Skip to main content

Individual Proteins Under Mechanical Stress: Lessons from Theory and Computer Simulations

  • Chapter
  • First Online:
Single-molecule Studies of Proteins

Part of the book series: Biophysics for the Life Sciences ((BIOPHYS,volume 2))

Abstract

Mechanically induced protein unfolding and other mechanically modulated conformational transitions are implicated in many vital biological processes. Motivated by single-molecule pulling studies that probe the mechanical response of proteins and other biomolecules, this chapter introduces essential theoretical ideas needed to understand how the dynamics and thermodynamics of proteins are affected by mechanical stress. Various computational approaches and theoretical models used to explore the relationship between protein structure and mechanical response are critically reviewed, and computational and theoretical predictions are then contrasted with experimental observations. Finally, recent computational efforts to identify globular protein domains with high mechanical stability are described and, whenever possible, compared with experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note, however, that the force is usually measured through the displacement of the measuring device such as the AFM tip. A more accurate description of single-molecule pulling should therefore include the elastic properties of the pulling device itself. As further discussed in Sect. 9.5, the idealized description adopted here is adequate when the force is transmitted to the molecule via soft handles, whose compliance is higher than that of the molecule itself.

  2. 2.

    In contrast, an observation of the absolute value R of the end-to-end distance may distinguish between the folded and the unfolded states. Here, however, R is not a proper choice of the thermodynamic variable that is conjugate to the pulling force.

  3. 3.

    Note that Cartesian atomic coordinates are usually unsuitable as proper degrees of freedom for the description of protein folding because the unfolded state does not correspond to a particular structure and so is not close to any specific point in the Cartesian space. Instead, as exemplified in Fig. 9.3, it is often beneficial to use a collective “folding” coordinate Q that is a nonlinear function of the atomic coordinates.

  4. 4.

    Here, by dissociation, we simply mean a conformational transition through which the two atoms come apart. This definition thus includes unfolding of a protein stretched by a mechanical force.

References

  • Alegre-Cebollada J, Perez-Jimenez R, Kosuri P, Fernandez JM (2010) Single-molecule force spectroscopy approach to enzyme catalysis. J Biol Chem 285:18961

    Article  PubMed  CAS  Google Scholar 

  • Allen RJ, Frenkel D, ten Wolde PR (2006) Forward flux sampling-type schemes for simulating rare events: efficiency analysis. J Chem Phys 124:194111

    Article  PubMed  CAS  Google Scholar 

  • Bailey A, Mosey NJ (2012) Prediction of reaction barriers and force-induced instabilities under mechanochemical conditions with an approximate model: a case study of the ring opening of 1,3-cyclohexadiene. J Chem Phys 136:044102

    Article  PubMed  CAS  Google Scholar 

  • Balsera M, Stepaniants S, Izrailev S, Oono Y, Schulten K (1997) Reconstructing potential energy functions from simulated force-induced unbinding processes. Biophys J 73:1281

    Article  PubMed  CAS  Google Scholar 

  • Barsegov V, Thirumalai D (2005) Dynamics of unbinding of cell adhesion molecules: transition from catch to slip bonds. Proc Natl Acad Sci USA 102:1835

    Article  PubMed  CAS  Google Scholar 

  • Barsegov V, Morrison G, Thirumalai D (2008) Role of internal chain dynamics on the rupture kinetic of adhesive contacts. Phys Rev Lett 100:248102

    Article  PubMed  CAS  Google Scholar 

  • Becker N et al (2003) Molecular nanosprings in spider capture-silk threads. Nat Mater 2:278

    Article  PubMed  CAS  Google Scholar 

  • Bell GI (1978) Models for specific adhesion of cells to cells. Science 200:618

    Article  PubMed  CAS  Google Scholar 

  • Berkovich R, Garcia-Manyes S, Klafter J, Urbakh M, Fernandez JM (2010) Hopping around an entropic barrier created by force. Biochem Biophys Res Commun 403:133

    Article  PubMed  CAS  Google Scholar 

  • Best RB et al (2003a) Force mode atomic force microscopy as a tool for protein folding studies. Anal Chim Acta 479:87

    Article  CAS  Google Scholar 

  • Best RB et al (2003b) Mechanical unfolding of a titin Ig domain: structure of transition state revealed by combining atomic force microscopy, protein engineering and molecular dynamics simulations. J Mol Biol 330:867

    Article  PubMed  CAS  Google Scholar 

  • Best RB, Paci E, Hummer G, Dudko OK (2008) Pulling direction as a reaction coordinate for the mechanical unfolding of single molecules. J Phys Chem B 112:5968

    Article  PubMed  CAS  Google Scholar 

  • Beyer MK, Clausen-Schaumann H (2005) Mechanochemistry: the mechanical activation of covalent bonds. Chem Rev 105:2921

    Article  PubMed  CAS  Google Scholar 

  • Bolhuis PG, Chandler D, Dellago C, Geissler PL (2002) Transition path sampling: throwing ropes over rough mountain passes, in the dark. Annu Rev Phys Chem 53:291

    Article  PubMed  CAS  Google Scholar 

  • Boulatov R, Kucharski TJ (2011) The physical chemistry of mechanoresponsive polymers. J Mater Chem 21:8237

    Article  CAS  Google Scholar 

  • Brantley JN, Wiggins KM, Bielawski CW (2011) Unclicking the click: mechanically facilitated 1,3-Dipolar cycloreversions. Science 333:1606

    Article  PubMed  CAS  Google Scholar 

  • Brockwell DJ et al (2003) Pulling geometry defines the mechanical resistance of a beta-sheet protein. Nat Struct Biol 10:731

    Article  PubMed  CAS  Google Scholar 

  • Camacho CJ, Thirumalai D (1993) Kinetics and thermodynamics of folding in model proteins. Proc Natl Acad Sci USA 90:6369

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Li H (2008) Engineered elastomeric proteins with dual elasticity can be controlled by a molecular regulator. Nat Nanotechnol 3:512

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Lam C, Wang M, Li H (2006) Nonmechanical protein can have significant mechanical stability. Angew Chem Int Ed Engl 45:642

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Yoo T, Li H (2008) Single molecule force spectroscopy reveals engineered metal chelation is a general approach to enhance mechanical stability of proteins. Proc Natl Acad Sci USA 105:11152

    Article  PubMed  CAS  Google Scholar 

  • Carrion-Vazquez M et al (2003) The mechanical stability of ubiquitin is linkage dependent. Nat Struct Biol 10:738

    Article  PubMed  CAS  Google Scholar 

  • Cetinkaya M, Xiao S, Markert B, Stacklies W, Grater F (2011) Silk fiber mechanics from multiscale force distribution analysis. Biophys J 100:1298

    Article  PubMed  CAS  Google Scholar 

  • De Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca, NY

    Google Scholar 

  • Dietz H, Rief M (2008) Elastic bond network model for protein unfolding mechanics. Phys Rev Lett 100:098101

    Article  PubMed  CAS  Google Scholar 

  • Dudko OK, Filippov AE, Klafter J, Urbakh M (2003) Beyond the conventional description of dynamic force spectroscopy of adhesion bonds. Proc Natl Acad Sci USA 100:11378

    Article  PubMed  CAS  Google Scholar 

  • Dudko OK, Hummer G, Szabo A (2006) Intrinsic rates and activation free energies from single-molecule pulling experiments. Phys Rev Lett 96:108101

    Article  PubMed  CAS  Google Scholar 

  • Dudko OK, Mathe J, Szabo A, Meller A, Hummer G (2007) Extracting kinetics from single-molecule force spectroscopy: nanopore unzipping of DNA hairpins. Biophys J 92:4188

    Article  PubMed  CAS  Google Scholar 

  • Dudko OK, Hummer G, Szabo A (2008) Theory, analysis, and interpretation of single-molecule force spectroscopy experiments. Proc Natl Acad Sci USA 105:15755

    Article  PubMed  CAS  Google Scholar 

  • Dudko OK, Graham TG, Best RB (2011) Locating the barrier for folding of single molecules under an external force. Phys Rev Lett 107:208301

    Article  PubMed  CAS  Google Scholar 

  • Elber R (2011) Simulations of allosteric transitions. Curr Opin Struct Biol 21:167

    Article  PubMed  CAS  Google Scholar 

  • Eom K, Li P-C, Makarov DE, Rodin GJ (2003) Relationship between the mechanical properties and topology of cross-linked polymer molecules: Parallel strands maximize the strength of model polymers and protein domains. J Phys Chem B 107:8730

    Article  CAS  Google Scholar 

  • Eom K, Makarov DE, Rodin GJ (2005) Theoretical studies of the kinetics of mechanical unfolding of cross-linked polymer chains and their implications for single molecule pulling experiments. Phys RevE 71:021904

    Google Scholar 

  • Eom K, Baek SC, Ahn JH, Na S (2007) Coarse-graining of protein structures for the normal mode studies. J Comput Chem 28:1400

    Article  PubMed  CAS  Google Scholar 

  • Erickson HP (1997) Stretching single protein molecules: titin is a weird spring. Science 276:1090

    Article  PubMed  CAS  Google Scholar 

  • Erman B, Dill KA (2000) Gaussian model of protein folding. J Chem Phys 112:1050

    Article  CAS  Google Scholar 

  • Evans E, Ritchie K (1997) Dynamic strength of molecular adhesion bonds. Biophys J 72:1541

    Article  PubMed  CAS  Google Scholar 

  • Evans E, Ritchie K (1999) Strength of a weak bond connecting flexible polymer chains. Biophys J 76:2439

    Article  PubMed  CAS  Google Scholar 

  • Fantner GE et al (2006) Sacrificial bonds and hidden length: unraveling molecular mesostructures in tough materials. Biophys J 90:1411

    Article  PubMed  CAS  Google Scholar 

  • Fisher ME, Kolomeisky AB (1999) The force exerted by a molecular motor. Proc Natl Acad Sci USA 96:6597

    Article  PubMed  CAS  Google Scholar 

  • Fisher ME, Kolomeisky AB (2001) Simple mechanochemistry describes the dynamics of kinesin molecules. Proc Natl Acad Sci USA 98:7748

    Article  PubMed  CAS  Google Scholar 

  • Fisher TE, Oberhauser AF, Vezquez MC, Marszalek PE, Fernandez J (1999) The study of protein mechanics with the atomic force microscope. TIBS 24:379

    PubMed  CAS  Google Scholar 

  • Florin E, Moy V, Gaub H (1994) Adhesion forces between individual ligand-receptor pairs. Science 264:415

    Article  PubMed  CAS  Google Scholar 

  • Franco I, Schatz GC, Ratner MA (2009) Single-molecule pulling and the folding of donor-acceptor oligorotaxanes: phenomenology and interpretation. J Chem Phys 131:124902

    Article  PubMed  CAS  Google Scholar 

  • Graham TG, Best RB (2011) Force-induced change in protein unfolding mechanism: discrete or continuous switch? J Phys Chem B 115:1546

    Article  PubMed  CAS  Google Scholar 

  • Guo S, Li N, Lad N, Ray C, Akhremitchev BB (2010) Mechanical distortion of protein receptor decreases the lifetime of a receptor-ligand bond. J Am Chem Soc 132:9681

    Article  PubMed  CAS  Google Scholar 

  • Haliloglu T, Bahar I, Erman B (1997) Gaussian dynamics of folded proteins. Phys Rev Lett 79:3090

    Article  CAS  Google Scholar 

  • Hanggi P, Talkner P, Borkovec M (1990) 50 years after Kramers. Rev Mod Phys 62:251

    Article  Google Scholar 

  • Heymann B, Grubmuller H (1999) AN02/DNP-hapten unbinding forces studied by molecular dynamics atomic force microscopy simulations. Chem Phys Lett 303:1

    Article  CAS  Google Scholar 

  • Heymann B, Grubmuller H (2001) Molecular dynamics force probe simulations of antibody/antigen unbinding: entropic control and nonadditivity of unbinding forces. Biophys J 81:1295

    Article  PubMed  CAS  Google Scholar 

  • Huang Z, Boulatov R (2011) Chemomechanics: chemical kinetics for multiscale phenomena. Chem Soc Rev 40:2359

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Makarov DE (2008) Translocation of a knotted polypeptide through a pore. J Chem Phys 129:121107

    Article  PubMed  CAS  Google Scholar 

  • Hugel T, Rief M, Seitz M, Gaub HE, Netz RR (2005) Highly stretched single polymers: atomic-force-microscope experiments versus ab-initio theory. Phys Rev Lett 94:048301

    Article  PubMed  CAS  Google Scholar 

  • Hummer G, Szabo A (2001) Free energy reconstruction from nonequilibrium single-molecule pulling experiments. Proc Natl Acad Sci USA 98:3658

    Article  PubMed  CAS  Google Scholar 

  • Hummer G, Szabo A (2003) Kinetics from nonequilibrium single-molecule pulling experiments. Biophys J 85:5

    Article  PubMed  CAS  Google Scholar 

  • Hyeon C, Thirumalai D (2005) Mechanical unfolding of RNA hairpins. Proc Natl Acad Sci USA 102:6789

    Article  PubMed  CAS  Google Scholar 

  • Hyeon C, Thirumalai D (2008) Multiple probes are required to explore and control the rugged energy landscape of RNA hairpins. J Am Chem Soc 130:1538

    Article  PubMed  CAS  Google Scholar 

  • Hyeon C, Morrison G, Thirumalai D (2008) Force-dependent hopping rates of RNA hairpins can be estimated from accurate measurement of the folding landscapes. Proc Natl Acad Sci USA 105:9604

    Article  PubMed  CAS  Google Scholar 

  • Imparato A, Pelizzola A, Zamparo M (2007a) Protein mechanical unfolding: a model with binary variables. J Chem Phys 127:145105

    Article  PubMed  CAS  Google Scholar 

  • Imparato A, Pelizzola A, Zamparo M (2007b) Ising-like model for protein mechanical unfolding. Phys Rev Lett 98:148102

    Article  PubMed  CAS  Google Scholar 

  • Irback A, Mitternacht S, Mohanty S (2005) Dissecting the mechanical unfolding of ubiquitin. Proc Natl Acad Sci USA 102:13427

    Article  PubMed  CAS  Google Scholar 

  • Isralewitz B, Gao M, Schulten K (2001) Steered molecular dynamics and mechanical functions of proteins. Curr Opin Struct Biol 11:224

    Article  PubMed  CAS  Google Scholar 

  • Izrailev S, Stepaniants S, Balsera M, Oono Y, Schulten K (1997) Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys J 72:1568

    Article  PubMed  CAS  Google Scholar 

  • Kellermayer MSZ, Smith SB, Granzier HL, Bustamante C (1997) Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science 276:1112

    Article  PubMed  CAS  Google Scholar 

  • Keten S, Xu Z, Ihle B, Buehler MJ (2010) Nanoconfinement controls stiffness, strength and mechanical toughness of beta-sheet crystals in silk. Nat Mater 9:359

    Article  PubMed  CAS  Google Scholar 

  • Kirmizialtin S, Elber R (2011) Revisiting and computing reaction coordinates with Directional Milestoning. J Phys Chem A 115:6137

    Article  PubMed  CAS  Google Scholar 

  • Kirmizialtin S, Makarov DE (2008) Simulations of the untying of molecular friction knots between individual polymer strands. J Chem Phys 128:094901

    Article  PubMed  CAS  Google Scholar 

  • Kirmizialtin S, Huang L, Makarov DE (2005) Topography of the free energy landscape probed via mechanical unfolding of proteins. J Chem Phys 122:234915

    Article  PubMed  CAS  Google Scholar 

  • Kleiner A, Shakhnovich E (2007) The mechanical unfolding of ubiquitin through all-atom Monte Carlo simulation with a Go-type potential. Biophys J 92:2054

    Article  PubMed  CAS  Google Scholar 

  • Klimov D, Thirumalai D (1997) Viscosity Dependence of Folding Rates of Protein. Phys Rev Lett 79: 317

    Google Scholar 

  • Klimov DK, Thirumalai D (2000) Native topology determines force-induced unfolding pathways in globular proteins. Proc Natl Acad Sci USA 97:7254

    Article  PubMed  CAS  Google Scholar 

  • Kochhar GS, Bailey A, Mosey NJ (2010) Competition between orbitals and stress in mechanochemistry. Angew Chem Int Ed 49:7452

    Article  CAS  Google Scholar 

  • Konda SSM, Brantley JN, Bielawski CW, Makarov DE (2011) Chemical reactions modulated by mechanical stress: extended Bell theory. J Chem Phys 135:164103

    Article  PubMed  CAS  Google Scholar 

  • Lacks DJ (2005) Energy landscape distortions and the mechanical unfolding of proteins. Biophys J 88:3493

    Article  CAS  Google Scholar 

  • Lacks DJ, Willis J, Robinson M-P (2010) Fold catastrophes and the dependence of free-energy barriers to conformational transitions on applied force. J Phys Chem B 114:10821

    Article  PubMed  CAS  Google Scholar 

  • Lee C, Schwartz MP, Prakash S, Iwakura M, Matouschek A (2001) ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal. Mol Cell 7:627

    Article  PubMed  CAS  Google Scholar 

  • Lenhardt JM et al (2010) Trapping a diradical transition state by mechanochemical polymer extension. Science 329:1057

    Article  PubMed  CAS  Google Scholar 

  • Li MS, Kouza M (2009) Dependence of protein mechanical unfolding pathways on pulling speeds. J Chem Phys 130:145102

    Article  PubMed  CAS  Google Scholar 

  • Li P-C, Makarov DE (2003) Theoretical studies of the mechanical unfolding of the muscle protein titin: bridging the time-scale gap between simulation and experiment. J Chem Phys 119:9260

    Article  CAS  Google Scholar 

  • Li P-C, Makarov DE (2004a) Ubiquitin-like protein domains show high resistance to mechanical unfolding similar to that of the I27 domain in titin: evidence from simulations. J Phys Chem B 108:745

    Article  CAS  Google Scholar 

  • Li P-C, Makarov DE (2004b) Simulation of the mechanical unfolding of ubiquitin: probing different unfolding reaction coordinates by changing the pulling geometry. J Chem Phys 121:4826

    Article  PubMed  CAS  Google Scholar 

  • Li H, Oberhauser AF, Fowler SB, Clarke J, Fernandez JM (2000) Atomic force microscopy reveals the mechanical design of a modular protein. Proc Natl Acad Sci USA 97:6527

    Article  PubMed  CAS  Google Scholar 

  • Li PC, Huang L, Makarov DE (2006) Mechanical unfolding of segment-swapped protein G dimer: results from replica exchange molecular dynamics simulations. J Phys Chem B 110:14469

    Article  PubMed  CAS  Google Scholar 

  • Li MS, Kouza M, Hu CK (2007) Refolding upon force quench and pathways of mechanical and thermal unfolding of ubiquitin. Biophys J 92:547

    Article  PubMed  CAS  Google Scholar 

  • Li H, Wang H-C, Cao Y, Sharma D, Wang M (2008) Configurational entropy modulates the mechanical stability of protein GB1. J Mol Biol 379:871

    Article  PubMed  CAS  Google Scholar 

  • Liphardt J, Onoa B, Smith SB, Tinoco IJ, Bustamante C (2001) Reversible unfolding of single RNA molecules by mechanical force. Science 292:733

    Article  PubMed  CAS  Google Scholar 

  • Lu H, Schulten K (1999) Steered molecular dynamics simulation of conformational changes of immunoglobulin domain I27 interpret atomic force microscopy observations. Chem Phys 247:141

    Article  CAS  Google Scholar 

  • Lu H, Isralewitz B, Krammer A, Vogel V, Schulten K (1998) Unfolding of titin immunoglobulin domains by steered molecular dynamics. Biophys J 75:662

    Article  PubMed  CAS  Google Scholar 

  • Makarov DE (2007) Unraveling individual molecules by mechanical forces: theory meets experiment. Biophys J 92:4135

    Article  PubMed  CAS  Google Scholar 

  • Makarov DE (2009a) A theoretical model for the mechanical unfolding of repeat proteins. Biophys J 96:2160

    Article  PubMed  CAS  Google Scholar 

  • Makarov DE (2009b) Computer simulations and theory of protein translocation. Acc Chem Res 42:281

    Article  PubMed  CAS  Google Scholar 

  • Makarov DE, Metiu H (2002) A model for the kinetics of protein folding: Kinetic Monte Carlo simulations and analytical results. J Chem Phys 116:5205

    Article  CAS  Google Scholar 

  • Makarov DE, Plaxco KW (2003) The topomer search model: a quantitive, fisrt principles description of two-state protein folding kinetics. Protein Sci 12:17

    Article  PubMed  CAS  Google Scholar 

  • Makarov DE, Hansma PK, Metiu H (2001) Kinetic Monte Carlo simulation of titin unfolding. J Chem Phys 114:9663

    Article  CAS  Google Scholar 

  • Makarov DE, Keller C, Plaxco KW, Metiu H (2002) How the folding rate constant of simple, single-domain proteins depends on the number of native contacts. Proc Natl Acad Sci USA 99:3535

    Article  PubMed  CAS  Google Scholar 

  • Maloney CE, Lacks DJ (2006) Energy barrier scalings in driven systems. Phys Rev E Stat Nonlin Soft Matter Phys 73:061106

    Article  PubMed  CAS  Google Scholar 

  • Marszalek PE et al (1999) Mechanical unfolding intermediates in titin modules. Nature 402:100

    Article  CAS  Google Scholar 

  • Marshall BT et al (2003) Direct observation of catch bonds involving cell-adhesion molecules. Nature 423:190

    Article  PubMed  CAS  Google Scholar 

  • Matouschek A (2003) Protein Unfolding - an important process in vivo? Curr Opin Struct Biol 13:98

    Article  PubMed  CAS  Google Scholar 

  • Matouschek A, Bustamante C (2003) Finding a protein’s Achilles heel. Nat Struct Biol 10:674

    Article  PubMed  CAS  Google Scholar 

  • McCullagh M, Franco I, Ratner MA, Schatz GC (2011) DNA-based optomechanical molecular motor. J Am Chem Soc 133:3452

    Article  PubMed  CAS  Google Scholar 

  • Minajeva A, Kulke M, Fernandez JM, Linke WA (2001) Unfolding of titin domains explains the viscoelastic behavior of skeletal myofibrils. Biophys J 80:1442

    Article  PubMed  CAS  Google Scholar 

  • Nova A, Keten S, Pugno NM, Redaelli A, Buehler MJ (2010) Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils. Nano Lett 10:2626

    Article  PubMed  CAS  Google Scholar 

  • Nummela J, Andricioaei I (2007) Exact low-force kinetics from high-force single-molecule unfolding events. Biophys J 93:3373

    Article  PubMed  CAS  Google Scholar 

  • Oberhauser AF, Marszalek PE, Erickson H, Fernandez JM (1998) The molecular elasticity of the extracellular matrix protein tenascin. Nature 393:181

    Article  PubMed  CAS  Google Scholar 

  • Oberhauser AF, Hansma PK, Carrion-Vazquez M, Fernandez JM (2001) Stepwise unfolding of titin under force-clamp atomic force microscopy. Proc Natl Acad Sci USA 98:468

    Article  PubMed  CAS  Google Scholar 

  • Oberhauser AF, Badilla-Fernandez C, Carrion-Vazquez M, Fernandez JM (2002) The mechanical hierarchies of fibronectin observed with single-molecule AFM. J Mol Biol 319:433

    Article  PubMed  CAS  Google Scholar 

  • Paci E, Karplus M (1999) Forced unfolding of fibronectin Type 3 modules: an analysis by biased molecular dynamics simulations. J Mol Biol 288:441

    Article  PubMed  CAS  Google Scholar 

  • Park S, Khalili-Araghi F, Tajkhorshid E, Schulten K (2003) Free energy calculation from steered molecular dynamics simulations using Jarzynski’s equality. J Chem Phys 119:3559

    Article  CAS  Google Scholar 

  • Peplowski L, Sikora M, Nowak W, Cieplak M (2011) Molecular jamming–the cystine slipknot mechanical clamp in all-atom simulations. J Chem Phys 134:085102

    Article  PubMed  CAS  Google Scholar 

  • Prakash S, Matouschek A (2004) Protein unfolding in the cell. TIBS 29:593

    PubMed  CAS  Google Scholar 

  • Prezhdo OV, Pereverzev YV (2009) Theoretical aspects of the biological catch bond. Acc Chem Res 42:693

    Article  PubMed  CAS  Google Scholar 

  • Ribas-Arino J, Shiga M, Marx D (2009) Understanding Covalent Mechanochemistry. Angew Chem Int Ed Engl 48:4190

    Article  PubMed  CAS  Google Scholar 

  • Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109

    Article  PubMed  CAS  Google Scholar 

  • Rief M, Fernandez JM, Gaub HE (1998) Elastically coupled two-level systems as a model for biopolymer extensibility. Phys Rev Lett 81:4764

    Article  CAS  Google Scholar 

  • Ritort F, Bustamante C, Tinoco I (2002) A two-state kinetic model for the unfolding of single molecules by mechanical force. Proc Natl Acad Sci USA 99:13544

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Esaki M, Fernandez JM, Endo T (2005) Comparison of the protein-unfolding pathways between mitochondrial protein import and atomic-force microscopy measurements. Proc Natl Acad Sci USA 102:17999

    Article  PubMed  CAS  Google Scholar 

  • Schlierf M, Rief M (2006) Single-molecule unfolding force distributions reveal a funnel-shaped energy landscape. Biophys J 90:L33

    Article  PubMed  CAS  Google Scholar 

  • Shariff K, Ghosal S, Matouschek A (2004) The force exerted by the membrane potential during protein import into the mitochondrial matrix. Biophys J 86:3647

    Article  PubMed  CAS  Google Scholar 

  • Sharma D et al (2007) Single-molecule force spectroscopy reveals a mechanically stable protein fold and the rational tuning of its mechanical stability. Proc Natl Acad Sci USA 104:9278

    Article  PubMed  CAS  Google Scholar 

  • Sikora M, Sulkowska JI, Cieplak M (2009) Mechanical strength of 17,134 model proteins and cysteine slipknots. PLoS Comput Biol 5:e1000547

    Article  PubMed  CAS  Google Scholar 

  • Sikora M, Sulkowska JI, Witkowski BS, Cieplak M (2011) BSDB: the biomolecule stretching database. Nucleic Acids Res 39:D443

    Article  PubMed  Google Scholar 

  • Smith BL et al (1999) Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399:761

    Article  CAS  Google Scholar 

  • Soheilifard R, Makarov DE, Rodin GJ (2011) Rigorous coarse-graining for the dynamics of linear systems with applications to relaxation dynamics in proteins. J Chem Phys 135:054107

    Article  PubMed  CAS  Google Scholar 

  • Sorenson JM, Head-Gordon T (2000) Matching simulation and experiment: a new simplified model for Simulating protein folding. J Comput Biol 7:469

    Article  PubMed  CAS  Google Scholar 

  • Sorenson JM, Head-Gordon T (2002) Towards minimalist models of larger proteins: a ubiquitin-like protein. Proteins Struct Funct Genet 46:368

    Article  PubMed  CAS  Google Scholar 

  • Staple DB, Payne SH, Reddin AL, Kreuzer HJ (2008) Model for stretching and unfolding the giant multidomain muscle protein using single-molecule force spectroscopy. Phys Rev Lett 101:248301

    Article  PubMed  CAS  Google Scholar 

  • Straub JE, Borkovec M, Berne BJ (1987) Calculation of dynamic friction on intramolecular degrees of freedom. J Phys Chem 91:4995

    Article  CAS  Google Scholar 

  • Sulkowska JI, Cieplak M (2008) Stretching to understand proteins - a survey of the protein data bank. Biophys J 94:6

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Dudko OK (2010) Single-molecule rupture dynamics on multidimensional landscapes. Phys Rev Lett 104:048101

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Dudko OK (2011) Biomolecules under mechanical stress: a simple mechanism of complex behavior. J Chem Phys 134:065102

    Article  PubMed  CAS  Google Scholar 

  • Szabo A, Schulten K, Schulten Z (1980) First passage time approach to diffusion controlled reactions. J Chem Phys 72:4350

    Article  CAS  Google Scholar 

  • Tirion MM (1996) Large amplitude elastic motions in proteins from a single-arameter, atomic analysis. Phys Rev Lett 77:1905

    Article  PubMed  CAS  Google Scholar 

  • Truhlar DG, Garrett BC, Klippenstein SJ (1996) Current status of transition-state theory. J Phys Chem 100:12771

    Article  CAS  Google Scholar 

  • Van Erp T, Bolhuis P (2005) Elaborating transition interface sampling methods. J Comput Phys 205:157–181

    Article  Google Scholar 

  • Veitshans T, Klimov D, Thirumalai D (1996) Protein folding kinetics: timescales, pathways and energy landscapes in terms of sequence-dependent properties. Fold Des 2:1

    Article  Google Scholar 

  • Virnau P, Mirny LA, Kardar M (2006) Intricate knots in proteins: function and evolution. PLoS Comput Biol 2:e122

    Article  PubMed  CAS  Google Scholar 

  • West DK, Olmsted PD, Paci E (2006a) Free energy for protein folding from nonequilibrium simulations using the Jarzynski equality. J Chem Phys 125:204910

    Article  PubMed  CAS  Google Scholar 

  • West DK, Brockwell DJ, Olmsted PD, Radford SE, Paci E (2006b) Mechanical resistance of proteins explained using simple molecular models. Biophys J 90:287

    Article  PubMed  CAS  Google Scholar 

  • West DK, Brockwell DJ, Paci E (2006c) Prediction of the translocation kinetics of a protein from its mechanical properties. Biophys J 91:L51

    Article  PubMed  CAS  Google Scholar 

  • Xiao S, Stacklies W, Cetinkaya M, Markert B, Grater F (2009) Mechanical response of silk crystalline units from force-distribution analysis. Biophys J 96:3997

    Article  PubMed  CAS  Google Scholar 

  • Xiong H, Crespo A, Marti M, Estrin D, Roitberg AE (2006) Free energy calculations with non-equilibrium methods: applications of the Jarzynski relationship. Theor Chem Acc 116:338

    Article  CAS  Google Scholar 

  • Yew ZT, Schlierf M, Rief M, Paci E (2010) Direct evidence of the multidimensionality of the free-energy landscapes of proteins revealed by mechanical probes. Phys Rev E Stat Nonlin Soft Matter Phys 81:031923

    Article  PubMed  CAS  Google Scholar 

  • Yoon G, Park HJ, Na S, Eom K (2009) Mesoscopic model for mechanical characterization of biological protein materials. J Comput Chem 30:873

    Article  PubMed  CAS  Google Scholar 

  • Yuan C, Chen A, Kolb P, Moy VT (2000) Energy landscape of streptavidin-biotin complexes measured by atomic force microscopy. Biochemistry 39:10219

    Article  PubMed  CAS  Google Scholar 

  • Zhurkov SN (1965) Kinetic concept of strenght of solids. Int J Fract Mech 1:311

    CAS  Google Scholar 

  • Zwanzig R (2001) Nonequilibrium statistical mechanics. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgments

I am indebted to Christopher W. Bielawski, Johnathan N. Brantley, Kilho Eom, Helen Hansma, Paul Hansma, Lei Huang, Serdal Kirmizialtin, Sai Sriharsha M. Konda, Horia Metiu, and Gregory J. Rodin, who have collaborated with me on many of the topics described in this chapter. Financial support from the Robert A. Welch Foundation (grant no. F-1514), the National Science Foundation (grant no. CHE 0848571), and from W. A. “Tex” Moncrief, Jr. Endowment In Simulation-Based Engineering Sciences through a Grand Challenge Faculty Fellowship is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitrii E. Makarov .

Editor information

Editors and Affiliations

Appendix

Appendix

In the Appendix, explicit expressions for the mechanical compliance of a molecule pulled between two chosen atoms i and j are provided, assuming that the molecule’s free energy \( G({\mathbf{r}}) \) can be approximated as a Taylor expansion, to second order, in the vicinity of its minimum or saddle point. For example, near the minimum free energy configuration \( {{\mathbf{r}}^{{(0)}}} \), we have

$$ G({\mathbf{r}}) \approx G({{\mathbf{r}}^{{(0)}}}) + \frac{1}{2}{({\mathbf{r}} - {{\mathbf{r}}^{{(0)}}})^T}{{\mathbf{h}}^{{(0)}}}({\mathbf{r}} - {{\mathbf{r}}^{{(0)}}}), $$

where \( {{\mathbf{h}}^{{(0)}}} \) is the molecule’s Hessian matrix. When the distance \( {R_{{ij}}} \) between the two selected atoms is increased, other atoms, of course, also become displaced. Since no external forces act on those atoms, their positions are determined from the condition that they are in mechanical equilibrium (i.e., the total force exerted on each of them by other atoms is zero). Given the assumed linearity of the system, its response to an increase in the distance \( {R_{{ij}}} \) is that of a Hookean spring, with a compliance (inverse stiffness) \( \chi_{{ij}}^{{(0)}} \). Finding \( \chi_{{ij}}^{{(0)}} \) can be viewed as a coarse-graining procedure, in which all of the atomic coordinates, except for the coordinates of the atoms i and j, are eliminated based on the above mechanical equilibrium condition. As the atoms of the molecule can be arbitrarily relabeled, it is convenient to assume that one always pulls on the first two atoms. We then write the molecule’s Hessian matrix in the block-diagonal form:

$$ {{\mathbf{h}}^{{(0)}}} = \left( {\begin{array}{llllllllllllll} {{\mathbf{h}}_{{{\mathbf{11}}}}^{{{\mathbf{(0)}}}}} & {{\mathbf{h}}_{{{\mathbf{12}}}}^{{{\mathbf{(0)}}}}} \\{{\mathbf{h}}_{{{\mathbf{21}}}}^{{{\mathbf{(0)}}}}} & {{\mathbf{h}}_{{{\mathbf{22}}}}^{{{\mathbf{(0)}}}}} \\\end{array} } \right). $$

Here \( {\mathbf{h}}_{{{\mathbf{11}}}}^{{{\mathbf{(0)}}}} \), \( {\mathbf{h}}_{{{\mathbf{12}}}}^{{{\mathbf{(0)}}}} \), \( {\mathbf{h}}_{{{\mathbf{21}}}}^{{{\mathbf{(0)}}}} \), and \( {\mathbf{h}}_{{{\mathbf{22}}}}^{{{\mathbf{(0)}}}} \) are, respectively, 6 × 6, 6 × (3N−6), (3N−6) × 6, and (3N−6) × (3N−6) matrices. The (3N−6) degrees of freedom of all the atoms other than the first two are eliminated through the standard coarse-graining procedure, to obtain an effective 6 × 6 Hessian matrix that describes the mechanical response of the pair of atoms one is pulling on. This matrix is given by the Schur complement (Konda et al. 2011; Eom et al. 2007; Soheilifard et al. 2011):

$$ {{\bar {h}}}_{{{\mathbf{11}}}}^{{{\mathbf{(0)}}}}{\mathbf{= h}}_{{{\mathbf{11}}}}^{{{\mathbf{(0)}}}} - {\mathbf{h}}_{{{\mathbf{12}}}}^{{{\mathbf{(0)}}}}{({\mathbf{h}}_{{{\mathbf{22}}}}^{{{\mathbf{(0)}}}})^{{ - {\mathbf{1}}}}}{\mathbf{h}}_{{{\mathbf{21}}}}^{{{\mathbf{(0)}}}}. $$

This matrix should, of course, coincide with the Hessian matrix computed from the assumption that the free energy of the system is that of a simple Hookean spring given by (9.25). This, in particular, means that it has five zero eigenvalues and one nonzero eigenvalue equal to \( 2/\chi_{{ij}}^{{(0)}} \). Thus diagonalization of the 6 × 6 matrix \( {\mathbf{\bar{h}}}_{{{\mathbf{11}}}}^{{{\mathbf{(0)}}}} \) readily solves the problem of finding the effective compliance \( \chi_{{ij}}^{{(0)}} \) in terms of the full Hessian matrix of the molecule.

The effective compliance \( \chi_{{ij}}^{{{\rm{(TS)}}}} \) of the molecule corresponding to its transition state (as well as to any critical point of the molecule’s potential energy surface) can be computed in an analogous manner, using the Hessian matrix corresponding to the transition state. Of course, stretching the molecule while maintaining its transition-state configuration does not correspond to any experimental scenario. Nevertheless, as discussed in Sect. 9.3, this quantity is expedient in calculations of force-dependent rates.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Makarov, D.E. (2012). Individual Proteins Under Mechanical Stress: Lessons from Theory and Computer Simulations. In: Oberhauser, A. (eds) Single-molecule Studies of Proteins. Biophysics for the Life Sciences, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4921-8_9

Download citation

Publish with us

Policies and ethics