Skip to main content
Log in

Fast-folding proteins under stress

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Proteins are subject to a variety of stresses in biological organisms, including pressure and temperature, which are the easiest stresses to simulate by molecular dynamics. We discuss the effect of pressure and thermal stress on very-fast-folding model proteins, whose in vitro folding can be fully simulated on computers and compared with experiments. We then discuss experiments that can be used to subject proteins to low- and high-temperature unfolding, as well as low- and high-pressure unfolding. Pressure and temperature are prototypical perturbations that illustrate how close many proteins are to instability, a property that cells can exploit to control protein function. We conclude by reviewing some recent in-cell experiments, and progress being made in simulating and measuring protein stability and function inside live cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Collins MO, Yu L, Campuzano I, Grant SG, Choudhary JS (2008) Phosphoproteomic analysis of the mouse brain cytosol reveals a predominance of protein phosphorylation in regions of intrinsic sequence disorder. Mol Cell Proteomics 7:1331–1348

    Article  CAS  PubMed  Google Scholar 

  2. Enright MB, Leitner DM (2005) Mass fractal dimension and the compactness of proteins. Phys Rev E 71:011912

    Article  Google Scholar 

  3. Liang J, Dill KA (2001) Are proteins well-packed? Biophys J 81:751–766

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Iakoucheva LM, Brown CJ, Lawson JD, Obradović Z, Dunker AK (2002) Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol 323:573–584

    Article  CAS  PubMed  Google Scholar 

  5. Meister K, Ebbinghaus S, Xu Y, Duman JG, DeVries A, Gruebele M, Leitner DM, Havenith M (2013) Long-range protein–water dynamics in hyperactive insect antifreeze proteins. Proc Natl Acad Sci 110:1617–1622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Urayama P, Phillips GN Jr, Gruner SM (2002) Probing substates in sperm whale myoglobin using high-pressure crystallography. Structure 10:51–60

    Article  CAS  PubMed  Google Scholar 

  7. Lu H, Schulten K (2000) The key event in force-induced unfolding of Titin’s immunoglobulin domains. Biophys J 79:51–65

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Mason OU, Nakagawa T, Rosner M, Van Nostrand JD, Zhou J, Maruyama A, Fisk MR, Giovannoni SJ (2010) First investigation of the microbiology of the deepest layer of ocean crust. PLoS One 5:e15399

    Article  PubMed Central  PubMed  Google Scholar 

  9. Yancey PH, Gerringer ME, Drazen JC, Rowden AA, Jamieson A (2014) Marine fish may be biochemically constrained from inhabiting the deepest ocean depths. Proc Natl Acad Sci 111:4461–4465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Lai Z, Colón W, Kelly JW (1996) The acid-mediated denaturation pathway of transthyretin yields a conformational intermediate that can self-assemble into amyloid. Biochemistry 35:6470–6482

    Article  CAS  PubMed  Google Scholar 

  11. Mileyko Y, Joh RI, Weitz JS (2008) Small-scale copy number variation and large-scale changes in gene expression. Proc Natl Acad Sci 105:16659–16664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Gelman H, Platkov M, Gruebele M (2012) Rapid perturbation of free-energy landscapes: from in vitro to in vivo. Chemistry 18:6420–6427

    Article  CAS  PubMed  Google Scholar 

  13. McConkey EH (1982) Molecular evolution, intracellular organization, and the quinary structure of proteins. Proc Natl Acad Sci USA 79:3236–3240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Tuinstra RL, Peterson FC, Kutlesa S, Elgin ES, Kron MA, Volkman BF (2008) Interconversion between two unrelated protein folds in the lymphotactin native state. Proc Natl Acad Sci 105:5057–5062

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Burmann BM, Knauer SH, Sevostyanova A, Schweimer K, Mooney RA, Landick R, Artsimovitch I, Rösch P (2012) An α helix to β barrel domain switch transforms the transcription factor RfaH into a translation factor. Cell 150:291–303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Prigozhin MB, Gruebele M (2013) Microsecond folding experiments and simulations: a match is made. Phys Chem Chem Phys 15:3372–3388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Yuan TZ, Ormonde CFG, Kudlacek ST, Kunche S, Smith JN, Brown WA, Pugliese KM, Olsen TJ et al (2015) Shear-stress-mediated refolding of proteins from aggregates and inclusion bodies. ChemBioChem 16:393–396

    Article  CAS  PubMed  Google Scholar 

  18. Larios E, Gruebele M (2010) Protein stability at negative pressure. Methods 52:51–56

    Article  CAS  PubMed  Google Scholar 

  19. Haymet ADJ, Silverstein KAT, Dill KA (1996) Hydrophobicity reinterpreted as minimisation of the entropy penalty of solvation. Farad Disc 103:117–124

    Article  CAS  Google Scholar 

  20. Southall NT, Dill KA, Haymet A (2002) A view of the hydrophobic effect. J Phys Chem B 106:521–533

    Article  CAS  Google Scholar 

  21. Hawley SA (1971) Reversible pressure-temperature unfolding of chymotrypsinogen. Biochemistry 10:2436–2442

    Article  CAS  PubMed  Google Scholar 

  22. Dadarlat VM, Post CB (2003) Adhesive–cohesive model for protein compressibility: an alternative perspective on stability. Proc Natl Acad Sci USA 100:14778–14783

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112

    Article  CAS  PubMed  Google Scholar 

  24. Lindorff-Larsen K, Piana S, Dror RO, Shaw DE (2011) How fast-folding proteins fold. Science 334:517–520

    Article  CAS  PubMed  Google Scholar 

  25. Piana S, Sarkar K, Lindorff-Larsen K, Guo MH, Gruebele M, Shaw DE (2011) Computational design and experimental testing of the fastest-folding beta-sheet protein. J Mol Biol 405:43–48

    Article  CAS  PubMed  Google Scholar 

  26. Muschol M, Rosenberger F (1997) Liquid–liquid phase separation in supersaturated lysozyme solutions and associated precipitate formation/crystallization. J Chem Phys 107:1953–1962

    Article  CAS  Google Scholar 

  27. Li P, Banjade S, Cheng H-C, Kim S, Chen B, Guo L, Llaguno M, Hollingsworth JV et al (2012) Phase transitions in the assembly of multivalent signalling proteins. Nature 483:336–340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Weber Stephanie C, Brangwynne Clifford P (2012) Getting RNA and protein in phase. Cell 149(6):1188–1191. doi:10.1016/j.cell.2012.05.022

    Article  CAS  PubMed  Google Scholar 

  29. Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, Gharakhani J, Jülicher F, Hyman AA (2009) Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324:1729–1732

    Article  CAS  PubMed  Google Scholar 

  30. Ballew RM, Sabelko J, Reiner C, Gruebele M (1996) A single-sweep, nanosecond time resolution laser temperature-jump apparatus. Rev Sci Instrum 67:3694–3699

    Article  CAS  Google Scholar 

  31. Dumont C, Emilsson T, Gruebele M (2009) Reaching the protein folding speed limit with large, sub-microsecond pressure jumps. Nat Meth 6:515–519

    Article  CAS  Google Scholar 

  32. Schuler B, Lipman EA, Eaton WA (2002) Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature 419:743–747

    Article  CAS  PubMed  Google Scholar 

  33. Dyer RB, Gai F, Woodruff WH, Gilmanshin R, Callender RH (1998) Infrared studies of fast events in protein folding. Acc Chem Res 31:709–716

    Article  CAS  Google Scholar 

  34. Prigozhin MB, Gruebele M (2011) The fast and the slow: folding and trapping of lambda(6-85). J Am Chem Soc 133:19338–19341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Abe H, Go N (1981) Noninteracting local-structure model folding and unfolding transition in globular proteins. II. Application to two-dimensional lattice proteins. Biopolymers 20:1013–1031

    Article  CAS  PubMed  Google Scholar 

  36. Onsager L (1931) Reciprocal relations in irreversible processes I. Phys Rev 37:405–426

    Article  CAS  Google Scholar 

  37. Deniz AA, Laurence TA, Beligere GS, Dahan M, Martin AB, Chemla DS, Dawson PE, Schultz PG et al (2000) Single-molecule protein folding: diffusion fluorescence resonance energy transfer studies of the denaturation of chymotrypsin inhibitor 2. Proc Natl Acad Sci USA 97:5179–5184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Huang GS, Oas TG (1995) Submillisecond folding of monomeric lambda repressor. Proc Natl Acad Sci USA 92:6878–6882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Benjamin Schuler EAL, Eaton Willam A (2002) Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature 419:4

    Google Scholar 

  40. Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes and motions of proteins. Science 254:1598–1603

    Article  CAS  PubMed  Google Scholar 

  41. Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG (1995) Funnels, pathways, and the energy landscape of protein folding: a synthesis. Protein Struct Funct Genet 21:167–195

    Article  CAS  Google Scholar 

  42. Onuchic JN, Socci ND, Luthey-Schulten Z, Wolynes PG (1996) Protein folding funnels: the nature of the transition state ensemble. Fold Des 1:441–450

    Article  CAS  PubMed  Google Scholar 

  43. Bohr HG, Wolynes PG (1992) Initial events of protein folding from an information-processing viewpoint. Phys Rev A 46:5242–5248

    Article  CAS  PubMed  Google Scholar 

  44. Naganathan AN, Perez-Jimenez R, Sanchez-Ruiz JM, Munoz V (2005) Robustness of downhill folding: guidelines for the analysis of equilibrium folding experiments on small proteins. Biochemistry 44:7435–7449

    Article  CAS  PubMed  Google Scholar 

  45. Yang WY, Gruebele M (2004) Folding lambda-repressor at its speed limit. Biophys J 87:596–608

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Garcia-Mira MM, Sadqi M, Fischer N, Sanchez-Ruiz JM, Munoz V (2002) Experimental identification of downhill protein folding. Science 298:2191–2195

    Article  CAS  PubMed  Google Scholar 

  47. Cho SS, Weinkam P, Wolynes PG (2008) Origin of barriers and barrierless folding in BBL. Proc Nat Acad Sci USA 105:118–123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Yang WY, Pitera J, Swope W, Gruebele M (2004) Heterogeneous folding of the trpzip hairpin: full atom simulation and experiment. J Mol Biol 336:241–251

    Article  CAS  PubMed  Google Scholar 

  49. Baiz CR, Lin YS, Peng CS, Beauchamp KA, Voelz VA, Pande VS, Tokmakoff A (2014) A molecular interpretation of 2D IR protein folding experiments with Markov state models. Biophys J 106:1359–1370

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Hye-Kyung Y, Sang-Gyu K, Sun-Young K, Chung-Mo P (2008) Regulation of leaf senescence by NTL9-mediated osmotic stress signaling in Arabidopsis. Mol Cells 25:438–445

    Google Scholar 

  51. Cho JH, Meng W, Sato S, Kim EY, Schindelin H, Raleigh DP (2014) Energetically significant networks of coupled interactions within an unfolded protein. Proc Natl Acad Sci USA 111:12079–12084

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Horng JC, Moroz V, Raleigh DP (2003) Rapid cooperative two-state folding of a miniature alpha-beta protein and design of a thermostable variant. J Mol Biol 326:1261–1270

    Article  CAS  PubMed  Google Scholar 

  53. Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC (1958) A three-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature 181:662–666

    Article  CAS  PubMed  Google Scholar 

  54. Garry DJ, Ordway GA, Lorenz JN, Radford NB, Chin ER, Grange RW, Bassel-Duby R, Williams RS (1998) Mice without myoglobin. Nature 395:905–908

    Article  CAS  PubMed  Google Scholar 

  55. Ballew RM, Sabelko J, Gruebele M (1996) Observation of distinct nanosecond and microsecond protein folding events. Nat Struct Biol 3:923–926

    Article  CAS  PubMed  Google Scholar 

  56. Ballew RM, Sabelko J, Gruebele M (1996) Direct observation of fast protein folding: the initial collapse of apomyoglobin. Proc Natl Acad Sci USA 93:5759–5764

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Jennings P, Wright P (1993) Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science 262:892–895

    Article  CAS  PubMed  Google Scholar 

  58. Goodman JS, Chao SH, Pogorelov TV, Gruebele M (2014) Filling up the heme pocket stabilizes apomyoglobin and speeds up its folding. J Phys Chem B 118:6511–6518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Yagi R, Yagi LF, Chen K, Shigesada Y, Murakami Y, Ito Y (1999) A WW domain-containing Yes-associated protein (YAP) is a novel transcriptional co-activator. EMBO J 18:2551–2562

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Wirth AJ, Liu Y, Prigozhin MB, Schulten K, Gruebele M (2015) Comparing fast pressure jump and temperature jump protein folding experiments and simulations. J Am Chem Soc 137(22):7152–7159

    Article  CAS  PubMed  Google Scholar 

  61. Royer CA (2008) The nature of the transition state ensemble and the mechanisms of protein folding: a review. Arch Biochem Biophys 469:34–45

    Article  CAS  PubMed  Google Scholar 

  62. Vidugiris GJA, Markley JL, Royer CA (1995) Evidence for a molten globule-like transition state in protein folding from determination of activation volumes. Biochemistry 34:4909–4912

    Article  CAS  PubMed  Google Scholar 

  63. Yang WY, Gruebele M (2005) Kinetic equivalence of the heat and cold structural transitions of lambda6-85. Phil Trans Royal Soc London B 43:13018–13025

    Google Scholar 

  64. Jäger M, Zhang Y, Bieschke J, Nguyen H, Dendle M, Bowman ME, Noel JP, Gruebele M et al (2006) Structure–function–folding relationship in a WW domain. Proc Natl Acad Sci USA 103:10648–10653

    Article  PubMed Central  PubMed  Google Scholar 

  65. Brooks CLI, Gruebele M, Onuchic JN, Wolynes PG (1998) Frontiers in Science 1997—chemical physics of protein folding. Proc Natl Acad Sci USA 95:11037–11038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Prigozhin MB, Liu Y, Wirth AJ, Kapoor S, Winter R, Schulten K, Gruebele M (2013) Misplaced helix slows down ultrafast pressure-jump protein folding. Proc Natl Acad Sci 110:8087–8092

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Shaw DE, Maragakis P, Lindorff-Larsen K, Piana S, Dror RO, Eastwood MP, Bank JA, Jumper JM et al (2010) Atomic-level characterization of the structural dynamics of proteins. Science 330:341–346

    Article  CAS  PubMed  Google Scholar 

  68. Piana S, Lindorff-Larsen K, Shaw DE (2012) Protein folding kinetics and thermodynamics from atomistic simulation. Proc Natl Acad Sci USA 109(44):17845–17850

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Prigozhin MB, Gruebele M (2013) Microsecond folding experiments and simulations: a match is made. Physical Chemistry Chemical Physics 15:3372–3388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Hochstrasser M (2009) Origin and function of ubiquitin-like proteins. Nature 458:422–429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Galan JM, Haguenauer-Tsapis R (1997) Ubiquitin lys63 is involved in ubiquitination of a yeast plasma membrane protein. EMBO J 16:5847–5854

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Terrell J, Shih S, Dunn R, Hicke L (1998) A function for monoubiquitination in the internalization of a G protein-coupled receptor. Mol Cell 1:193–202

    Article  CAS  PubMed  Google Scholar 

  73. Hofmann RM, Pickart CM (1999) Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96:645–653

    Article  CAS  PubMed  Google Scholar 

  74. Deng L, Wang C, Spencer E, Yang L, Braun A, You J, Slaughter C, Pickart C et al (2000) Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103:351–361

    Article  CAS  PubMed  Google Scholar 

  75. Spence J, Gali RR, Dittmar G, Sherman F, Karin M, Finley D (2000) Cell cycle-regulated modification of the ribosome by a variant multiubiquitin chain. Cell 102:67–76

    Article  CAS  PubMed  Google Scholar 

  76. Hicke L (2001) Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol 2:195–201

    Article  CAS  PubMed  Google Scholar 

  77. Clague MJ, Urbé S (2010) Ubiquitin: same molecule, different degradation pathways. Cell 143:682–685

    Article  CAS  PubMed  Google Scholar 

  78. Ye Y, Rape M (2009) Building ubiquitin chains: e2 enzymes at work. Nat Rev Mol Cell Biol 10:755–764

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Thrower JS, Hoffman L, Rechsteiner M, Pickart CM (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J 19:94–102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Vijay-Kumar S, Bugg CE, Cook WJ (1987) Structure of ubiquitin refined at 1.8 A resolution. J Mol Biol 194:531–544

    Article  CAS  PubMed  Google Scholar 

  81. Berthelot M (1850) Sur quelques phénomènes de dilatation forcée des liquides. Ann Chim Phys 30:232–237

    Google Scholar 

  82. Netz PA, Starr FW, Stanley HE, Barbosa MC (2001) Static and dynamic properties of stretched water. J Chem Phys 115:344–348

    Article  CAS  Google Scholar 

  83. Bird AP, Wolffe AP (1999) Methylation-induced repression—belts, braces, and chromatin. Cell 99:451–454

    Article  CAS  PubMed  Google Scholar 

  84. Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553

    Article  CAS  PubMed  Google Scholar 

  85. Karve TM, Cheema AK (2011) Small changes huge impact: the role of protein posttranslational modifications in cellular homeostasis and disease. J Amino Acids 2011:207691–207703

    Article  PubMed Central  PubMed  Google Scholar 

  86. Deribe YL, Pawson T, Dikic I (2010) Post-translational modifications in signal integration. Nat Struct Mol Biol 17:666–672

    Article  CAS  PubMed  Google Scholar 

  87. Rapoport TA (2007) Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450:663–669

    Article  CAS  PubMed  Google Scholar 

  88. Rothman JE, Wieland FT (1996) Protein sorting by transport vesicles. Science 272:227–234

    Article  CAS  PubMed  Google Scholar 

  89. Rothman JE (1994) Mechanisms of intracellular protein transport. Nature 372:55–63

    Article  CAS  PubMed  Google Scholar 

  90. Jiang L, Phillips TE, Hamm CA, Drozdowicz YM, Rea PA, Maeshima M, Rogers SW, Rogers JC (2001) The protein storage vacuole: a unique compound organelle. J Cell Biol 155:991–1002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Varshavsky A (2008) Discovery of cellular regulation by protein degradation. J Biol Chem 283:34469–34489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Wirth AJ, Gruebele M (2013) Leaving the test-tube behind: quinary protein structure and the consequences of crowding in living cells. BioEssays 35:984–993

    Article  CAS  PubMed  Google Scholar 

  93. Bai Y, Englander JJ, Mayne L, Milne JS, Englander SW (1995) Thermodynamic parameters from hydrogen exchange measurements. Methods Enzymol 259:344–356

    Article  CAS  PubMed  Google Scholar 

  94. Bai Y, Englander SW (1996) Future directions in folding: the multi-state nature of protein structure. Proteins 24:145–151

    Article  CAS  PubMed  Google Scholar 

  95. Ebbinghaus S, Dhar A, McDonald JD, Gruebele M (2010) Protein folding stability and dynamics imaged in a living cell. Nat Meth 7:319–323

    Article  CAS  Google Scholar 

  96. Guo M, Gelman H, Gruebele M (2014) Coupled protein diffusion and folding in the cell. PLoS One 9:e113040

    Article  PubMed Central  PubMed  Google Scholar 

  97. Dhar A, Girdhar K, Singh D, Gelman H, Ebbinghaus S, Gruebele M (2011) Protein stability and folding kinetics in the nucleus and endoplasmic reticulum of eucaryotic cells. Biophys J 101:421–430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Borgia MB, Borgia A, Best RB, Steward A, Nettels D, Wunderlich B, Schuler B, Clarke J (2011) Single-molecule fluorescence reveals sequence-specific misfolding in multidomain proteins. Nature 7353:662–665

    Article  Google Scholar 

  99. Wirth AJ, Platkov M, Gruebele M (2013) Temporal variation of a protein folding energy landscape in the cell. J Am Chem Soc 135:19215–19221

    Article  CAS  PubMed  Google Scholar 

  100. Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases: introducing the D(2) concept. In: Annual review of biophysics, vol 37. Annual review of biophysics. Annual Reviews, Palo Alto, pp 215–246. doi:10.1146/annurev.biophys.37.032807.125924

  101. Volkman BF, Liu TY, Peterson FC (2009) Chapter 3 Lymphotactin structural dynamics. In: Tracy MH, Damon JH (eds) Methods in enzymology, vol 461. Academic Press, pp 51–70. doi:http://dx.doi.org/10.1016/S0076-6879(09)05403-2

Download references

Acknowledgments

This work was supported by grants from the NSF (MCB 1413256) and from the NIH (2R01 GM093318). The authors wish to thank Dr. Shahar Sukenik for a critical reading and helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Gruebele.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dave, K., Gruebele, M. Fast-folding proteins under stress. Cell. Mol. Life Sci. 72, 4273–4285 (2015). https://doi.org/10.1007/s00018-015-2002-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-2002-3

Keywords

Navigation