Skip to main content

Advertisement

Log in

Food odors trigger an endocrine response that affects food ingestion and metabolism

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Food odors stimulate appetite and innate food-seeking behavior in hungry animals. The smell of food also induces salivation and release of gastric acid and insulin. Conversely, sustained odor exposure may induce satiation. We demonstrate novel effects of food odors on food ingestion, metabolism and endocrine signaling in Drosophila melanogaster. Acute exposure to attractive vinegar odor triggers a rapid and transient increase in circulating glucose, and a rapid upregulation of genes encoding the glucagon-like hormone adipokinetic hormone (AKH), four insulin-like peptides (DILPs) and some target genes in peripheral tissues. Sustained exposure to food odors, however, decreases food intake. Hunger-induced strengthening of synaptic signaling from olfactory sensory neurons (OSNs) to brain neurons increases food-seeking behavior, and conversely fed flies display reduced food odor sensitivity and feeding. We show that increasing the strength of OSN signaling chronically by genetic manipulation of local peptide neuromodulation reduces feeding, elevates carbohydrates and diminishes lipids. Furthermore, constitutively strengthened odor sensitivity altered gene transcripts for AKH, DILPs and some of their targets. Thus, we show that food odor can induce a transient anticipatory endocrine response, and that boosted sensitivity to this odor affects food intake, as well as metabolism and hormonal signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yeomans MR (2006) Olfactory influences on appetite and satiety in humans. Physiol Behav 89:10–14

    Article  CAS  PubMed  Google Scholar 

  2. Rogers PJ, Hill AJ (1989) Breakdown of dietary restraint following mere exposure to food stimuli: interrelationships between restraint, hunger, salivation, and food intake. Addict Behav 14:387–397

    Article  CAS  PubMed  Google Scholar 

  3. Johnson WG, Wildman HE (1983) Influence of external and covert food stimuli on insulin secretion in obese and normal persons. Behav Neurosci 97:1025–1028

    Article  CAS  PubMed  Google Scholar 

  4. Louis-Sylvestre J, Le Magnen J (1980) Palatability and preabsorptive insulin release. Neurosci Biobehav Rev 4(Suppl 1):43–46

    Article  PubMed  Google Scholar 

  5. Smith GP (1995) Pavlov and appetite. Integr Physiol Behav Sci Off J Pavlov Soc 30:169–174

    Article  CAS  Google Scholar 

  6. Pavlov IP (1902) The work of the digestive glands. Charles Griffin and Co, London

    Google Scholar 

  7. Rolls ET, Rolls JH (1997) Olfactory sensory-specific satiety in humans. Physiol Behav 61:461–473

    Article  CAS  PubMed  Google Scholar 

  8. Ruijschop RM, Boelrijk AE, Burgering MJ, de Graaf C, Westerterp-Plantenga MS (2010) Acute effects of complexity in aroma composition on satiation and food intake. Chem Senses 35:91–100

    Article  PubMed  Google Scholar 

  9. Massolt ET, van Haard PM, Rehfeld JF, Posthuma EF, van der Veer E et al (2010) Appetite suppression through smelling of dark chocolate correlates with changes in ghrelin in young women. Regul Pept 161:81–86

    Article  CAS  PubMed  Google Scholar 

  10. Johnson J, Vickers Z (1992) Factors influencing sensory-specific satiety. Appetite 19:15–31

    Article  CAS  PubMed  Google Scholar 

  11. Vosshall LB, Stocker RF (2007) Molecular architecture of smell and taste in Drosophila. Annu Rev Neurosci 30:505–533

    Article  CAS  PubMed  Google Scholar 

  12. Wilson RI (2013) Early olfactory processing in Drosophila: mechanisms and principles. Annu Review Neurosci 36:217–241

    Article  CAS  Google Scholar 

  13. Rajan A, Perrimon N (2013) Of flies and men: insights on organismal metabolism from fruit flies. BMC Biol 11:38

    PubMed  PubMed Central  Google Scholar 

  14. Baker KD, Thummel CS (2007) Diabetic larvae and obese flies—emerging studies of metabolism in Drosophila. Cell Metab 6:257–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Melcher C, Bader R, Pankratz MJ (2007) Amino acids, taste circuits, and feeding behavior in Drosophila: towards understanding the psychology of feeding in flies and man. J Endocrinol 192:467–472

    Article  CAS  PubMed  Google Scholar 

  16. Leopold P, Perrimon N (2007) Drosophila and the genetics of the internal milieu. Nature 450:186–188

    Article  CAS  PubMed  Google Scholar 

  17. Itskov PM, Ribeiro C (2013) The dilemmas of the gourmet fly: the molecular and neuronal mechanisms of feeding and nutrient decision making in Drosophila. Front Neurosci 7:12

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hergarden AC, Tayler TD, Anderson DJ (2012) Allatostatin-A neurons inhibit feeding behavior in adult Drosophila. Proc Natl Acad Sci USA 109:3967–3972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Owusu-Ansah E, Perrimon N (2014) Modeling metabolic homeostasis and nutrient sensing in Drosophila: implications for aging and metabolic diseases. Disease Models Mech 7:343–350

    Article  Google Scholar 

  20. Padmanabha D, Baker KD (2014) Drosophila gains traction as a repurposed tool to investigate metabolism. Trends Endocrinol Metabol 25:518–527

    Article  CAS  Google Scholar 

  21. Semmelhack JL, Wang JW (2009) Select Drosophila glomeruli mediate innate olfactory attraction and aversion. Nature 459:218–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu J, Park KC, Baker TC (2003) Identification of odors from overripe mango that attract vinegar flies, Drosophila melanogaster. J Chem Ecol 29:899–909

    Article  CAS  PubMed  Google Scholar 

  23. Knaden M, Strutz A, Ahsan J, Sachse S, Hansson BS (2012) Spatial representation of odorant valence in an insect brain. Cell Reports 1:392–399

    Article  CAS  PubMed  Google Scholar 

  24. Root CM, Ko KI, Jafari A, Wang JW (2011) Presynaptic facilitation by neuropeptide signaling mediates odor-driven food search. Cell 145:133–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Beshel J, Zhong Y (2013) Graded encoding of food odor value in the Drosophila brain. J Neurosci 33:15693–15704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang Y, Pu Y, Shen P (2013) Neuropeptide-gated perception of appetitive olfactory inputs in Drosophila larvae. Cell Reports 3:820–830

    Article  CAS  PubMed  Google Scholar 

  27. Stensmyr MC, Giordano E, Balloi A, Angioy AM, Hansson BS (2003) Novel natural ligands for Drosophila olfactory receptor neurones. J Exp Biol 206:715–724

    Article  CAS  PubMed  Google Scholar 

  28. Palouzier-Paulignan B, Lacroix MC, Aime P, Baly C, Caillol M et al (2012) Olfaction under metabolic influences. Chem Senses 37:769–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sengupta P (2013) The belly rules the nose: feeding state-dependent modulation of peripheral chemosensory responses. Curr Opin Neurobiol 23:68–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gruber F, Knapek S, Fujita M, Matsuo K, Bräcker L et al (2013) Suppression of conditioned odor approach by feeding is independent of taste and nutritional value in Drosophila. Curr Biol 23:507–514

    Article  CAS  PubMed  Google Scholar 

  31. Small DM, Veldhuizen MG, Felsted J, Mak YE, McGlone F (2008) Separable substrates for anticipatory and consummatory food chemosensation. Neuron 57:786–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sternson SM, Nicholas Betley J, Cao ZF (2013) Neural circuits and motivational processes for hunger. Curr Opin Neurobiol 23:353–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Carlsson MA, Diesner M, Schachtner J, Nässel DR (2010) Multiple neuropeptides in the Drosophila antennal lobe suggest complex modulatory circuits. J Comp Neurol 518:3359–3380

    Article  CAS  PubMed  Google Scholar 

  34. Sohn JW, Elmquist JK, Williams KW (2013) Neuronal circuits that regulate feeding behavior and metabolism. Trends Neurosci 36:504–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Betley JN, Cao ZF, Ritola KD, Sternson SM (2013) Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell 155:1337–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yeo GS, Heisler LK (2012) Unraveling the brain regulation of appetite: lessons from genetics. Nat Neurosci 15:1343–1349

    Article  CAS  PubMed  Google Scholar 

  37. Nässel DR, Winther ÅM (2010) Drosophila neuropeptides in regulation of physiology and behavior. Prog Neurobiol 92:42–104

    Article  PubMed  Google Scholar 

  38. Al-Anzi B, Armand E, Nagamei P, Olszewski M, Sapin V et al (2010) The leucokinin pathway and its neurons regulate meal size in Drosophila. Curr Biol 20:969–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bharucha KN, Tarr P, Zipursky SL (2008) A glucagon-like endocrine pathway in Drosophila modulates both lipid and carbohydrate homeostasis. J Exp Biol 211:3103–3110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim SK, Rulifson EJ (2004) Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells. Nature 431:316–320

    Article  CAS  PubMed  Google Scholar 

  41. Rulifson EJ, Kim SK, Nusse R (2002) Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science 296:1118–1120

    Article  CAS  PubMed  Google Scholar 

  42. Teleman AA (2010) Molecular mechanisms of metabolic regulation by insulin in Drosophila. Biochem J 425:13–26

    Article  CAS  Google Scholar 

  43. Géminard G, Arquier N, Layalle S, Bourouis M, Slaidina M et al (2006) Control of metabolism and growth through insulin-like peptides in Drosophila. Diabetes 55:S5–S8

    Article  Google Scholar 

  44. Lee KS, You KH, Choo JK, Han YM, Yu K (2004) Drosophila short neuropeptide F regulates food intake and body size. J Biol Chem 279:50781–50789

    Article  CAS  PubMed  Google Scholar 

  45. Kreher SA, Kwon JY, Carlson JR (2005) The molecular basis of odor coding in the Drosophila larva. Neuron 46:445–456

    Article  CAS  PubMed  Google Scholar 

  46. Lee G, Park JH (2004) Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics 167:311–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee KS, Kwon OY, Lee JH, Kwon K, Min KJ et al (2008) Drosophila short neuropeptide F signalling regulates growth by ERK-mediated insulin signalling. Nat Cell Biol 10:468–475

    Article  CAS  PubMed  Google Scholar 

  48. Wu Q, Zhang Y, Xu J, Shen P (2005) Regulation of hunger-driven behaviors by neural ribosomal S6 kinase in Drosophila. Proc Natl Acad Sci USA 102:13289–13294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nitabach MN, Blau J, Holmes TC (2002) Electrical silencing of Drosophila pacemaker neurons stops the free-running circadian clock. Cell 109:485–495

    Article  CAS  PubMed  Google Scholar 

  50. Larsson MC, Domingos AI, Jones WD, Chiappe ME, Amrein H et al (2004) Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43:703–714

    Article  CAS  PubMed  Google Scholar 

  51. Ja WW, Carvalho GB, Mak EM, de la Rosa NN, Fang AY et al (2007) Prandiology of Drosophila and the CAFE assay. Proc Natl Acad Sci USA 104:8253–8256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lushchak OV, Gospodaryov DV, Rovenko BM, Glovyak AD, Yurkevych IS et al (2012) Balance between macronutrients affects life span and functional senescence in fruit fly Drosophila melanogaster. J Gerontol Series A Biol Sci Med Sci 67:118–125

    Article  Google Scholar 

  53. Kapan N, Lushchak OV, Luo J, Nässel DR (2012) Identified peptidergic neurons in the Drosophila brain regulate insulin-producing cells, stress responses and metabolism by coexpressed short neuropeptide F and corazonin. Cell Mol Life Sci 69:4051–4066

    Article  CAS  Google Scholar 

  54. Fernandez-Ayala DJ, Sanz A, Vartiainen S, Kemppainen KK, Babusiak M et al (2009) Expression of the Ciona intestinalis alternative oxidase (AOX) in Drosophila complements defects in mitochondrial oxidative phosphorylation. Cell Metab 9:449–460

    Article  CAS  PubMed  Google Scholar 

  55. Kubrak OI, Kucerova L, Theopold U, Nässel DR (2014) The sleeping beauty: how reproductive diapause affects hormone signaling, metabolism, immune response and somatic maintenance in Drosophila melanogaster. PLoS One 9:e113051

    Article  PubMed  PubMed Central  Google Scholar 

  56. Johard HA, Enell LE, Gustafsson E, Trifilieff P, Veenstra JA et al (2008) Intrinsic neurons of Drosophila mushroom bodies express short neuropeptide F: relations to extrinsic neurons expressing different neurotransmitters. J Comp Neurol 507:1479–1496

    Article  CAS  PubMed  Google Scholar 

  57. Cao C, Brown MR (2001) Localization of an insulin-like peptide in brains of two flies. Cell Tissue Res 304:317–321

    Article  CAS  PubMed  Google Scholar 

  58. Vroemen SF, Van der Horst DJ, Van Marrewijk WJ (1998) New insights into adipokinetic hormone signaling. Mol Cell Endocrinol 141:7–12

    Article  CAS  PubMed  Google Scholar 

  59. Broughton SJ, Piper MD, Ikeya T, Bass TM, Jacobson J et al (2005) Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc Natl Acad Sci USA 102:3105–3110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ikeya T, Galic M, Belawat P, Nairz K, Hafen E (2002) Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr Biol 12:1293–1300

    Article  CAS  PubMed  Google Scholar 

  61. Brogiolo W, Stocker H, Ikeya T, Rintelen F, Fernandez R et al (2001) An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr Biol 11:213–221

    Article  CAS  PubMed  Google Scholar 

  62. Park S, Alfa RW, Topper SM, Kim GE, Kockel L et al (2014) A genetic strategy to measure circulating Drosophila insulin reveals genes regulating insulin production and secretion. PLoS Genet 10:e1004555

    Article  PubMed  PubMed Central  Google Scholar 

  63. Rajan A, Perrimon N (2012) Drosophila cytokine unpaired 2 regulates physiological homeostasis by remotely controlling insulin secretion. Cell 151:123–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bai H, Kang P, Tatar M (2012) Drosophila insulin-like peptide-6 (dilp6) expression from fat body extends lifespan and represses secretion of Drosophila insulin-like peptide-2 from the brain. Aging Cell 11:978–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Buch S, Melcher C, Bauer M, Katzenberger J, Pankratz MJ (2008) Opposing effects of dietary protein and sugar regulate a transcriptional target of Drosophila insulin-like peptide signaling. Cell Metab 7:321–332

    Article  CAS  PubMed  Google Scholar 

  66. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    CAS  PubMed  Google Scholar 

  67. Nässel DR, Enell LE, Santos JG, Wegener C, Johard HA (2008) A large population of diverse neurons in the Drosophila central nervous system expresses short neuropeptide F, suggesting multiple distributed peptide functions. BMC Neurosci 9:90

    Article  PubMed  PubMed Central  Google Scholar 

  68. Isabel G, Martin JR, Chidami S, Veenstra JA, Rosay P (2005) AKH-producing neuroendocrine cell ablation decreases trehalose and induces behavioral changes in Drosophila. Am J Physiol Regul Integr Comp Physiol 288:R531–R538

    Article  CAS  PubMed  Google Scholar 

  69. Samuelsen CL, Gardner MP, Fontanini A (2012) Effects of cue-triggered expectation on cortical processing of taste. Neuron 74:410–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Feldman M, Richardson CT (1986) Role of thought, sight, smell, and taste of food in the cephalic phase of gastric acid secretion in humans. Gastroenterology 90:428–433

    CAS  PubMed  Google Scholar 

  71. Wong AM, Wang JW, Axel R (2002) Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell 109:229–241

    Article  CAS  PubMed  Google Scholar 

  72. Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68:619–640

    Article  Google Scholar 

  73. Masse NY, Turner GC, Jefferis GS (2009) Olfactory information processing in Drosophila. Curr Biol 19:R700–R713

    Article  CAS  PubMed  Google Scholar 

  74. Shim J, Mukherjee T, Mondal BC, Liu T, Young GC et al (2013) Olfactory control of blood progenitor maintenance. Cell 155:1141–1153

    Article  CAS  PubMed  Google Scholar 

  75. Nässel DR, Kubrak OI, Liu Y, Luo J, Lushchak OV (2013) Factors that regulate insulin producing cells and their output in Drosophila. Front Physiol 4:252

    Article  PubMed  PubMed Central  Google Scholar 

  76. Miyamoto T, Slone J, Song X, Amrein H (2012) A fructose receptor functions as a nutrient sensor in the Drosophila brain. Cell 151:1113–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Miyamoto T, Amrein H (2014) Diverse roles for the Drosophila fructose sensor Gr43a. Fly 8:19–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hartenstein V (2006) The neuroendocrine system of invertebrates: a developmental and evolutionary perspective. J Endocrinol 190:555–570

    Article  CAS  PubMed  Google Scholar 

  79. Broughton SJ, Slack C, Alic N, Metaxakis A, Bass TM et al (2010) DILP-producing median neurosecretory cells in the Drosophila brain mediate the response of lifespan to nutrition. Aging Cell 9:336–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank E. Rulifson (Stanford, CA), K. Yu (Daejeon, Korea), J. H. Park (Knoxville, TN), Ping Shen (Athens, GA) and Bloomington Drosophila Stock Center (BDSC), Bloomington, IN for providing fly stocks. We are grateful to J. A. Veenstra (Bordeaux, France) and Mark Brown (Athens, GA) for providing antisera. Drs Heinrich Dircksen and Jonas Bengtsson (both Stockholm) kindly read and commented on an earlier version of the manuscript. Funding was from the Swedish Research Council (VR) and Karl Trygger Foundation (both to D.R.N.).

Conflict of interest

The authors declare that there was no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dick R. Nässel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig.S1

Expression of sNPF peptide and receptor in antennal OSNs. A Expression of snpfr-Gal4 in the antennal OSNs coincides to a large extent with sNPF peptide expression (α-sNPF). B Detail (framed area in A2) of OSNs expressing both markers. Scale bars: 25 µm (TIFF 4464 kb)

Fig.S2

Long term effects of sNPF manipulations in OSNs on metabolism (related to Fig. 4). A – D Female flies with sNPF overexpressed or knocked down (sNPF-RNAi) in OSNs (orco-Gal4 driver) were sampled after 25 d of adult life and assayed for carbohydrates and TAG. The results are similar to the effects seen in 3-4 d old flies (see Fig. 4). In all the above experiments data were analyzed by One-way ANOVA followed by Dunnett’s multiple comparison test, *p<0.05, **p<0.01, ***p<0.001, for each treatment n=50-60 (performed in 6 replicates) (TIFF 577 kb)

Fig.S3

Effects of sNPFR and insulin receptor (InR) manipulations in OSNs on metabolism and gene expression (related to Fig. 4 and 5). A – C Expression of sNPFR-RNAi and dInRCA in OSNs (orco-Gal4) does not affect levels of glucose, trehalose or glycogen. D Dilp6 levels are not significantly affected by receptor manipulations. E – H Of other gene transcripts tobi, upd2 and pepck are affected by sNPFR-RNAi and dInRCA expression, whereas 4ebp is not. In the above experiments data were analyzed by One-way ANOVA followed by Dunnett’s multiple comparison test, *p<0.05, **p<0.01, ***p<0.001, for each treatment n= 35-40 flies (measured in 4 replicates) (TIFF 1161 kb)

Supplementary material 4 (DOCX 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lushchak, O.V., Carlsson, M.A. & Nässel, D.R. Food odors trigger an endocrine response that affects food ingestion and metabolism. Cell. Mol. Life Sci. 72, 3143–3155 (2015). https://doi.org/10.1007/s00018-015-1884-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1884-4

Keywords

Navigation