Article  PubMed  CAS  Google Scholar 

  70. Okamoto N, Yamanaka N, Satake H, Saegusa H, Kataoka H, Mizoguchi A (2009) An ecdysteroid-inducible insulin-like growth factor-like peptide regulates adult development of the silkmoth Bombyx mori. FEBS J 276(5):1221–1232. doi:10.1111/j.1742-4658.2008.06859.x

    Article  PubMed  CAS  Google Scholar 

  71. Veenstra JA, Agricola HJ, Sellami A (2008) Regulatory peptides in fruit fly midgut. Cell Tissue Res 334(3):499–516. doi:10.1007/s00441-008-0708-3

    Article  PubMed  CAS  Google Scholar 

  72. Söderberg JA, Birse RT, Nässel DR (2011) Insulin production and signaling in renal tubules of Drosophila is under control of tachykinin-related peptide and regulates stress resistance. PLoS ONE 6(5):e19866. doi:10.1371/journal.pone.0019866PONE-D-11-03456

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Broughton SJ, Slack C, Alic N, Metaxakis A, Bass TM, Driege Y, Partridge L (2010) DILP-producing median neurosecretory cells in the Drosophila brain mediate the response of lifespan to nutrition. Aging Cell 9(3):336–346. doi:10.1111/j.1474-9726.2010.00558.x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Geminard C, Rulifson EJ, Leopold P (2009) Remote control of insulin secretion by fat cells in Drosophila. Cell Metab 10(3):199–207. doi:10.1016/j.cmet.2009.08.002

    Article  PubMed  CAS  Google Scholar 

  75. Musselman LP, Fink JL, Narzinski K, Ramachandran PV, Hathiramani SS, Cagan RL, Baranski TJ (2011) A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis Model Mech 4(6):842–849. doi:10.1242/dmm.007948

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  76. Nässel DR, Liu Y, Luo J (2015) Insulin/IGF signaling and its regulation in Drosophila. Gen Comp Endocrinol. doi:10.1016/j.ygcen.2014.11.021 (in press)

  77. Kim J, Neufeld TP (2015) Dietary sugar promotes systemic TOR activation in Drosophila through AKH-dependent selective secretion of Dilp3. Nat Commun 6:6846. doi:10.1038/ncomms7846

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  78. Söderberg JA, Carlsson MA, Nässel DR (2012) Insulin-producing cells in the Drosophila brain also express satiety-inducing cholecystokinin-like peptide, Drosulfakinin. Front Endocrinol 3:109. doi:10.3389/fendo.2012.00109

    Article  CAS  Google Scholar 

  79. Rorsman P, Braun M (2013) Regulation of insulin secretion in human pancreatic islets. Annu Rev Physiol 75:155–179. doi:10.1146/annurev-physiol-030212-183754

    Article  PubMed  CAS  Google Scholar 

  80. Rorsman P, Renstrom E (2003) Insulin granule dynamics in pancreatic beta cells. Diabetologia 46(8):1029–1045. doi:10.1007/s00125-003-1153-1

    Article  PubMed  CAS  Google Scholar 

  81. Prentki M, Matschinsky FM, Madiraju SR (2013) Metabolic signaling in fuel-induced insulin secretion. Cell Metab 18(2):162–185. doi:10.1016/j.cmet.2013.05.018

    Article  PubMed  CAS  Google Scholar 

  82. Nässel DR, Kubrak OI, Liu Y, Luo J, Lushchak OV (2013) Factors that regulate insulin producing cells and their output in Drosophila. Front Physiol 4:252. doi:10.3389/fphys.2013.00252

    Article  PubMed  PubMed Central  Google Scholar 

  83. Okamoto N, Yamanaka N (2015) Nutrition-dependent control of insect development by insulin-like peptides. Curr Opin Insect Sci 11:21–30

    Article  PubMed  Google Scholar 

  84. Park S, Alfa RW, Topper SM, Kim GE, Kockel L, Kim SK (2014) A genetic strategy to measure circulating Drosophila insulin reveals genes regulating insulin production and secretion. PLoS Genet 10(8):e1004555. doi:10.1371/journal.pgen.1004555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Fridell YW, Hoh M, Kreneisz O, Hosier S, Chang C, Scantling D, Mulkey DK, Helfand SL (2009) Increased uncoupling protein (UCP) activity in Drosophila insulin-producing neurons attenuates insulin signaling and extends lifespan. Aging (Albany NY) 1(8):699–713

    Google Scholar 

  86. Enell LE, Kapan N, Soderberg JA, Kahsai L, Nässel DR (2010) Insulin signaling, lifespan and stress resistance are modulated by metabotropic GABA receptors on insulin producing cells in the brain of Drosophila. PLoS ONE 5(12):e15780. doi:10.1371/journal.pone.0015780

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  87. Rajan A, Perrimon N (2012) Drosophila cytokine unpaired 2 regulates physiological homeostasis by remotely controlling insulin secretion. Cell 151(1):123–137. doi:10.1016/j.cell.2012.08.019

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  88. Yamauchi T, Nio Y, Maki T, Kobayashi M, Takazawa T, Iwabu M, Okada-Iwabu M, Kawamoto S, Kubota N, Kubota T, Ito Y, Kamon J, Tsuchida A, Kumagai K, Kozono H, Hada Y, Ogata H, Tokuyama K, Tsunoda M, Ide T, Murakami K, Awazawa M, Takamoto I, Froguel P, Hara K, Tobe K, Nagai R, Ueki K, Kadowaki T (2007) Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med 13(3):332–339. doi:10.1038/nm1557

    Article  PubMed  CAS  Google Scholar 

  89. Kwak SJ, Hong SH, Bajracharya R, Yang SY, Lee KS, Yu K (2013) Drosophila adiponectin receptor in insulin producing cells regulates glucose and lipid metabolism by controlling insulin secretion. PLoS ONE 8(7):e68641. doi:10.1371/journal.pone.0068641

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  90. Bai H, Kang P, Tatar M (2012) Drosophila insulin-like peptide-6 (dilp6) expression from fat body extends lifespan and represses secretion of Drosophila insulin-like peptide-2 from the brain. Aging Cell 11(6):978–985. doi:10.1111/acel.12000

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  91. Kapan N, Lushchak OV, Luo J, Nässel DR (2012) Identified peptidergic neurons in the Drosophila brain regulate insulin-producing cells, stress responses and metabolism by coexpressed short neuropeptide F and corazonin. Cell Mol Life Sci 69:4051–4066. doi:10.1007/s00018-012-1097-z

    Article  PubMed  CAS  Google Scholar 

  92. Miyamoto T, Slone J, Song X, Amrein H (2012) A fructose receptor functions as a nutrient sensor in the Drosophila brain. Cell 151(5):1113–1125. doi:10.1016/j.cell.2012.10.024

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  93. Johnson EC, Shafer OT, Trigg JS, Park J, Schooley DA, Dow JA, Taghert PH (2005) A novel diuretic hormone receptor in Drosophila: evidence for conservation of CGRP signaling. J Exp Biol 208(Pt 7):1239–1246. doi:10.1242/jeb.01529

    Article  PubMed  CAS  Google Scholar 

  94. Birse RT, Söderberg JA, Luo J, Winther ÅM, Nässel DR (2011) Regulation of insulin-producing cells in the adult Drosophila brain via the tachykinin peptide receptor DTKR. J Exp Biol 214:4201–4208. doi:10.1242/jeb.062091

    Article  PubMed  CAS  Google Scholar 

  95. Siviter RJ, Coast GM, Winther ÅM, Nachman RJ, Taylor CA, Shirras AD, Coates D, Isaac RE, Nässel DR (2000) Expression and functional characterization of a Drosophila neuropeptide precursor with homology to mammalian preprotachykinin A. J Biol Chem 275(30):23273–23280. doi:10.1074/jbc.M002875200

    Article  PubMed  CAS  Google Scholar 

  96. Hentze JL, Carlsson MA, Kondo S, Nässel DR, Rewitz KF (2015) The neuropeptide allatostatin A regulates metabolism and feeding decisions in Drosophila. Sci Rep 5:11680. doi:10.1038/srep11680

    Article  PubMed  PubMed Central  Google Scholar 

  97. Yoon JG, Stay B (1995) Immunocytochemical localization of Diploptera punctata allatostatin-like peptide in Drosophila melanogaster. J Comp Neurol 363(3):475–488. doi:10.1002/cne.903630310

    Article  PubMed  CAS  Google Scholar 

  98. Buch S, Melcher C, Bauer M, Katzenberger J, Pankratz MJ (2008) Opposing effects of dietary protein and sugar regulate a transcriptional target of Drosophila insulin-like peptide signaling. Cell Metab 7(4):321–332. doi:10.1016/j.cmet.2008.02.012

    Article  PubMed  CAS  Google Scholar 

  99. Kim SK, Rulifson EJ (2004) Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells. Nature 431(7006):316–320. doi:10.1038/nature02897

    Article  PubMed  CAS  Google Scholar 

  100. Ren GR, Hauser F, Rewitz KF, Kondo S, Engelbrecht AF, Didriksen AK, Schjott SR, Sembach FE, Li S, Sogaard KC, Sondergaard L, Grimmelikhuijzen CJ (2015) CCHamide-2 is an orexigenic brain-gut peptide in Drosophila. PLoS ONE 10(7):e0133017. doi:10.1371/journal.pone.0133017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Sano H, Nakamura A, Texada MJ, Truman JW, Ishimoto H, Kamikouchi A, Nibu Y, Kume K, Ida T, Kojima M (2015) The nutrient-responsive hormone CCHamide-2 controls growth by regulating insulin-like peptides in the brain of Drosophila melanogaster. PLoS Genet 11(5):e1005209. doi:10.1371/journal.pgen.1005209

    Article  PubMed  PubMed Central  Google Scholar 

  102. Veenstra JA, Ida T (2014) More Drosophila enteroendocrine peptides: orcokinin B and the CCHamides 1 and 2. Cell Tissue Res 357(3):607–621. doi:10.1007/s00441-014-1880-2

    Article  PubMed  CAS  Google Scholar 

  103. Alfa RW, Park S, Skelly KR, Poffenberger G, Jain N, Gu X, Kockel L, Wang J, Liu Y, Powers AC, Kim SK (2015) Suppression of insulin production and secretion by a decretin hormone. Cell Metab 21(2):323–333. doi:10.1016/j.cmet.2015.01.006

    Article  PubMed  CAS  Google Scholar 

  104. Cazzamali G, Torp M, Hauser F, Williamson M, Grimmelikhuijzen CJ (2005) The Drosophila gene CG9918 codes for a pyrokinin-1 receptor. Biochem Biophys Res Commun 335(1):14–19. doi:10.1016/j.bbrc.2005.07.038

    Article  PubMed  CAS  Google Scholar 

  105. Nässel DR, Winther ÅM (2010) Drosophila neuropeptides in regulation of physiology and behavior. Progr Neurobiol 92(1):42–104. doi:10.1016/j.pneurobio.2010.04.010

    Article  CAS  Google Scholar 

  106. Kean L, Cazenave W, Costes L, Broderick KE, Graham S, Pollock VP, Davies SA, Veenstra JA, Dow JA (2002) Two nitridergic peptides are encoded by the gene capability in Drosophila melanogaster. Am J Physiol Regul Integr Comp Physiol 282(5):R1297–R1307

    Article  PubMed  CAS  Google Scholar 

  107. Kaplan DD, Zimmermann G, Suyama K, Meyer T, Scott MP (2008) A nucleostemin family GTPase, NS3, acts in serotonergic neurons to regulate insulin signaling and control body size. Genes Dev 22(14):1877–1893. doi:10.1101/gad.1670508

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  108. Luo J, Becnel J, Nichols CD, Nässel DR (2012) Insulin-producing cells in the brain of adult Drosophila are regulated by the serotonin 5-HT(1A) receptor. Cell Mol Life Sci 69(3):471–484. doi:10.1007/s00018-011-0789-0

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  109. El-Kholy S, Stephano F, Li Y, Bhandari A, Fink C, Roeder T (2015) Expression analysis of octopamine and tyramine receptors in Drosophila. Cell Tissue Res 361(3):669–684. doi:10.1007/s00441-015-2137-4

    Article  PubMed  CAS  Google Scholar 

  110. Lushchak OV, Carlsson MA, Nässel DR (2015) Food odors trigger an endocrine response that affects food ingestion and metabolism. Cell Mol Life Sci 72(16):3143–3155. doi:10.1007/s00018-015-1884-4

    Article  PubMed  CAS  Google Scholar 

  111. Bednarova A, Kodrik D, Krishnan N (2013) Unique roles of glucagon and glucagon-like peptides: parallels in understanding the functions of adipokinetic hormones in stress responses in insects. Comp Biochem Physiol A: Mol Integr Physiol 164(1):91–100. doi:10.1016/j.cbpa.2012.10.012

    Article  CAS  Google Scholar 

  112. Baumbach J, Xu Y, Hehlert P, Kuhnlein RP (2014) Galphaq, Ggamma1 and Plc21C control Drosophila body fat storage. J Genet Genomics 41(5):283–292. doi:10.1016/j.jgg.2014.03.005

    Article  PubMed  CAS  Google Scholar 

  113. Van der Horst DJ, Van Marrewijk WJ, Diederen JH (2001) Adipokinetic hormones of insect: release, signal transduction, and responses. Int Rev Cytol 211:179–240

    Article  PubMed  Google Scholar 

  114. Sheldon AL, Zhang J, Fei H, Levitan IB (2011) SLOB, a SLOWPOKE channel binding protein, regulates insulin pathway signaling and metabolism in Drosophila. PLoS ONE 6(8):e23343. doi:10.1371/journal.pone.0023343PONE-D-11-07508

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  115. Varghese J, Lim SF, Cohen SM (2010) Drosophila miR-14 regulates insulin production and metabolism through its target, sugarbabe. Genes Dev 24(24):2748–2753. doi:10.1101/gad.1995910

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  116. Suh YS, Bhat S, Hong SH, Shin M, Bahk S, Cho KS, Kim SW, Lee KS, Kim YJ, Jones WD, Yu K (2015) Genome-wide microRNA screening reveals that the evolutionary conserved miR-9a regulates body growth by targeting sNPFR1/NPYR. Nat Commun 6:7693. doi:10.1038/ncomms8693

    Article  PubMed  PubMed Central  Google Scholar 

  117. Teleman AA, Maitra S, Cohen SM (2006) Drosophila lacking microRNA miR-278 are defective in energy homeostasis. Genes Dev 20(4):417–422. doi:10.1101/gad.374406

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  118. Lee GJ, Jun JW, Hyun S (2015) MicroRNA miR-8 regulates multiple growth factor hormones produced from Drosophila fat cells. Insect Mol Biol 24(3):311–318. doi:10.1111/imb.12156

    Article  PubMed  CAS  Google Scholar 

  119. Luhur A, Chawla G, Sokol NS (2013) MicroRNAs as components of systemic signaling pathways in Drosophila melanogaster. Curr Top Dev Biol 105:97–123. doi:10.1016/B978-0-12-396968-2.00004-X

    Article  PubMed  CAS  Google Scholar 

  120. Badisco L, Van Wielendaele P, Vanden Broeck J (2013) Eat to reproduce: a key role for the insulin signaling pathway in adult insects. Front Physiol 4:202

    Article  PubMed  PubMed Central  Google Scholar 

  121. Hansen IA, Attardo GM, Rodriguez SD, Drake LL (2014) Four-way regulation of mosquito yolk protein precursor genes by juvenile hormone-, ecdysone-, nutrient-, and insulin-like peptide signaling pathways. Front Physiol 5:103. doi:10.3389/fphys.2014.00103

    Article  PubMed  PubMed Central  Google Scholar 

  122. Fallon AM, Hagedorn HH, Wyatt GR, Laufer H (1974) Activation of vitellogenin synthesis in the mosquito Aedes aegypti by ecdysone. J Insect Physiol 20(9):1815–1823

    Article  PubMed  CAS  Google Scholar 

  123. Martin D, Wang SF, Raikhel AS (2001) The vitellogenin gene of the mosquito Aedes aegypti is a direct target of ecdysteroid receptor. Mol Cell Endocrinol 173(1–2):75–86

    Article  PubMed  CAS  Google Scholar 

  124. Riehle MA, Brown MR (1999) Insulin stimulates ecdysteroid production through a conserved signaling cascade in the mosquito Aedes aegypti. Insect Biochem Mol Biol 29(10):855–860

    Article  PubMed  CAS  Google Scholar 

  125. Riehle MA, Brown MR (2002) Insulin receptor expression during development and a reproductive cycle in the ovary of the mosquito Aedes aegypti. Cell Tissue Res 308(3):409–420. doi:10.1007/s00441-002-0561-8

    Article  PubMed  CAS  Google Scholar 

  126. Brown MR, Clark KD, Gulia M, Zhao Z, Garczynski SF, Crim JW, Suderman RJ, Strand MR (2008) An insulin-like peptide regulates egg maturation and metabolism in the mosquito Aedes aegypti. Proc Natl Acad Sci USA 105(15):5716–5721. doi:10.1073/pnas.0800478105

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  127. Wen Z, Gulia M, Clark KD, Dhara A, Crim JW, Strand MR, Brown MR (2010) Two insulin-like peptide family members from the mosquito Aedes aegypti exhibit differential biological and receptor binding activities. Mol Cell Endocrinol 328(1–2):47–55. doi:10.1016/j.mce.2010.07.003

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  128. Brown MR, Graf R, Swiderek KM, Fendley D, Stracker TH, Champagne DE, Lea AO (1998) Identification of a steroidogenic neurohormone in female mosquitoes. J Biol Chem 273(7):3967–3971

    Article  PubMed  CAS  Google Scholar 

  129. Tu MP, Yin CM, Tatar M (2005) Mutations in insulin signaling pathway alter juvenile hormone synthesis in Drosophila melanogaster. Gen Comp Endocrinol 142(3):347–356. doi:10.1016/j.ygcen.2005.02.009

    Article  PubMed  CAS  Google Scholar 

  130. Mutti NS, Dolezal AG, Wolschin F, Mutti JS, Gill KS, Amdam GV (2011) IRS and TOR nutrient-signaling pathways act via juvenile hormone to influence honey bee caste fate. J Exp Biol 214(Pt 23):3977–3984. doi:10.1242/jeb.061499

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  131. Suren-Castillo S, Abrisqueta M, Maestro JL (2012) FoxO inhibits juvenile hormone biosynthesis and vitellogenin production in the German cockroach. Insect Biochem Mol Biol 42(7):491–498. doi:10.1016/j.ibmb.2012.03.006

    Article  PubMed  CAS  Google Scholar 

  132. Perez-Hedo M, Rivera-Perez C, Noriega FG (2013) The insulin/TOR signal transduction pathway is involved in the nutritional regulation of juvenile hormone synthesis in Aedes aegypti. Insect Biochem Mol Biol 43(6):495–500. doi:10.1016/j.ibmb.2013.03.008

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  133. Sim C, Denlinger DL (2013) Insulin signaling and the regulation of insect diapause. Front Physiol 4:189. doi:10.3389/fphys.2013.00189

    Article  PubMed  PubMed Central  Google Scholar 

  134. Abrisqueta M, Suren-Castillo S, Maestro JL (2014) Insulin receptor-mediated nutritional signalling regulates juvenile hormone biosynthesis and vitellogenin production in the German cockroach. Insect Biochem Mol Biol 49:14–23. doi:10.1016/j.ibmb.2014.03.005

    Article  PubMed  CAS  Google Scholar 

  135. Sheng Z, Xu J, Bai H, Zhu F, Palli SR (2011) Juvenile hormone regulates vitellogenin gene expression through insulin-like peptide signaling pathway in the red flour beetle, Tribolium castaneum. J Biol Chem 286(49):41924–41936. doi:10.1074/jbc.M111.269845

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  136. Parthasarathy R, Palli SR (2011) Molecular analysis of nutritional and hormonal regulation of female reproduction in the red flour beetle, Tribolium castaneum. Insect Biochem Mol Biol 41(5):294–305. doi:10.1016/j.ibmb.2011.01.006

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  137. Xu J, Sheng Z, Palli SR (2013) Juvenile hormone and insulin regulate trehalose homeostasis in the red flour beetle, Tribolium castaneum. PLoS genetics 9(6):e1003535. doi:10.1371/journal.pgen.1003535

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  138. Badisco L, Marchal E, Van Wielendaele P, Verlinden H, Vleugels R, Vanden Broeck J (2011) RNA interference of insulin-related peptide and neuroparsins affects vitellogenesis in the desert locust Schistocerca gregaria. Peptides 32(3):573–580. doi:10.1016/j.peptides.2010.11.008

    Article  PubMed  CAS  Google Scholar 

  139. Emlen DJ, Warren IA, Johns A, Dworkin I, Lavine LC (2012) A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons. Science 337(6096):860–864. doi:10.1126/science.1224286

    Article  PubMed  CAS  Google Scholar 

  140. Riddiford LM (2012) How does juvenile hormone control insect metamorphosis and reproduction? Gen Comp Endocrinol 179(3):477–484. doi:10.1016/j.ygcen.2012.06.001

    Article  PubMed  CAS  Google Scholar 

  141. Koyama T, Mendes CC, Mirth CK (2013) Mechanisms regulating nutrition-dependent developmental plasticity through organ-specific effects in insects. Front Physiol 4:263. doi:10.3389/fphys.2013.00263

    Article  PubMed  PubMed Central  Google Scholar 

  142. Lozano J, Belles X (2014) Role of Methoprene-tolerant (Met) in adult morphogenesis and in adult ecdysis of Blattella germanica. PLoS ONE 9(7):e103614. doi:10.1371/journal.pone.0103614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Mirth CK, Tang HY, Makohon-Moore SC, Salhadar S, Gokhale RH, Warner RD, Koyama T, Riddiford LM, Shingleton AW (2014) Juvenile hormone regulates body size and perturbs insulin signaling in Drosophila. Proc Natl Acad Sci USA 111(19):7018–7023. doi:10.1073/pnas.1313058111

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  144. Smith WA, Lamattina A, Collins M (2014) Insulin signaling pathways in lepidopteran ecdysone secretion. Front Physiol 5:19. doi:10.3389/fphys.2014.00019

    PubMed  PubMed Central  Google Scholar 

  145. Tsuda M, Kobayashi T, Matsuo T, Aigaki T (2010) Insulin-degrading enzyme antagonizes insulin-dependent tissue growth and Abeta-induced neurotoxicity in Drosophila. FEBS Lett 584(13):2916–2920. doi:10.1016/j.febslet.2010.05.010

    Article  PubMed  CAS  Google Scholar 

  146. Hyun J, Hashimoto C (2011) Physiological effects of manipulating the level of insulin-degrading enzyme in insulin-producing cells of Drosophila. Fly (Austin) 5(1):53–57

    Article  CAS  Google Scholar 

  147. Jones JI, Clemmons DR (1995) Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 16(1):3–34

    PubMed  CAS  Google Scholar 

  148. Russo VC, Gluckman PD, Feldman EL, Werther GA (2005) The insulin-like growth factor system and its pleiotropic functions in brain. Endocr Rev 26(7):916–943. doi:10.1210/er.2004-0024

    Article  PubMed  CAS  Google Scholar 

  149. Baxter RC (2014) IGF binding proteins in cancer: mechanistic and clinical insights. Nat Rev Cancer 14(5):329–341. doi:10.1038/nrc3720

    Article  PubMed  CAS  Google Scholar 

  150. Denley A, Cosgrove LJ, Booker GW, Wallace JC, Forbes BE (2005) Molecular interactions of the IGF system. Cytokine Growth Factor Rev 16(4–5):421–439. doi:10.1016/j.cytogfr.2005.04.004

    Article  PubMed  CAS  Google Scholar 

  151. Hwa V, Oh Y, Rosenfeld RG (1999) The insulin-like growth factor-binding protein (IGFBP) superfamily. Endocr Rev 20(6):761–787. doi:10.1210/edrv.20.6.0382

    PubMed  CAS  Google Scholar 

  152. Forbes BE, McCarthy P, Norton RS (2012) Insulin-like growth factor binding proteins: a structural perspective. Front Endocrinol (Lausanne) 3:38. doi:10.3389/fendo.2012.00038

    Google Scholar 

  153. Beattie J, Kreiner M, Allan GJ, Flint DJ, Domingues D, van der Walle CF (2009) IGFBP-3 and IGFBP-5 associate with the cell binding domain (CBD) of fibronectin. Biochem Biophys Res Commun 381(4):572–576. doi:10.1016/j.bbrc.2009.02.088

    Article  PubMed  CAS  Google Scholar 

  154. Evdokimova V, Tognon CE, Benatar T, Yang W, Krutikov K, Pollak M, Sorensen PH, Seth A (2012) IGFBP7 binds to the IGF-1 receptor and blocks its activation by insulin-like growth factors. Sci Signal 5(255):ra92. doi:10.1126/scisignal.2003184

    Article  PubMed  CAS  Google Scholar 

  155. Hwang JR, Huh JH, Lee Y, Lee SI, Rho SB, Lee JH (2011) Insulin-like growth factor-binding protein-5 (IGFBP-5) inhibits TNF-α-induced NF-κB activity by binding to TNFR1. Biochem Biophys Res Commun 405(4):545–551. doi:10.1016/j.bbrc.2011.01.064

    Article  PubMed  CAS  Google Scholar 

  156. Kawai M, Breggia AC, DeMambro VE, Shen X, Canalis E, Bouxsein ML, Beamer WG, Clemmons DR, Rosen CJ (2011) The heparin-binding domain of IGFBP-2 has insulin-like growth factor binding-independent biologic activity in the growing skeleton. J Biol Chem 286(16):14670–14680. doi:10.1074/jbc.M110.193334

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  157. Miljus G, Malenkovic V, Dukanovic B, Kolundzic N, Nedic O (2015) IGFBP-3/transferrin/transferrin receptor 1 complexes as principal mediators of IGFBP-3 delivery to colon cells in non-cancer and cancer tissues. Exp Mol Pathol 98(3):431–438. doi:10.1016/j.yexmp.2015.03.035

    Article  PubMed  CAS  Google Scholar 

  158. Zhong Y, Lu L, Zhou J, Li Y, Liu Y, Clemmons DR, Duan C (2011) IGF binding protein 3 exerts its ligand-independent action by antagonizing BMP in zebrafish embryos. J Cell Sci 124(Pt 11):1925–1935. doi:10.1242/jcs.082644

    Article  PubMed  CAS  Google Scholar 

  159. Azar WJ, Zivkovic S, Werther GA, Russo VC (2014) IGFBP-2 nuclear translocation is mediated by a functional NLS sequence and is essential for its pro-tumorigenic actions in cancer cells. Oncogene 33(5):578–588. doi:10.1038/onc.2012.630

    Article  PubMed  CAS  Google Scholar 

  160. Dai W, Kamei H, Zhao Y, Ding J, Du Z, Duan C (2010) Duplicated zebrafish insulin-like growth factor binding protein-5 genes with split functional domains: evidence for evolutionarily conserved IGF binding, nuclear localization, and transactivation activity. Faseb J 24(6):2020–2029. doi:10.1096/fj.09-149435

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  161. Zhou J, Xiang J, Zhang S, Duan C (2013) Structural and functional analysis of the amphioxus IGFBP gene uncovers ancient origin of IGF-independent functions. Endocrinology 154(10):3753–3763. doi:10.1210/en.2013-1201

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  162. Daza DO, Sundstrom G, Bergqvist CA, Duan C, Larhammar D (2011) Evolution of the insulin-like growth factor binding protein (IGFBP) family. Endocrinology 152(6):2278–2289. doi:10.1210/en.2011-0047

    Article  PubMed  CAS  Google Scholar 

  163. Osterbur DL, Fristrom DK, Natzle JE, Tojo SJ, Fristrom JW (1988) Genes expressed during imaginal discs morphogenesis: IMP-L2, a gene expressed during imaginal disc and imaginal histoblast morphogenesis. Dev Biol 129(2):439–448

    Article  PubMed  CAS  Google Scholar 

  164. Zapf J, Schoenle E, Froesch ER (1985) In vivo effects of the insulin-like growth factors (IGFs) in the hypophysectomized rat: comparison with human growth hormone and the possible role of the specific IGF carrier proteins. Ciba Found Symp 116:169–187

    PubMed  CAS  Google Scholar 

  165. Garbe JC, Yang E, Fristrom JW (1993) IMP-L2: an essential secreted immunoglobulin family member implicated in neural and ectodermal development in Drosophila. Development 119(4):1237–1250

    PubMed  CAS  Google Scholar 

  166. Flatt T, Min KJ, D’Alterio C, Villa-Cuesta E, Cumbers J, Lehmann R, Jones DL, Tatar M (2008) Drosophila germ-line modulation of insulin signaling and lifespan. Proc Natl Acad Sci USA 105(17):6368–6373. doi:10.1073/pnas.0709128105

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  167. Alic N, Hoddinott MP, Vinti G, Partridge L (2011) Lifespan extension by increased expression of the Drosophila homologue of the IGFBP7 tumour suppressor. Aging Cell 10(1):137–147. doi:10.1111/j.1474-9726.2010.00653.x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  168. Arquier N, Geminard C, Bourouis M, Jarretou G, Honegger B, Paix A, Leopold P (2008) Drosophila ALS regulates growth and metabolism through functional interaction with insulin-like peptides. Cell Metab 7(4):333–338. doi:10.1016/j.cmet.2008.02.003

    Article  PubMed  CAS  Google Scholar 

  169. Weiss IM, Gohring W, Fritz M, Mann K (2001) Perlustrin, a Haliotis laevigata (abalone) nacre protein, is homologous to the insulin-like growth factor binding protein N-terminal module of vertebrates. Biochem Biophys Res Commun 285(2):244–249. doi:10.1006/bbrc.2001.5170

    Article  PubMed  CAS  Google Scholar 

  170. Rosen O, Weil S, Manor R, Roth Z, Khalaila I, Sagi A (2013) A crayfish insulin-like-binding protein: another piece in the androgenic gland insulin-like hormone puzzle is revealed. J Biol Chem 288(31):22289–22298. doi:10.1074/jbc.M113.484279

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  171. Claeys I, Simonet G, Van Loy T, De Loof A, Vanden Broeck J (2003) cDNA cloning and transcript distribution of two novel members of the neuroparsin family in the desert locust, Schistocerca gregaria. Insect Mol Biol 12(5):473–481

    Article  PubMed  CAS  Google Scholar 

  172. Badisco L, Claeys I, Van Loy T, Van Hiel M, Franssens V, Simonet G, Vanden Broeck J (2007) Neuroparsins, a family of conserved arthropod neuropeptides. Gen Comp Endocrinol 153(1–3):64–71. doi:10.1016/j.ygcen.2007.03.008

    Article  PubMed  CAS  Google Scholar 

  173. Huang X, Ye H, Feng B, Huang H (2015) Insights into insulin-like peptide system in invertebrates from studies on IGF binding domain-containing proteins in the female Mud Crab, Scylla paramamosain. Mol Cell Endocrinol. doi:10.1016/j.mce.2015.08.019

    Google Scholar 

  174. Girardie J, Girardie A, Huet JC, Pernollet JC (1989) Amino acid sequence of locust neuroparsins. FEBS Lett 245(1–2):4–8

    Article  PubMed  CAS  Google Scholar 

  175. Girardie J, Bourême D, Couillaud F, Tamarelle M, Girardie A (1987) Anti-juvenile effect of neuroparsin-A, A neuroprotein isolated from locust corpora cardiaca. Insect Biochem 17:977–983

    Article  CAS  Google Scholar 

  176. Janssen T, Claeys I, Simonet G, De Loof A, Girardie J, Vanden Broeck J (2001) cDNA cloning and transcript distribution of two different neuroparsin precursors in the desert locust, Schistocerca gregaria. Insect Mol Biol 10(2):183–189

    Article  PubMed  CAS  Google Scholar 

  177. Veenstra JA (2014) The contribution of the genomes of a termite and a locust to our understanding of insect neuropeptides and neurohormones. Front Physiol 5:454. doi:10.3389/fphys.2014.00454

    Article  PubMed  PubMed Central  Google Scholar 

  178. Veenstra JA (2010) What the loss of the hormone neuroparsin in the melanogaster subgroup of Drosophila can tell us about its function. Insect Biochem Mol Biol 40(4):354–361. doi:10.1016/j.ibmb.2010.03.001

    Article  PubMed  CAS  Google Scholar 

  179. Dhara A, Eum JH, Robertson A, Gulia-Nuss M, Vogel KJ, Clark KD, Graf R, Brown MR, Strand MR (2013) Ovary ecdysteroidogenic hormone functions independently of the insulin receptor in the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol 43(12):1100–1108. doi:10.1016/j.ibmb.2013.09.004

    Article  PubMed  CAS  Google Scholar 

  180. Vogel KJ, Brown MR, Strand MR (2015) Ovary ecdysteroidogenic hormone requires a receptor tyrosine kinase to activate egg formation in the mosquito Aedes aegypti. Proc Natl Acad Sci USA 112(16):5057–5062. doi:10.1073/pnas.1501814112

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  181. Dissous C (2015) Venus kinase receptors at the crossroads of insulin signaling: their role in reproduction for helminths and insects. Front Endocrinol (Lausanne) 6:118. doi:10.3389/fendo.2015.00118

    Google Scholar 

  182. Nagasawa H, Kataoka H, Isogai A, Tamura S, Suzuki A, Mizoguchi A, Fujiwara Y, Takahashi SY, Ishizaki H (1986) Amino acid sequence of a prothoracicotropic hormone of the silkworm Bombyx mori. Proc Natl Acad Sci USA 83(16):5840–5843

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  183. Hetru C, Li KW, Bulet P, Lagueux M, Hoffmann JA (1991) Isolation and structural characterization of an insulin-related molecule, a predominant neuropeptide from Locusta migratoria. Eur J Biochem 201(2):495–499

    Article  PubMed  CAS  Google Scholar 

  184. Cobelli C, Pacini G (1988) Insulin secretion and hepatic extraction in humans by minimal modeling of C-peptide and insulin kinetics. Diabetes 37(2):223–231

    Article  PubMed  CAS  Google Scholar 

  185. Steiner DF (2004) The proinsulin C-peptide–a multirole model. Exp Diabesity Res 5(1):7–14. doi:10.1080/15438600490424389

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  186. Bermudez I, Beadle DJ, Trifilieff E, Luu B, Hietter H (1991) Electrophysiological activity of the C-peptide of the Locusta insulin-related peptide. Effect on the membrane conductance of Locusta neurones in vitro. FEBS Lett 293(1–2):137–141

    Article  PubMed  CAS  Google Scholar 

  187. Clynen E, Huybrechts J, Baggerman G, Van Doorn J, Van Der Horst D, De Loof A, Schoofs L (2003) Identification of a glycogenolysis-inhibiting peptide from the corpora cardiaca of locusts. Endocrinology 144(8):3441–3448. doi:10.1210/en.2002-0107

    Article  PubMed  CAS  Google Scholar 

  188. Fernandez R, Tabarini D, Azpiazu N, Frasch M, Schlessinger J (1995) The Drosophila insulin receptor homolog: a gene essential for embryonic development encodes two receptor isoforms with different signaling potential. EMBO J 14(14):3373–3384

    PubMed  CAS  PubMed Central  Google Scholar 

  189. Sajid W, Kulahin N, Schluckebier G, Ribel U, Henderson HR, Tatar M, Hansen BF, Svendsen AM, Kiselyov VV, Norgaard P, Wahlund PO, Brandt J, Kohanski RA, Andersen AS, De Meyts P (2011) Structural and biological properties of the Drosophila insulin-like peptide 5 show evolutionary conservation. J Biol Chem 286(1):661–673. doi:10.1074/jbc.M110.156018

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  190. Veenstra JA (2015) The power of next-generation sequencing as illustrated by the neuropeptidome of the crayfish Procambarus clarkii. Gen Comp Endocrinol. doi:10.1016/j.ygcen.2015.06.013

    PubMed  Google Scholar 

  191. Broughton S, Alic N, Slack C, Bass T, Ikeya T, Vinti G, Tommasi AM, Driege Y, Hafen E, Partridge L (2008) Reduction of DILP2 in Drosophila triages a metabolic phenotype from lifespan revealing redundancy and compensation among DILPs. PLoS ONE 3(11):e3721. doi:10.1371/journal.pone.0003721

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Toivonen JM, Partridge L (2009) Endocrine regulation of aging and reproduction in Drosophila. Mol Cell Endocrinol 299(1):39–50. doi:10.1016/j.mce.2008.07.005

    Article  PubMed  CAS  Google Scholar 

  193. Williams MJ, Eriksson A, Shaik M, Voisin S, Yamskova O, Paulsson J, Thombare K, Fredriksson R, Schioth HB (2015) The obesity-linked gene Nudt3 Drosophila homolog Aps is associated with insulin signalling. Mol Endocrinol. doi:10.1210/ME.2015-1077

    Google Scholar 

  194. Karpac J, Hull-Thompson J, Falleur M, Jasper H (2009) JNK signaling in insulin-producing cells is required for adaptive responses to stress in Drosophila. Aging Cell 8(3):288–295. doi:10.1111/j.1474-9726.2009.00476.x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  195. Docherty JE, Manno JE, McDermott JE, DiAngelo JR (2015) Mio acts in the Drosophila brain to control nutrient storage and feeding. Gene 568(2):190–195. doi:10.1016/j.gene.2015.05.055

    Article  PubMed  CAS  Google Scholar 

  196. Sekine O, Love DC, Rubenstein DS, Hanover JA (2010) Blocking O-linked GlcNAc cycling in Drosophila insulin-producing cells perturbs glucose-insulin homeostasis. J Biol Chem 285(49):38684–38691. doi:10.1074/jbc.M110.155192

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  197. Clements J, Hens K, Francis C, Schellens A, Callaerts P (2008) Conserved role for the Drosophila Pax6 homolog eyeless in differentiation and function of insulin-producing neurons. Proc Natl Acad Sci USA 105(42):16183–16188. doi:10.1073/pnas.0708330105

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  198. Cao J, Ni J, Ma W, Shiu V, Milla LA, Park S, Spletter ML, Tang S, Zhang J, Wei X, Kim SK, Scott MP (2014) Insight into insulin secretion from transcriptome and genetic analysis of insulin-producing cells of Drosophila. Genetics 197(1):175–192. doi:10.1534/genetics.113.160663

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  199. Davis SM, Thomas AL, Nomie KJ, Huang L, Dierick HA (2014) Tailless and Atrophin control Drosophila aggression by regulating neuropeptide signalling in the pars intercerebralis. Nat Commun 5:3177. doi:10.1038/ncomms4177

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dick R. Nässel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nässel, D.R., Broeck, J.V. Insulin/IGF signaling in Drosophila and other insects: factors that regulate production, release and post-release action of the insulin-like peptides. Cell. Mol. Life Sci. 73, 271–290 (2016). https://doi.org/10.1007/s00018-015-2063-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-2063-3

Keywords

Navigation