Skip to main content

Advertisement

Log in

Regulation of lung development and regeneration by the vascular system

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Blood vessels have been described a long time ago as passive circuits providing sufficient blood supply to ensure proper distribution of oxygen and nutrition. Blood vessels are mainly formed during embryonic development and in the early postnatal period. In the adult, blood vessels are quiescent, but can be activated and subsequently induced under pathophysiological conditions, such as ischemia and tumor growth. Surprisingly, recent data have suggested an active function for blood vessels, named angiocrine signaling, releasing trophogens which regulate organ development and organ regeneration including in the pancreas, lung, tumor cells, liver and bone. Lung development is driven by hypoxia as well as an intense endothelial–epithelial interaction, and important mechanisms contributing to these processes have recently been identified. This review aims to summarize recent developments and concepts about embryonic pulmonary vascular development and lung regeneration. We discuss hypoxia-inducible factor HIF-2α and vascular endothelial growth factor VEGF as important mediators in lung development and focus on endothelial–epithelial interactions and angiocrine signaling mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Goldenberg RL, Culhane JF, Iams JD, Romero R (2008) Epidemiology and causes of preterm birth. Lancet 371(9606):75–84

    Article  PubMed  Google Scholar 

  2. Behrman RE, Butler AS (2007) 10 mortality and acute complications in preterm infants. Preterm birth: causes, consequences, and prevention. Washington (DC)

  3. Morrison JL, Botting KJ, Soo PS, McGillick EV, Hiscock J, Zhang S, McMillen IC, Orgeig S (2012) Antenatal steroids and the IUGR fetus: are exposure and physiological effects on the lung and cardiovascular system the same as in normally grown fetuses? J Pregnancy 2012:839656

    Article  PubMed Central  PubMed  Google Scholar 

  4. French NP, Hagan R, Evans SF, Godfrey M, Newnham JP (1999) Repeated antenatal corticosteroids: size at birth and subsequent development. Am J Obstet Gynecol 180(1 Pt 1):114–121

    Article  CAS  PubMed  Google Scholar 

  5. Derks JB, Giussani DA, Jenkins SL, Wentworth RA, Visser GH, Padbury JF, Nathanielsz PW (1997) A comparative study of cardiovascular, endocrine and behavioural effects of betamethasone and dexamethasone administration to fetal sheep. J Physiol 499(Pt 1):217–226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Huang WL, Beazley LD, Quinlivan JA, Evans SF, Newnham JP, Dunlop SA (1999) Effect of corticosteroids on brain growth in fetal sheep. Obstet Gynecol 94(2):213–218

    Article  CAS  PubMed  Google Scholar 

  7. Deutsch GH, Pinar H (2002) Prenatal Lung Development. In: Voelkel NF, MacNee W (eds) Chronic obstructive lung disease. BC Decker Inc, Hamilton

    Google Scholar 

  8. Harding R, Pinkerton KE, Plopper CG (2004) The lung: development, aging and the environment. Elsevir, London

    Google Scholar 

  9. Cardoso WV (2001) Molecular regulation of lung development. Annu Rev Physiol 63:471–494

    Article  CAS  PubMed  Google Scholar 

  10. Compernolle V, Brusselmans K, Acker T, Hoet P, Tjwa M, Beck H, Plaisance S, Dor Y, Keshet E, Lupu F, Nemery B, Dewerchin M, Van Veldhoven P, Plate K, Moons L, Collen D, Carmeliet P (2002) Loss of HIF-2alpha and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat Med 8(7):702–710

    CAS  PubMed  Google Scholar 

  11. Zeltner TB, Burri PH (1987) The postnatal development and growth of the human lung. II. Morphology. Respir Physiol 67(3):269–282

    Article  CAS  PubMed  Google Scholar 

  12. Jakkula M, Le Cras TD, Gebb S, Hirth KP, Tuder RM, Voelkel NF, Abman SH (2000) Inhibition of angiogenesis decreases alveolarization in the developing rat lung. Am J Physiol Lung Cell Mol Physiol 279(3):L600–L607

    CAS  PubMed  Google Scholar 

  13. Whitsett JA, Wert SE, Weaver TE (2010) Alveolar surfactant homeostasis and the pathogenesis of pulmonary disease. Annu Rev Med 61:105–119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Dobbs LG (1989) Pulmonary surfactant. Annu Rev Med 40:431–446

    Article  CAS  PubMed  Google Scholar 

  15. Bourbon JR, Rieutort M, Engle MJ, Farrell PM (1982) Utilization of glycogen for phospholipid synthesis in fetal rat lung. Biochim Biophys Acta 712(2):382–389

    Article  CAS  PubMed  Google Scholar 

  16. Shimoda LA, Semenza GL (2011) HIF and the lung: role of hypoxia-inducible factors in pulmonary development and disease. Am J Respir Crit Care Med 183(2):152–156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Weaver TE, Whitsett JA (1991) Function and regulation of expression of pulmonary surfactant-associated proteins. Biochem J 273(Pt 2):249–264

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Phelps DS, Floros J (1991) Localization of pulmonary surfactant proteins using immunohistochemistry and tissue in situ hybridization. Exp Lung Res 17(6):985–995

    Article  CAS  PubMed  Google Scholar 

  19. Madsen J, Kliem A, Tornoe I, Skjodt K, Koch C, Holmskov U (2000) Localization of lung surfactant protein D on mucosal surfaces in human tissues. J Immunol 164(11):5866–5870

    Article  CAS  PubMed  Google Scholar 

  20. Clark JC, Wert SE, Bachurski CJ, Stahlman MT, Stripp BR, Weaver TE, Whitsett JA (1995) Targeted disruption of the surfactant protein B gene disrupts surfactant homeostasis, causing respiratory failure in newborn mice. Proc Natl Acad Sci USA 92(17):7794–7798

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Nogee LM, Garnier G, Dietz HC, Singer L, Murphy AM, deMello DE, Colten HR (1994) A mutation in the surfactant protein B gene responsible for fatal neonatal respiratory disease in multiple kindreds. J Clin Invest 93(4):1860–1863

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Glasser SW, Detmer EA, Ikegami M, Na CL, Stahlman MT, Whitsett JA (2003) Pneumonitis and emphysema in sp-C gene targeted mice. J Biol Chem 278(16):14291–14298

    Article  CAS  PubMed  Google Scholar 

  23. Nogee LM (2010) Genetic basis of children’s interstitial lung disease. Pediatr Allergy Immunol Pulmonol 23(1):15–24

    Article  PubMed Central  PubMed  Google Scholar 

  24. Crouch E, Wright JR (2001) Surfactant proteins a and d and pulmonary host defense. Annu Rev Physiol 63:521–554

    Article  CAS  PubMed  Google Scholar 

  25. Kala P, Ten Have T, Nielsen H, Dunn M, Floros J (1998) Association of pulmonary surfactant protein A (SP-A) gene and respiratory distress syndrome: interaction with SP-B. Pediatr Res 43(2):169–177

    Article  CAS  PubMed  Google Scholar 

  26. Ikegami M, Jobe AH, Whitsett J, Korfhagen T (2000) Tolerance of SP-A-deficient mice to hyperoxia or exercise. J Appl Physiol 89(2):644–648

    CAS  PubMed  Google Scholar 

  27. Ikegami M, Korfhagen TR, Whitsett JA, Bruno MD, Wert SE, Wada K, Jobe AH (1998) Characteristics of surfactant from SP-A-deficient mice. Am J Physiol 275(2 Pt 1):L247–L254

    CAS  PubMed  Google Scholar 

  28. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380(6573):435–439

    Article  CAS  PubMed  Google Scholar 

  29. Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS, Powell-Braxton L, Hillan KJ, Moore MW (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380(6573):439–442

    Article  CAS  PubMed  Google Scholar 

  30. Kotch LE, Iyer NV, Laughner E, Semenza GL (1999) Defective vascularization of HIF-1alpha-null embryos is not associated with VEGF deficiency but with mesenchymal cell death. Dev Biol 209(2):254–267

    Article  CAS  PubMed  Google Scholar 

  31. Pugh CW, Ratcliffe PJ (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9(6):677–684

    Article  CAS  PubMed  Google Scholar 

  32. deMello DE, Sawyer D, Galvin N, Reid LM (1997) Early fetal development of lung vasculature. Am J Respir Cell Mol Biol 16(5):568–581

    Article  CAS  PubMed  Google Scholar 

  33. Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8(6):464–478

    Article  CAS  PubMed  Google Scholar 

  34. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438(7070):932–936

    Article  CAS  PubMed  Google Scholar 

  35. Semenza GL (2007) Vasculogenesis, angiogenesis, and arteriogenesis: mechanisms of blood vessel formation and remodeling. J Cell Biochem 102(4):840–847

    Article  CAS  PubMed  Google Scholar 

  36. Poole TJ, Finkelstein EB, Cox CM (2001) The role of FGF and VEGF in angioblast induction and migration during vascular development. Dev Dyn 220(1):1–17

    Article  CAS  PubMed  Google Scholar 

  37. Shalaby F, Ho J, Stanford WL, Fischer KD, Schuh AC, Schwartz L, Bernstein A, Rossant J (1997) A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell 89(6):981–990

    Article  CAS  PubMed  Google Scholar 

  38. Risau W (1997) Mechanisms of angiogenesis. Nature 386(6626):671–674

    Article  CAS  PubMed  Google Scholar 

  39. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Ferrara N (2009) VEGF-A: a critical regulator of blood vessel growth. Eur Cytokine Netw 20(4):158–163

    CAS  PubMed  Google Scholar 

  41. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9(6):653–660

    Article  CAS  PubMed  Google Scholar 

  42. Kather JN, Kroll J (2014) Transgenic mouse models of corneal neovascularization: new perspectives for angiogenesis research. Invest Ophthalmol Vis Sci 55(11):7637–7651

    Article  PubMed  Google Scholar 

  43. Peng T, Morrisey EE (2013) Development of the pulmonary vasculature: current understanding and concepts for the future. Pulmonary Circ 3(1):176–178

    Article  CAS  Google Scholar 

  44. Le Cras TD, Spitzmiller RE, Albertine KH, Greenberg JM, Whitsett JA, Akeson AL (2004) VEGF causes pulmonary hemorrhage, hemosiderosis, and air space enlargement in neonatal mice. Am J Physiol Lung Cell Mol Physiol 287(1):L134–L142

    Article  PubMed  Google Scholar 

  45. McGrath-Morrow SA, Cho C, Cho C, Zhen L, Hicklin DJ, Tuder RM (2005) Vascular endothelial growth factor receptor 2 blockade disrupts postnatal lung development. Am J Respir Cell Mol Biol 32(5):420–427

    Article  CAS  PubMed  Google Scholar 

  46. Zeng X, Wert SE, Federici R, Peters KG, Whitsett JA (1998) VEGF enhances pulmonary vasculogenesis and disrupts lung morphogenesis in vivo. Dev Dyn 211(3):215–227

    Article  CAS  PubMed  Google Scholar 

  47. Akeson AL, Cameron JE, Le Cras TD, Whitsett JA, Greenberg JM (2005) Vascular endothelial growth factor-A induces prenatal neovascularization and alters bronchial development in mice. Pediatr Res 57(1):82–88

    Article  CAS  PubMed  Google Scholar 

  48. Akeson AL, Greenberg JM, Cameron JE, Thompson FY, Brooks SK, Wiginton D, Whitsett JA (2003) Temporal and spatial regulation of VEGF-A controls vascular patterning in the embryonic lung. Dev Biol 264(2):443–455

    Article  CAS  PubMed  Google Scholar 

  49. Del Moral PM, Sala FG, Tefft D, Shi W, Keshet E, Bellusci S, Warburton D (2006) VEGF-A signaling through Flk-1 is a critical facilitator of early embryonic lung epithelial to endothelial crosstalk and branching morphogenesis. Dev Biol 290(1):177–188

    Article  PubMed  CAS  Google Scholar 

  50. Lassus P, Turanlahti M, Heikkila P, Andersson LC, Nupponen I, Sarnesto A, Andersson S (2001) Pulmonary vascular endothelial growth factor and Flt-1 in fetuses, in acute and chronic lung disease, and in persistent pulmonary hypertension of the newborn. Am J Respir Crit Care Med 164(10 Pt 1):1981–1987

    Article  CAS  PubMed  Google Scholar 

  51. van Tuyl M, Liu J, Wang J, Kuliszewski M, Tibboel D, Post M (2005) Role of oxygen and vascular development in epithelial branching morphogenesis of the developing mouse lung. Am J Physiol Lung Cell Mol Physiol 288(1):L167–L178

    Article  PubMed  CAS  Google Scholar 

  52. Rajatapiti P, van der Horst IW, de Rooij JD, Tran MG, Maxwell PH, Tibboel D, Rottier R, de Krijger RR (2008) Expression of hypoxia-inducible factors in normal human lung development. Pediatr Dev Pathol 11(3):193–199

    Article  CAS  PubMed  Google Scholar 

  53. Skuli N, Liu L, Runge A, Wang T, Yuan L, Patel S, Iruela-Arispe L, Simon MC, Keith B (2009) Endothelial deletion of hypoxia-inducible factor-2alpha (HIF-2alpha) alters vascular function and tumor angiogenesis. Blood 114(2):469–477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Woik N, Dietz CT, Schaker K, Kroll J (2014) Kelch-like ECT2-interacting protein KLEIP regulates late-stage pulmonary maturation via Hif-2alpha in mice. Dis Model Mech 7(6):683–692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Nacak TG, Alajati A, Leptien K, Fulda C, Weber H, Miki T, Czepluch FS, Waltenberger J, Wieland T, Augustin HG, Kroll J (2007) The BTB-Kelch protein KLEIP controls endothelial migration and sprouting angiogenesis. Circ Res 100(8):1155–1163

    Article  CAS  PubMed  Google Scholar 

  56. Hahn N, Dietz CT, Kuhl S, Vossmerbaeumer U, Kroll J (2012) KLEIP deficiency in mice causes progressive corneal neovascular dystrophy. Invest Ophthalmol Vis Sci 53(6):3260–3268

    Article  CAS  PubMed  Google Scholar 

  57. Kather JN, Friedrich J, Woik N, Sticht C, Gretz N, Hammes HP, Kroll J (2014) Angiopoietin-1 is regulated by miR-204 and contributes to corneal neovascularization in KLEIP-deficient mice. Invest Ophthalmol Vis Sci 55(7):4295–4303

    Article  CAS  PubMed  Google Scholar 

  58. Bucher U, Reid L (1961) Development of the intrasegmental bronchial tree: the pattern of branching and development of cartilage at various stages of intra-uterine life. Thorax 16:207–218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Metzger RJ, Klein OD, Martin GR, Krasnow MA (2008) The branching programme of mouse lung development. Nature 453(7196):745–750

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. DeLisser HM, Helmke BP, Cao G, Egan PM, Taichman D, Fehrenbach M, Zaman A, Cui Z, Mohan GS, Baldwin HS, Davies PF, Savani RC (2006) Loss of PECAM-1 function impairs alveolarization. J Biol Chem 281(13):8724–8731

    Article  CAS  PubMed  Google Scholar 

  61. Gebb SA, Shannon JM (2000) Tissue interactions mediate early events in pulmonary vasculogenesis. Dev Dyn 217(2):159–169

    Article  CAS  PubMed  Google Scholar 

  62. Curradi G, Walters MS, Ding BS, Rafii S, Hackett NR, Crystal RG (2012) Airway basal cell vascular endothelial growth factor-mediated cross-talk regulates endothelial cell-dependent growth support of human airway basal cells. Cell Mol Life Sci 69(13):2217–2231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Ahlbrecht K, Schmitz J, Seay U, Schwarz C, Mittnacht-Kraus R, Gaumann A, Haberberger RV, Herold S, Breier G, Grimminger F, Seeger W, Voswinckel R (2008) Spatiotemporal expression of flk-1 in pulmonary epithelial cells during lung development. Am J Respir Cell Mol Biol 39(2):163–170

    Article  CAS  PubMed  Google Scholar 

  64. Lazarus A, Keshet E (2011) Vascular endothelial growth factor and vascular homeostasis. Proc Am Thorac Soc 8(6):508–511

    Article  CAS  PubMed  Google Scholar 

  65. Lazarus A, Del-Moral PM, Ilovich O, Mishani E, Warburton D, Keshet E (2011) A perfusion-independent role of blood vessels in determining branching stereotypy of lung airways. Development 138(11):2359–2368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Semenza GL (2006) Development of novel therapeutic strategies that target HIF-1. Expert Opin Ther Targets 10(2):267–280

    Article  CAS  PubMed  Google Scholar 

  67. Charlesworth PJS, Harris AL (2008) Hypoxic Reguation of Angiogenesis by HIF-1. In: Figg WD, Folkman J (eds) Angiogenesis. Springer, Berlin

    Google Scholar 

  68. Semenza GL, Wang GL (1992) A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12(12):5447–5454

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Cook KM, Schofield CJ (2008) Therapeutic Strategies that Target the HIF System. In: Figg WD, Folkman J (eds) Angiogenesis. Springer, Berlin

    Google Scholar 

  70. Fraisl P, Mazzone M, Schmidt T, Carmeliet P (2009) Regulation of angiogenesis by oxygen and metabolism. Dev Cell 16(2):167–179

    Article  CAS  PubMed  Google Scholar 

  71. Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY, Semenza GL (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev 12(2):149–162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Ryan HE, Lo J, Johnson RS (1998) HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J 17(11):3005–3015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Maltepe E, Schmidt JV, Baunoch D, Bradfield CA, Simon MC (1997) Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 386(6623):403–407

    Article  CAS  PubMed  Google Scholar 

  74. Tian H, Hammer RE, Matsumoto AM, Russell DW, McKnight SL (1998) The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev 12(21):3320–3324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Peng J, Zhang L, Drysdale L, Fong GH (2000) The transcription factor EPAS-1/hypoxia-inducible factor 2alpha plays an important role in vascular remodeling. Proc Natl Acad Sci USA 97(15):8386–8391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Scortegagna M, Ding K, Oktay Y, Gaur A, Thurmond F, Yan LJ, Marck BT, Matsumoto AM, Shelton JM, Richardson JA, Bennett MJ, Garcia JA (2003) Multiple organ pathology, metabolic abnormalities and impaired homeostasis of reactive oxygen species in Epas1−/− mice. Nat Genet 35(4):331–340

    Article  CAS  PubMed  Google Scholar 

  77. Lee YM, Jeong CH, Koo SY, Son MJ, Song HS, Bae SK, Raleigh JA, Chung HY, Yoo MA, Kim KW (2001) Determination of hypoxic region by hypoxia marker in developing mouse embryos in vivo: a possible signal for vessel development. Dev Dyn 220(2):175–186

    Article  CAS  PubMed  Google Scholar 

  78. Wagner KF, Hellberg AK, Balenger S, Depping R, Dodd OJ, Johns RA, Li D (2004) Hypoxia-induced mitogenic factor has antiapoptotic action and is upregulated in the developing lung: coexpression with hypoxia-inducible factor-2alpha. Am J Respir Cell Mol Biol 31(3):276–282

    Article  CAS  PubMed  Google Scholar 

  79. Saini Y, Harkema JR, LaPres JJ (2008) HIF1alpha is essential for normal intrauterine differentiation of alveolar epithelium and surfactant production in the newborn lung of mice. J Biol Chem 283(48):33650–33657

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Huang Y, Kempen MB, Munck AB, Swagemakers S, Driegen S, Mahavadi P, Meijer D, van Ijcken W, van der Spek P, Grosveld F, Gunther A, Tibboel D, Rottier RJ (2012) Hypoxia-inducible factor 2alpha plays a critical role in the formation of alveoli and surfactant. Am J Respir Cell Mol Biol 46(2):224–232

    Article  CAS  PubMed  Google Scholar 

  81. Butler JM, Kobayashi H, Rafii S (2010) Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat Rev Cancer 10(2):138–146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Lammert E, Cleaver O, Melton D (2001) Induction of pancreatic differentiation by signals from blood vessels. Science 294(5542):564–567

    Article  CAS  PubMed  Google Scholar 

  83. Nikolova G, Strilic B, Lammert E (2007) The vascular niche and its basement membrane. Trends Cell Biol 17(1):19–25

    Article  CAS  PubMed  Google Scholar 

  84. Matsumoto K, Yoshitomi H, Rossant J, Zaret KS (2001) Liver organogenesis promoted by endothelial cells prior to vascular function. Science 294(5542):559–563

    Article  CAS  PubMed  Google Scholar 

  85. Nikolova G, Jabs N, Konstantinova I, Domogatskaya A, Tryggvason K, Sorokin L, Fassler R, Gu G, Gerber HP, Ferrara N, Melton DA, Lammert E (2006) The vascular basement membrane: a niche for insulin gene expression and Beta cell proliferation. Dev Cell 10(3):397–405

    Article  CAS  PubMed  Google Scholar 

  86. Serluca FC, Drummond IA, Fishman MC (2002) Endothelial signaling in kidney morphogenesis: a role for hemodynamic forces. Curr Biol 12(6):492–497

    Article  CAS  PubMed  Google Scholar 

  87. Ramasamy SK, Kusumbe AP, Adams RH (2015) Regulation of tissue morphogenesis by endothelial cell-derived signals. Trends Cell Biol 25(3):148–157

    Article  PubMed  Google Scholar 

  88. Hooper AT, Butler JM, Nolan DJ, Kranz A, Iida K, Kobayashi M, Kopp HG, Shido K, Petit I, Yanger K, James D, Witte L, Zhu Z, Wu Y, Pytowski B, Rosenwaks Z, Mittal V, Sato TN, Rafii S (2009) Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 4(3):263–274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Poulos MG, Guo P, Kofler NM, Pinho S, Gutkin MC, Tikhonova A, Aifantis I, Frenette PS, Kitajewski J, Rafii S, Butler JM (2013) Endothelial Jagged-1 is necessary for homeostatic and regenerative hematopoiesis. Cell Rep 4(5):1022–1034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Butler JM, Nolan DJ, Vertes EL, Varnum-Finney B, Kobayashi H, Hooper AT, Seandel M, Shido K, White IA, Kobayashi M, Witte L, May C, Shawber C, Kimura Y, Kitajewski J, Rosenwaks Z, Bernstein ID, Rafii S (2010) Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 6(3):251–264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Kobayashi H, Butler JM, O’Donnell R, Kobayashi M, Ding BS, Bonner B, Chiu VK, Nolan DJ, Shido K, Benjamin L, Rafii S (2010) Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nat Cell Biol 12(11):1046–1056

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Ramasamy SK, Kusumbe AP, Wang L, Adams RH (2014) Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 507(7492):376–380

    Article  CAS  PubMed  Google Scholar 

  93. Ding BS, Nolan DJ, Butler JM, James D, Babazadeh AO, Rosenwaks Z, Mittal V, Kobayashi H, Shido K, Lyden D, Sato TN, Rabbany SY, Rafii S (2010) Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 468(7321):310–315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Ding BS, Cao Z, Lis R, Nolan DJ, Guo P, Simons M, Penfold ME, Shido K, Rabbany SY, Rafii S (2014) Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature 505(7481):97–102

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  95. Hu J, Srivastava K, Wieland M, Runge A, Mogler C, Besemfelder E, Terhardt D, Vogel MJ, Cao L, Korn C, Bartels S, Thomas M, Augustin HG (2014) Endothelial cell-derived angiopoietin-2 controls liver regeneration as a spatiotemporal rheostat. Science 343(6169):416–419

    Article  CAS  PubMed  Google Scholar 

  96. Katare R, Riu F, Mitchell K, Gubernator M, Campagnolo P, Cui Y, Fortunato O, Avolio E, Cesselli D, Beltrami AP, Angelini G, Emanueli C, Madeddu P (2011) Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132. Circ Res 109(8):894–906

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Brumm AJ, Carmichael ST (2012) Not just a rush of blood to the head. Nat Med 18(11):1609–1610

    Article  CAS  PubMed  Google Scholar 

  98. Ding BS, Nolan DJ, Guo P, Babazadeh AO, Cao Z, Rosenwaks Z, Crystal RG, Simons M, Sato TN, Worgall S, Shido K, Rabbany SY, Rafii S (2011) Endothelial-derived angiocrine signals induce and sustain regenerative lung alveolarization. Cell 147(3):539–553

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Brantley-Sieders DM, Dunaway CM, Rao M, Short S, Hwang Y, Gao Y, Li D, Jiang A, Shyr Y, Wu JY, Chen J (2011) Angiocrine factors modulate tumor proliferation and motility through EphA2 repression of Slit2 tumor suppressor function in endothelium. Cancer Res 71(3):976–987

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Cao Z, Ding BS, Guo P, Lee SB, Butler JM, Casey SC, Simons M, Tam W, Felsher DW, Shido K, Rafii A, Scandura JM, Rafii S (2014) Angiocrine factors deployed by tumor vascular niche induce B cell lymphoma invasiveness and chemoresistance. Cancer Cell 25(3):350–365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Fan Y, Potdar AA, Gong Y, Eswarappa SM, Donnola S, Lathia JD, Hambardzumyan D, Rich JN, Fox PL (2014) Profilin-1 phosphorylation directs angiocrine expression and glioblastoma progression through HIF-1alpha accumulation. Nat Cell Biol 16(5):445–456

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Radojcic V, Maillard I (2014) A jagged road to lymphoma aggressiveness. Cancer Cell 25(3):261–263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Kotton DN, Morrisey EE (2014) Lung regeneration: mechanisms, applications and emerging stem cell populations. Nat Med 20(8):822–832

    Article  CAS  PubMed  Google Scholar 

  104. Kumar PA, Hu Y, Yamamoto Y, Hoe NB, Wei TS, Mu D, Sun Y, Joo LS, Dagher R, Zielonka EM, de Wang Y, Lim B, Chow VT, Crum CP, Xian W, McKeon F (2011) Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection. Cell 147(3):525–538

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Lee JH, Bhang DH, Beede A, Huang TL, Stripp BR, Bloch KD, Wagers AJ, Tseng YH, Ryeom S, Kim CF (2014) Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis. Cell 156(3):440–455

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Beronja S, Fuchs E (2011) A breath of fresh air in lung regeneration. Cell 147(3):485–487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Rafii S, Cao Z, Lis R, Siempos II, Chavez D, Shido K, Rabbany SY, Ding BS (2015) Platelet-derived SDF-1 primes the pulmonary capillary vascular niche to drive lung alveolar regeneration. Nat Cell Biol 17(2):123–136

    Article  CAS  PubMed  Google Scholar 

  108. Panigrahy D, Kalish BT, Huang S, Bielenberg DR, Le HD, Yang J, Edin ML, Lee CR, Benny O, Mudge DK, Butterfield CE, Mammoto A, Mammoto T, Inceoglu B, Jenkins RL, Simpson MA, Akino T, Lih FB, Tomer KB, Ingber DE, Hammock BD, Falck JR, Manthati VL, Kaipainen A, D’Amore PA, Puder M, Zeldin DC, Kieran MW (2013) Epoxyeicosanoids promote organ and tissue regeneration. Proc Natl Acad Sci USA 110(33):13528–13533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by a grant from Deutsche Forschungsgemeinschaft (SFB/TR23 “Vascular Differentiation and Remodeling”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Kroll.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woik, N., Kroll, J. Regulation of lung development and regeneration by the vascular system. Cell. Mol. Life Sci. 72, 2709–2718 (2015). https://doi.org/10.1007/s00018-015-1907-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1907-1

Keywords

Navigation