Butel JS (2000) Viral carcinogenesis: revelation of molecular mechanisms and etiology of human disease. Carcinogenesis 21:405–426
PubMed
CAS
Google Scholar
Baltimore D (1971) Expression of animal virus genomes. Bacteriol Rev 35:235–241
PubMed
CAS
PubMed Central
Google Scholar
Fraaij PL, Bodewes R, Osterhaus AD, Rimmelzwaan GF (2011) The ins and outs of universal childhood influenza vaccination. Future Microbiol 6:1171–1184
PubMed
Google Scholar
Medina RA, García-Sastre A (2011) Influenza A viruses: new research developments. Nat Rev Microbiol 9:590–603
PubMed
CAS
Google Scholar
Patel MM, Glass R, Desai R, Tate JE, Parashar UD (2012) Fulfilling the promise of rotavirus vaccines: how far have we come since licensure? Lancet Infect Dis 12:561–570
PubMed
Google Scholar
Kyle JL, Harris E (2008) Global spread and persistence of dengue. Ann Rev Microbiol 62:71–92
CAS
Google Scholar
Perlman S, Netland J (2009) Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Micro 7:439–450
CAS
Google Scholar
Assiri A, McGeer A, Perl TM, Price CS, Al Rabeeah AA, Cummings DA, Alabdullatif ZN, Assad M, Almulhim A, Makhdoom H, Madani H, Alhakeem R, Al-Tawfiq JA, Cotten M, Watson SJ, Kellam P, Zumla AI, Memish ZA, KSA MERS-CoV Investigation Team (2013) Hospital outbreak of middle east respiratory syndrome coronavirus. N Engl J Med 369:407–416
PubMed
CAS
PubMed Central
Google Scholar
Elliot RM, Brennan B (2014) Emerging pleboviruses. Curr Opin Virol 5:50–57
Google Scholar
Bruenn JA (2003) A structural and primary sequence comparison of the viral RNA-dependent RNA polymerase. Nucleic Acids Res 31:1821–1829
PubMed
CAS
PubMed Central
Google Scholar
Bruenn JA (1991) Relationships among the positive strand and double-strand RNA viruses as viewed through their RNA-dependent RNA polymerases. Nucleic Acids Res 19:217–226
PubMed
CAS
PubMed Central
Google Scholar
Hu WS, Hughes SH (2012) HIV-1 reverse transcription. Cold Spring Harb Perspect Med 2:a006882
PubMed
PubMed Central
Google Scholar
Gorbalenya AE, Pringle FM, Zeddam J, Luke BT, Cameron CE, Kalmakoff J, Hanzlik TN, Gordon KH, Ward VK (2002) The palm subdomain-based active site is internally permuted in viral RNA-dependent RNA polymerases of an ancient lineage. J Mol Biol 324:47–62
PubMed
CAS
Google Scholar
Gorbalenya A, Pringle F, Zeddam J, Luke B, Cameron C, Kalmakoff J, Hanzlik T, Gordon K, Ward V (2002) The palm subdomain-based active site is internally permuted in viral RNA-dependent RNA polymerases of an ancient lineage. J Mol Biol 324:47–62
PubMed
CAS
Google Scholar
Lang DM, Zemla AT, Zhou CL (2013) Highly similar structural frames link the template tunnel and NTP entry tunnel to the exterior surface in RNA-dependent RNA polymerases. Nucleic Acids Res 41:1464–1482
PubMed
CAS
PubMed Central
Google Scholar
Hansen JL, Long AM, Schultz SC (1997) Structure of the RNA-dependent RNA polymerase of poliovirus. Structure 5:1109–1122
PubMed
CAS
Google Scholar
Tao L, Farsetta DL, Nibert ML, Harrison SC (2002) RNA Synthesis in a Cage—structural studies of reovirus polymerase λ3. Cell 111:733–745
PubMed
CAS
Google Scholar
Butcher SJ, Grimes JM, Makeyev EV, Bamford DH, Stuart DI (2001) A mechanism for initiating RNA-dependent RNA polymerization. Nature 410:235–240
PubMed
CAS
Google Scholar
Bressanelli S, Tomei L, Rey FA, De Francesco R (2002) Structural analysis of the hepatitis C virus RNA polymerase in complex with ribonucleotides. J Virol 76:3482–3492
PubMed
CAS
PubMed Central
Google Scholar
Gong P, Peersen OB (2010) Structural basis for active site closure by the poliovirus RNA-dependent RNA polymerase. Proc Natl Acad Sci USA 107:22505–22510
PubMed
CAS
PubMed Central
Google Scholar
Ding J, Das K, Hsiou Y, Sarafianos SG, Clark JA, Jacobo-Molina A, Tantillo C, Hughes SH, Arnold E (1998) Structure and functional implications of the polymerase active site region in a complex of HIV-1 RT with double-stranded DNA and an antibody Fab fragment at 2.8 Å resolution. J Mol Biol 284:1095–1111
PubMed
CAS
Google Scholar
Pan J, Vakharia VN, Tao YJ (2007) The structure of a birnavirus polymerase reveals a distinct active site topology. Proc Natl Acad Sci USA 104:7385–7390
PubMed
CAS
PubMed Central
Google Scholar
Ferrer-Orta C, Arias A, Escarmís C, Verdaguer N (2006) A comparison of viral RNA-dependent RNA polymerases. Curr Opin Struct Biol 16:27–34
PubMed
CAS
Google Scholar
Choi KH, Rossmann MG (2009) RNA-dependent RNA polymerases from Flaviviridae. Curr Opin Struct Biol 19:746–751
PubMed
CAS
Google Scholar
Yap TL, Xu T, Chen Y-L, Malet H, Egloff M-P, Canard B, Vasudevan SG, Lescar J (2007) Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution. J Virol 81:4753–4765
PubMed
CAS
PubMed Central
Google Scholar
Wright S, Poranen MM, Bamford DH, Stuart DI, Grimes JM (2012) Noncatalytic ions direct the RNA-dependent RNA polymerase of bacterial double-stranded RNA virus ϕ6 from de novo initiation to elongation. J Virol 86:2837–2849
PubMed
CAS
PubMed Central
Google Scholar
Moustafa IM, Shen H, Morton B, Colina CM, Cameron CE (2011) Molecular dynamics simulations of viral RNA polymerases link conserved and correlated motions of functional elements to fidelity. J Mol Biol 410:159–181
PubMed
CAS
PubMed Central
Google Scholar
Lesburg CA, Cable MB, Ferrari E, Hong Z, Mannarino AF, Weber PC (1999) Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site. Nat Struct Biol 6:937–943
PubMed
CAS
Google Scholar
Hobson SD, Rosenblum ES, Richards OC, Richmond K, Kirkegaard K, Schultz SC (2001) Oligomeric structures of poliovirus polymerase are important for function. EMBO J 20:1153–1163
PubMed
CAS
PubMed Central
Google Scholar
Pathak HB, Ghosh SK, Roberts AW, Sharma SD, Yoder JD, Arnold JJ, Gohara DW, Barton DJ, Paul AV, Cameron CE (2002) Structure–function relationships of the RNA-dependent RNA polymerase from poliovirus (3Dpol): a surface of the primary oligomerization domain functions in capsid precursor processing and VPg uridylylation. J Biol Chem 277:31551–31562
PubMed
CAS
Google Scholar
Johansson M, Brooks AJ, Jans DA, Vasudevan SG (2001) A small region of the dengue virus-encoded RNA-dependent RNA polymerase, NS5, confers interaction with both the nuclear transport receptor importin-β and the viral helicase, NS3. J Gen Virol 82:735–745
PubMed
CAS
Google Scholar
Jablonski SA, Morrow CD (1995) Mutation of the aspartic acid residues of the GDD sequence motif of poliovirus RNA-dependent RNA polymerase results in enzymes with altered metal ion requirements for activity. J Virol 69:1532–1539
PubMed
CAS
PubMed Central
Google Scholar
te Velthuis AJ, Arnold JJ, Cameron CE, van den Worm SH, Snijder EJ (2010) The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent. Nucleic Acids Res 38:203–214
Google Scholar
Ogden KM, Ramanathan HN, Patton JT (2012) Mutational analysis of residues involved in nucleotide and divalent cation stabilization in the rotavirus RNA-dependent RNA polymerase catalytic pocket. Virology 431:12–20
PubMed
CAS
PubMed Central
Google Scholar
Valverde-Garduño V, Gariglio P, Gutiérrez L (1998) Functional analysis of HIV-1 reverse transcriptase motif C: site-directed mutagenesis and metal cation interaction. J Mol Evol 47:73–80
PubMed
Google Scholar
Vreede FT, Jung TE, Brownlee GG (2004) Model suggesting that replication of influenza virus is regulated by stabilization of replicative intermediates. J Virol 78:9568–9572
PubMed
CAS
PubMed Central
Google Scholar
Castro C, Smidansky E, Maksimchuk KR, Arnold JJ, Korneeva VS, Götte M, Konigsberg W, Cameron CE (2007) Two proton transfers in the transition state for nucleotidyl transfer catalyzed by RNA- and DNA-dependent RNA and DNA polymerases. Proc Natl Acad Sci USA 104(11):4267–4272
PubMed
CAS
PubMed Central
Google Scholar
Castro C, Smidansky ED, Arnold JJ, Maksimchuk KR, Moustafa I, Uchida A, Gotte M, Konigsberg W, Cameron CE (2009) Nucleic acid polymerases use a general acid for nucleotidyl transfer. Nat Struct Mol Biol 16:212–218
PubMed
CAS
PubMed Central
Google Scholar
Biswas SK, Nayak DP (1994) Mutational analysis of the conserved motifs of influenza A virus polymerase basic protein 1. J Virol 68:1819–1826
PubMed
CAS
PubMed Central
Google Scholar
Chu C, Fan S, Li C, Macken C, Kim JH, Hatta M, Neumann G, Kawaoka Y (2012) Functional analysis of conserved motifs in influenza virus PB1 protein. PLoS One 7:e36113
PubMed
CAS
PubMed Central
Google Scholar
Lai VC, Kao CC, Ferrari E, Park J, Uss AS, Wright-Minogue J, Hong Z, Lau JY (1999) Mutational analysis of bovine viral diarrhea virus RNA-dependent RNA polymerase. J Virol 73:10129–10136
PubMed
CAS
PubMed Central
Google Scholar
Lohmann V, Korner F, Herian U, Bartenschlager R (1997) Biochemical properties of hepatitis C virus NS5B RNA-depedent RNA polymerease and identification of amino acid sequence motifs essential for enzymatic activity. J Virol 71:8416–8428
PubMed
CAS
PubMed Central
Google Scholar
Steitz TA (1998) A mechanism for all polymerases. Nature 391:231–232
PubMed
CAS
Google Scholar
Yang X, Smidansky ED, Maksimchuk KR, Lum D, Welch JL, Arnold JJ, Cameron CE, Boehr DD (2012) Motif D of viral RNA-dependent RNA polymerases determines efficiency and fidelity of nucleotide addition. Structure 20:1519–1527
PubMed
CAS
PubMed Central
Google Scholar
Shen H, Sun H, Li G (2012) What is the role of motif D in the nucleotide incorporation catalyzed by the RNA-dependent RNA polymerase from poliovirus? PLoS Comput Biol 8:e1002851
PubMed
CAS
PubMed Central
Google Scholar
Liu X, Yang X, Lee CA, Moustafa IM, Smidansky ED, Lum D, Arnold JJ, Cameron CE, Boehr DD (2013) Vaccine-derived mutation in motif D of poliovirus RNA-dependent RNA polymerase lowers nucleotide incorporation fidelity. J Biol Chem 288:32753–32765
PubMed
CAS
Google Scholar
Ferrer-Orta C, Arias A, Pérez-Luque R, Escarmís C, Domingo E, Verdaguer N (2007) Sequential structures provide insights into the fidelity of RNA replication. Proc Natl Acad Sci USA 104:9463–9468
PubMed
CAS
PubMed Central
Google Scholar
Gohara DW, Crotty S, Arnold JJ, Yoder JD, Andino R, Cameron CE (2000) Poliovirus RNA-dependent RNA polymerase (3Dpol): structural, biochemical, and biological analysis of conserved structural motifs A and B. J Biol Chem 275:25523–25532
PubMed
CAS
Google Scholar
Sankar S, Porter AG (1992) Point mutations which drastically affect the polymerization activity of encephalomyocarditis virus RNA-dependent RNA polymerase correspond to the active site of Escherichia coli DNA polymerase I. J Biol Chem 267:10168–10176
PubMed
CAS
Google Scholar
Morin B, Coutard B, Lelke M, Ferron F, Kerber R, Jamal S, Frangeul A, Baronti C, Charrel R, de Lamballerie X, Vonrhein C, Lescar J, Bricogne G, Günther S, Canard B (2010) The N-terminal domain of the arenavirus L protein is an RNA endonuclease essential in mRNA transcription. PLoS Pathog 6:e1001038
PubMed
PubMed Central
Google Scholar
Reguera J, Weber F, Cusack S (2010) Bunyaviridae RNA polymerases (L-protein) have an N-terminal, influenza-like endonuclease domain, essential for viral cap-dependent transcription. PLoS Pathog 6:e1001101
PubMed
PubMed Central
Google Scholar
Rahmeh AA, Schenk AD, Danek EI, Kranzusch PJ, Liang B, Walz T, Whelan SP (2010) Molecular architecture of the vesicular stomatitis virus RNA polymerase. Proc Natl Acad Sci USA 107:20075–20080
PubMed
CAS
PubMed Central
Google Scholar
Li J, Fontaine-Rodriguez EC, Whelan SP (2005) Amino acid residues within conserved domain VI of the vesicular stomatitis virus large polymerase protein essential for mRNA cap methyltransferase activity. J Virol 79:13373–13384
PubMed
CAS
PubMed Central
Google Scholar
Ogino T, Yadav SP, Banerjee AK (2010) Histidine-mediated RNA transfer to GDP for unique mRNA capping by vesicular stomatitis virus RNA polymerase. Proc Natl Acad Sci USA 107:3463–3468
PubMed
CAS
PubMed Central
Google Scholar
Egloff MP, Benarroch D, Selisko B, Romette JL, Canard B (2002) An RNA cap (nucleoside-2′-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J 21:2757–2768
PubMed
CAS
PubMed Central
Google Scholar
Issur M, Geiss BJ, Bougie I, Picard-Jean F, Despins S, Mayette J, Hobdey SE, Bisaillon M (2009) The flavivirus NS5 protein is a true RNA guanylyltransferase that catalyzes a two-step reaction to form the RNA cap structure. RNA 15:2340–2350
PubMed
CAS
PubMed Central
Google Scholar
Kranzusch PJ, Whelan SP (2012) Architecture and regulation of negative-strand viral enzymatic machinery. RNA Biol 9:941–948
PubMed
CAS
PubMed Central
Google Scholar
Ogino T, Kobayashi M, Iwama M, Mizumoto K (2005) Sendai virus RNA-dependent RNA polymerase L protein catalyzes cap methylation of virus-specific mRNA. J Biol Chem 280:4429–4435
PubMed
CAS
Google Scholar
Dias A, Bouvier D, Crépin T, McCarthy AA, Hart DJ, Baudin F, Cusack S, Ruigrok RW (2009) The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature 458:914–918
PubMed
CAS
Google Scholar
Ruigrok RW, Crepin T, Hart DJ, Cusack S (2010) Towards an atomic resolution understanding of the influenza virus replication machinery. Curr Opin Struct Biol 20:104–113
PubMed
CAS
Google Scholar
Hostomsky Z, Hostomska Z, Fu TB, Taylor J (1992) Reverse transcriptase of human immunodeficiency virus type 1: functionality of subunits of the heterodimer in DNA synthesis. J Virol 66:3179–3182
PubMed
CAS
PubMed Central
Google Scholar
Wang J, Smerdon SJ, Jäger J, Kohlstaedt LA, Rice PA, Friedman JM, Steitz TA (1991) Structural basis of asymmetry in the human immunodeficiency virus type 1 reverse transcriptase heterodimer. Proc Natl Acad Sci USA 91:7242–7246
Google Scholar
Sarafianos SG, Marchand B, Das K, Himmel DM, Parniak MA, Hughes SH, Arnold E (2009) Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition. J Mol Biol 385:693–713
PubMed
CAS
PubMed Central
Google Scholar
Telesnitsky A, Goff SP (1993) Two defective forms of reverse transcriptase can complement to restore retroviral infectivity. EMBO J 12:4433–4438
PubMed
CAS
PubMed Central
Google Scholar
Liu S, Abbondanzieri EA, Rausch JW, Le Grice SF, Zhuang X (2008) Slide into action: dynamic shuttling of HIV reverse transcriptase on nucleic acid substrates. Science 322:1092–1097
PubMed
CAS
PubMed Central
Google Scholar
Abbondanzieri EA, Bokinsky G, Rausch JW, Zhang JX, Le Grice SF, Zhuang X (2008) Dynamic binding orientations direct activity of HIV reverse transcriptase. Nature 453:184–189
PubMed
CAS
PubMed Central
Google Scholar
Joyce CM (1989) How DNA travels between the separate polymerase and 3′-5′-exonuclease sites of DNA polymerase I (Klenow fragment). J Biol Chem 264:10858–10866
PubMed
CAS
Google Scholar
Steitz T, Yin Y (2004) Accuracy, lesion bypass, strand displacement and translocation by DNA polymerases. Philos Trans R Soc Lond B Biol Sci 359:17–23
PubMed
CAS
PubMed Central
Google Scholar
Spagnolo JF, Rossignol E, Bullitt E, Kirkegaard K (2010) Enzymatic and nonenzymatic functions of viral RNA-dependent RNA polymerases within oligomeric arrays. RNA 16:382–393
PubMed
PubMed Central
Google Scholar
Lyle JM, Bullitt E, Bienz K, Kirkegaard K (2002) Visualization and functional analysis of RNA-dependent RNA polymerase lattices. Science 296:2218–2222
PubMed
CAS
Google Scholar
Högbom M, Jäger K, Robel I, Unge T, Rohayem J (2009) The active form of the norovirus RNA-dependent RNA polymerase is a homodimer with cooperative activity. J Gen Virol 90:281–291
PubMed
Google Scholar
Bentham M, Holmes K, Forrest S, Rowlands DJ, Stonehouse NJ (2012) Formation of higher-order foot-and-mouth disease virus 3Dpol complexes is dependent on elongation activity. J Virol 86:2371–2374
PubMed
CAS
PubMed Central
Google Scholar
Luo G, Hamatake RK, Mathis DM, Racela J, Rigat KL, Lemm J, Colonno RJ (2000) De novo initiation of RNA synthesis by the RNA-dependent RNA polymerase (NS5B) of hepatitis C virus. J Virol 74:851–863
PubMed
CAS
PubMed Central
Google Scholar
Chinnaswamy S, Murali A, Li P, Fujisaki K, Kao CC (2010) Regulation of de novo-initiated RNA synthesis in hepatitis C virus RNA-dependent RNA polymerase by intermolecular interactions. J Virol 84:5923–5935
PubMed
CAS
PubMed Central
Google Scholar
Tellez AB, Wang J, Tanner EJ, Spagnolo JF, Kirkegaard K, Bullitt E (2011) Interstitial contacts in an RNA-dependent RNA polymerase lattice. J Mol Biol 412:737–750
PubMed
CAS
PubMed Central
Google Scholar
Jorba N, Area E, Ortin J (2007) Oligomerization of the influenza virus polymerase complex in vivo. J Gen Virol 89:520–524
Google Scholar
York A, Hengrung N, Vreede FT, Huiskonen J, Fodor E (2013) Isolation and characterization of the positive-sense replicative intermediate of a negative-strand RNA virus. Proc Natl Acad Sci USA 110:E4238–E4245
PubMed
CAS
PubMed Central
Google Scholar
Jorba N, Coloma R, Ortin J (2009) Genetic trans-complementation establishes a new model for influenza virus RNA transcription and replication. PLoS Pathog 5:e1000462
PubMed
PubMed Central
Google Scholar
Moeller A, Kirchdoerfer RN, Potter CS, Carragher B, Wilson IA (2012) Organization of the influenza virus replication machinery. Science 338:1631–1634
PubMed
CAS
PubMed Central
Google Scholar
Imbert I, Guillemot J, Bourhis J, Bussetta C, Coutard B, Egloff M, Ferron F, Gorbalenya A, Canard B (2006) A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J 25:4933–4942
PubMed
CAS
PubMed Central
Google Scholar
Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LL, Guan Y, Rozanov M, Spaan WJ, Gorbalenya AE (2003) Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 331:991–1004
PubMed
CAS
Google Scholar
Boursnell MEG, Brown TD, Foulds IJ, Green PF, Tomley FM, Binns MM (1987) Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. J Gen Virol 68:57–77
PubMed
CAS
Google Scholar
Xu X, Liu Y, Weiss S, Arnold E, Sarafianos SG, Ding J (2003) Molecular model of SARS coronavirus polymerase: implications for biochemical functions and drug design. Nucleic Acids Res 31:7117–7130
PubMed
CAS
PubMed Central
Google Scholar
te Velthuis AJ, van den Worm SH, Snijder EJ (2012) The SARS-coronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension. Nucleic Acids Res 40:1737–1747
Google Scholar
Xiao Y, Ma Q, Restle T, Shang W, Svergun D, Ponnusamy R, Sczakiel G, Hilgenfeld R (2012) Nonstructural proteins 7 and 8 of feline coronavirus form a 2:1 heterotrimer that exhibits primer-independent RNA polymerase activity. J Virol 40:4444–4454
Google Scholar
Fodor E, Pritlove DC, Brownlee GG (1994) The influenza virus panhandle is involved in the initiation of transcription. J Virol 68:4092–4096
PubMed
CAS
PubMed Central
Google Scholar
Barr JN, Wertz GW (2004) Bunyamwera bunyavirus RNA synthesis requires cooperation of 3′- and 5′-terminal sequences. J Virol 78:1129–1138
PubMed
CAS
PubMed Central
Google Scholar
Flick R, Hobom G (1999) Interaction of influenza virus polymerase with viral RNA in the ‘corkscrew’ conformation. J Gen Virol 80:2565–2572
PubMed
CAS
Google Scholar
Hsu MT, Parvin JD, Gupta S, Krystal M, Palese P (1987) Genomic RNAs of influenza viruses are held in a circular conformation in virions and in infected cells by a terminal panhandle. Proc Natl Acad Sci USA 84:8140–8144
PubMed
CAS
PubMed Central
Google Scholar
Baudin F, Bach C, Cusack S, Ruigrok R (1994) Structure of influenza virus RNP. I. Influenza virus nucleoprotein melts secondary structure in panhandle RNA and exposes the bases to the solvent. EMBO J 13:3158–3165
PubMed
CAS
PubMed Central
Google Scholar
Deng T, Vreede F, Brownlee GG (2006) Different de novo initiation strategies are used by influenza virus RNA polymerase on its cRNA and viral RNA promoters during viral RNA replication. J Virol 80:2337–2348
PubMed
CAS
PubMed Central
Google Scholar
Leahy MB, Zecchin G, Brownlee GG (2002) Differential activation of influenza A virus endonuclease activity is dependent on multiple sequence differences between the virion RNA and cRNA promoters. J Virol 76:2019–2023
PubMed
CAS
PubMed Central
Google Scholar
te Velthuis AJ, Turrell L, Vreede FT, Fodor E (2013) Uncoupling of influenza A virus transcription and replication through mutation of the unpaired adenosine in the viral RNA promoter. J Virol 87:10381–10384
Google Scholar
Tchatalbachev S, Flick R, Hobom G (2001) The packaging signal of influenza viral RNA molecules. RNA 7:979–989
PubMed
CAS
PubMed Central
Google Scholar
Paterson D, te Velthuis AJ, Vreede FT, Fodor E (2014) Host restriction of influenza virus polymerase activity by PB2 627E is diminished on short viral templates in a nucleoprotein-independent manner. J Virol 88:339–344
PubMed
CAS
PubMed Central
Google Scholar
Filomatori CV, Lodeiro MF, Alvarez DE, Samsa MM, Pietrasanta L, Gamarnik AV (2006) A 5’ RNA element promotes dengue virus RNA synthesis on a circular genome. Genes Dev 20:2238–2249
PubMed
CAS
PubMed Central
Google Scholar
Filomatori CV, Iglesias NG, Villordo SM, Alvarez DE, Gamarnik AV (2011) RNA sequences and structures required for the recruitment and activity of the dengue virus polymerase. J Biol Chem 286:6929–6939
PubMed
CAS
PubMed Central
Google Scholar
Brinton MA, Fernandez AV, Dispoto JH (1986) The 3′-nucleotides of flavivirus genomic RNA form a conserved secondary structure. Virology 153:113–121
PubMed
CAS
Google Scholar
Proutski V, Gould EA, Holmes EC (1997) Secondary structure of the 3′ untranslated region of flaviviruses: similarities and differences. Nucleic Acid Res 25:1194–1202
PubMed
CAS
PubMed Central
Google Scholar
Khromykh AA, Kondratieva N, Sgro Y, Palmenberg A, Westaway EG (2003) Significance in replication of the terminal nucleotides of the flavivirus genome. J Virol 77:10623–10629
PubMed
CAS
PubMed Central
Google Scholar
Nomaguchi M, Ackermann M, Yon C, You S, Padmanabhan R (2003) De novo synthesis of negative-strand RNA by Dengue virus RNA-dependent RNA polymerase in vitro: nucleotide, primer, and template parameters. J Virol 77:8831–8842
PubMed
CAS
PubMed Central
Google Scholar
Chen J, Noueiry A, Ahlquist P (2003) An alternate pathway for recruiting template RNA to the brome mosaic virus RNA replication complex. J Virol 77:2568–2577
PubMed
CAS
PubMed Central
Google Scholar
Subba-Reddy CV, Tragesser B, Xu Z, Stein B, Ranjith-Kumar CT, Kao CC (2012) RNA synthesis by the brome mosaic virus RNA-dependent RNA polymerase in human cells reveals requirements for de novo initiation and protein–protein interaction. J Virol 86:4317–4327
PubMed
CAS
PubMed Central
Google Scholar
Hema M, Kao CC (2004) Template sequence near the initiation nucleotide can modulate brome mosaic virus RNA accumulation in plant protoplasts. J Virol 78:1169–1180
PubMed
CAS
PubMed Central
Google Scholar
Beerens N, Selisko B, Ricagno S, Imbert I, van der Zanden L, Snijder EJ, Canard B (2007) De novo initiation of RNA synthesis by the arterivirus RNA-dependent RNA polymerase. J Virol 81:8384–8395
PubMed
CAS
PubMed Central
Google Scholar
Kranzusch PJ, Schenk AD, Rahmeh AA, Radoshitzky SR, Bavari S, Walz T, Whelan SP (2010) Assembly of a functional machupo virus polymerase complex. Proc Natl Acad Sci USA 107:20069–20074
PubMed
CAS
PubMed Central
Google Scholar
Vogt DA, Andino R (2010) An RNA element at the 5′-end of the poliovirus genome functions as a general promoter for RNA synthesis. PLoS Pathog 6:e1000936
PubMed
PubMed Central
Google Scholar
Gamarnik AV, Andino R (1997) Two functional complexes formed by KH domain containing proteins with the 5′ noncoding region of poliovirus RNA. RNA 3:882–892
PubMed
CAS
PubMed Central
Google Scholar
Andino R, Rieckhof GE, Achacoso PL, Baltimore D (1993) Poliovirus RNA synthesis utilizes an RNP complex formed around the 5′-end of viral RNA. EMBO J 12:3587–3598
PubMed
CAS
PubMed Central
Google Scholar
Andino R, Rieckhof GE, Baltimore D (1990) A functional ribonucleoprotein complex forms around the 5′ end of poliovirus RNA. Cell 63:369–380
PubMed
CAS
Google Scholar
Herold J, Andino R (2001) Poliovirus RNA replication requires genome circulization through a protein bridge. Mol Cell 7:581–591
PubMed
CAS
Google Scholar
Paul AV, Yin J, Mugavero J, Rieder E, Liu Y, Wimmer E (2003) A “slide-back” mechanism for the initiation of protein-primed RNA synthesis by the RNA polymerase of poliovirus. J Biol Chem 278:43951–43960
PubMed
CAS
Google Scholar
Thompson AA, Peersen OB (2004) Structural basis for proteolysis-dependent activation of the poliovirus RNA-dependent RNA polymerase. EMBO J 23:3462–3471
PubMed
CAS
PubMed Central
Google Scholar
Steil BP, Barton DJ (2009) Conversion of VPg into VPgpUpUOH before and during poliovirus negative-strand RNA synthesis. J Virol 83:12660–12670
PubMed
CAS
PubMed Central
Google Scholar
Garcin D, Lezzi M, Dobbs M, Elliott RM, Schmaljohn C, Kang CY, Kolakofsky D (1995) The 5′ ends of hantaan virus (Bunyaviridae) RNAs suggest a prime-and-realign mechanism for the initiation of RNA synthesis. J Virol 69:5754–5762
PubMed
CAS
PubMed Central
Google Scholar
Chinnaswamy S, Yarbrough I, Palaninathan S, Kumar CT, Vijayaraghavan V, Demeler B, Lemon SM, Sacchettini JC, Kao CC (2008) A locking mechanism regulates RNA synthesis and host protein interaction by the hepatitis C virus polymerase. J Biol Chem 283:20535–20546
PubMed
CAS
PubMed Central
Google Scholar
Surana P, Satchidanandam V, Nair DT (2014) RNA-dependent RNA polymerase of Japanese encephalitis virus binds the initiator nucleotide GTP to form a mechanistically important pre-initiation state. Nucleic Acids Res 42:2758–2773
PubMed
CAS
PubMed Central
Google Scholar
Poranen M, Salgado P, Koivunen M, Wright S, Bamford D, Stuart D, Grimes J (2008) Structural explanation for the role of Mn2+ in the activity of phi6 RNA-dependent RNA polymerase. Nucleic Acids Res 36:6633–6644
PubMed
CAS
PubMed Central
Google Scholar
Gong P, Kortus MG, Nix JC, Davis RE, Peersen OB (2013) Structures of coxsackievirus, rhinovirus, and poliovirus polymerase elongation complexes solved by engineering RNA mediated crystal contacts. PLoS One 8:e60272
PubMed
CAS
PubMed Central
Google Scholar
Arnold JJ, Cameron CE (1999) Poliovirus RNA-dependent RNA polymerase (3Dpol) is sufficient for template switching in vitro. J Biol Chem 274:2706–2716
PubMed
CAS
Google Scholar
Hong Z, Cameron CE, Walker MP, Castro C, Yao N, Lau JY, Zhong W (2001) A novel mechanism to ensure terminal initiation by hepatitis C virus NS5B polymerase. Virology 285:6–11
PubMed
CAS
Google Scholar
Laurila MR, Makeyev EV, Bamford DH (2001) Bacteriophage π6 RNA-dependent RNA polymerase: molecular details of initiating nucleic acid synthesis without primer. J Biol Chem 277:17117–17124
Google Scholar
Mosley RT, Edwards TE, Murakami E, Lam AM, Grice RL, Du J, Sofia MJ, Furman PA, Otto MJ (2012) tructure of hepatitis C virus polymerase in complex with primer-template RNA. J Virol 86:6503–6511
PubMed
CAS
PubMed Central
Google Scholar
Paul AV, Rieder E, Kim DW, van Boom JH, Wimmer E (2000) Identification of an RNA hairpin in poliovirus RNA that serves as the primary template in the in vitro uridylylation of VPg. J Virol 74:10359–10370
PubMed
CAS
PubMed Central
Google Scholar
Ferrer-Orta C, Arias A, Agudo R, Pérez-Luque R, Escarmís C, Domingo E, Verdaguer N (2006) The structure of a protein primer-polymerase complex in the initiation of genome replication. EMBO J 25:880–888
PubMed
CAS
PubMed Central
Google Scholar
Sharma N, O’Donnell BJ, Flanegan JB (2005) 3′-Terminal sequence in poliovirus negative-strand templates is the primary cis-acting element required for VPgpUpU-primed positive-strand initiation. J Virol 79:3565–3577
PubMed
CAS
PubMed Central
Google Scholar
Morasco BJ, Sharma N, Parilla J, Flanegan JB (2003) Poliovirus cre(2C)-dependent synthesis of VPgpUpU is required for positive- but not negative-strand RNA synthesis. J Virol 77:5136–5144
PubMed
CAS
PubMed Central
Google Scholar
Guilligay D, Tarendeau F, Resa-Infante P, Coloma R, Crepin T, Sehr P, Lewis J, Ruigrok RW, Ortin J, Hart DJ, Cusack S (2008) The structural basis for cap binding by influenza virus polymerase subunit PB2. Nat Struct Mol Biol 15:500–506
PubMed
CAS
Google Scholar
Li ML, Rao P, Krug RM (2001) The active sites of the influenza cap-dependent endonuclease are on different polymerase subunits. EMBO J 20:2078–2086
PubMed
CAS
PubMed Central
Google Scholar
Liu Y, Qin K, Meng G, Zhang J, Zhou J, Zhao G, Luo M, Zheng X (2013) Structural and functional characterization of K339T substitution identified in the PB2 subunit cap-binding pocket of influenza A virus. J Biol Chem 288:11013–11023
PubMed
CAS
PubMed Central
Google Scholar
Datta K, Wolkerstorfer A, Szolar OH, Cusack S, Klumpp K (2013) Characterization of PA-N terminal domain of Influenza A polymerase reveals sequence specific RNA cleavage. Nucl Acid Res 41:8289–8299
CAS
Google Scholar
Huang H, Chopra R, Verdine GL, Harrison SC (1998) Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science 282:1669–1675
PubMed
CAS
Google Scholar
Davis BC, Thorpe IF (2013) Molecular simulations illuminate the role of regulatory components of the RNA polymerase from the hepatitis C virus in influencing protein structure and dynamics. Biochemistry 52:4541–4552
PubMed
CAS
PubMed Central
Google Scholar
Thompson AA, Albertini RA, Peersen OB (2007) Stabilization of poliovirus polymerase by NTP binding and fingers-thumb interactions. J Mol Biol 366:1459–1474
PubMed
CAS
PubMed Central
Google Scholar
Ren Z, Wang H, Ghose R (2010) Dynamics on multiple timescales in the RNA-directed RNA polymerase from the cystovirus ϕ6. Nucleic Acids Res 38:5105–5118
PubMed
CAS
PubMed Central
Google Scholar
Arnold JJ, Cameron CE (2004) Poliovirus RNA-dependent RNA polymerase (3Dpol): pre-steady-state kinetic analysis of ribonucleotide incorporation in the presence of Mg2+. Biochemistry 43:5126–5137
PubMed
CAS
PubMed Central
Google Scholar
Arnold JJ, Vignuzzi M, Stone JK, Andino R, Cameron CE (2005) Remote site control of an active site fidelity checkpoint in a viral RNA-dependent RNA polymerase. J Biol Chem 280:25706–25716
PubMed
CAS
PubMed Central
Google Scholar
Vilfan ID, Candelli A, Hage S, Aalto AP, Poranen MM, Bamford DH, Dekker NH (2008) Reinitiated viral RNA-dependent RNA polymerase resumes replication at a reduced rate. Nucleic Acid Res 36:7059–7067
PubMed
CAS
PubMed Central
Google Scholar
Aggarwal S, Bradel-Tretheway B, Takimoto T, Dewhurst S, Kim B (2010) Biochemical characterization of enzyme fidelity of influenza A virus RNA polymerase complex. PLoS One 5:e10372
PubMed
PubMed Central
Google Scholar
Freistadt MS, Vaccaro JA, Eberle KE (2007) Biochemical characterization of the fidelity of poliovirus RNA-dependent RNA polymerase. Virol J 4:44
PubMed
PubMed Central
Google Scholar
Domingo E, Holland J (1997) RNA virus mutations and fitness for survival. Annu Rev Microbiol 51:151–178
PubMed
CAS
Google Scholar
Drake J, Holland J (1999) Mutation rates among RNA viruses. Proc Natl Acad Sci USA 96:13910–13913
PubMed
CAS
PubMed Central
Google Scholar
Perrino FW, Preston BD, Sandell LL, Loeb LA (1989) Extension of mismatched 3′ termini of DNA is a major determinant of the infidelity of human immunodeficiency virus type 1 reverse transcriptase. Proc Natl Acad Sci USA 86:8343–8347
PubMed
CAS
PubMed Central
Google Scholar
Eckert KA, Kunkel TA (1993) Fidelity of DNA synthesis catalyzed by human DNA polymerase alpha and HIV-1 reverse transcriptase: effect of reaction pH. Nucleic Acids Res 21(22):5212–5220
PubMed
CAS
PubMed Central
Google Scholar
Crotty S, Maag D, Arnold JJ, Zhong W, Lau JY, Hong Z, Andino R, Cameron CE (2000) The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen. Nat Med 6:1375–1379
PubMed
CAS
Google Scholar
Vignuzzi M, Wendt E, Andino R (2008) Engineering attenuated virus vaccines by controlling replication fidelity. Nat Med 14:154–161
PubMed
CAS
Google Scholar
Pfeiffer JK, Kirkegaard K (2003) A single mutation in poliovirus RNA-dependent RNA polymerase confers resistance to mutagenic nucleotide analogs via increased fidelity. Proc Natl Acad Sci USA 100:7289–7294
PubMed
CAS
PubMed Central
Google Scholar
Sadeghipour S, Bek EJ, McMinn PC (2013) Ribavirin-resistant mutants of human enterovirus 71 express a high replication fidelity phenotype during growth in cell culture. J Virol 87:1759–1769
PubMed
CAS
PubMed Central
Google Scholar
Coffey LL, Beeharry Y, Bordería AV, Blanc H, Vignuzzi M (2011) Arbovirus high fidelity variant loses fitness in mosquitoes and mice. Proc Natl Acad Sci USA 108:16038–16043
PubMed
CAS
PubMed Central
Google Scholar
Sierra M, Airaksinen A, González-López C, Agudo R, Arias A, Domingo E (2007) Foot-and-mouth disease virus mutant with decreased sensitivity to ribavirin: implications for error catastrophe. J Virol 81:2012–2024
PubMed
CAS
PubMed Central
Google Scholar
Binh N, Wakai C, Kawaguchi A, Nagata K (2014) Involvement of the N-terminal portion of influenza virus RNA polymerase subunit PB1 in nucleotide recognition. Biochem Biophys Res Commun 443:975–979
PubMed
CAS
Google Scholar
Guan H, Simon AE (2000) Polymerization of nontemplate bases before transcription initiation at the 3’ ends of templates by an RNA-dependent RNA polymerase: an activity involved in 3′ end repair of viral RNAs. Proc Natl Acad Sci USA 97:12451–12456
PubMed
CAS
PubMed Central
Google Scholar
Teramoto T, Kohno Y, Mattoo P, Markoff L, Falgout B, Padmanabhan R (2008) Genome 3′-end repair in dengue virus type 2. RNA 14:2645–2656
PubMed
CAS
PubMed Central
Google Scholar
Fodor E, Crow M, Mingay LJ, Deng T, Sharps J, Fechter P, Brownlee GG (2002) A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase inhibits endonucleolytic cleavage of capped RNAs. J Virol 76:8989–9001
PubMed
CAS
PubMed Central
Google Scholar
Neufeld KL, Galarza JM, Richards OC, Summers DF, Ehrenfeld E (1994) Identification of terminal adenylyl transferase activity of the poliovirus polymerase 3Dpol. J Virol 68:5811–5818
PubMed
CAS
PubMed Central
Google Scholar
Poranen MM, Koivunen MR, Bamford DH (2008) Nontemplated terminal nucleotidyltransferase activity of double-stranded RNA bacteriophage phi6 RNA-dependent RNA polymerase. J Virol 82:9254–9264
PubMed
CAS
PubMed Central
Google Scholar
Graham SC, Sarin LP, Bahar MW, Myers RA, Stuart DI, Bamford DH, Grimes JM (2011) The N-terminus of the RNA polymerase from infectious pancreatic necrosis virus is the determinant of genome attachment. PLoS Pathog 7:e1002085
PubMed
CAS
PubMed Central
Google Scholar
Urban S, Urban S, Fischer KP, Tyrell DL (2001) Efficient pyrophosphorolysis by a hepatitis B virus polymerase may be a primer-unblocking mechanism. Proc Natl Acad Sci USA 98:4984–4989
PubMed
CAS
PubMed Central
Google Scholar
Tu X, Das K, Han Q, Bauman JD, Clark ADJ, Hou X, Frenkel YV, Gaffney BL, Jones RA, Boyer PL, Hughes SH, Sarafianos SG, Arnold E (2010) Structural basis of HIV-1 resistance to AZT by excision. Nat Struct Mol Biol 17:1202–1209
PubMed
CAS
PubMed Central
Google Scholar
D’Abramo CM, Cellai L, Götte M (2004) Excision of incorporated nucleotide analogue chain-terminators can diminish their inhibitory effects on viral RNA-dependent RNA polymerases. J Mol Biol 337:1–14
PubMed
Google Scholar
Das K, Bandwar RP, White KL, Feng JY, Sarafianos SG, Tuske S, Tu X, Clark ADJ, Boyer PL, Hou X, Gaffney BL, Jones RA, Miller MD, Hughes SH, Arnold E (2009) Structural basis for the role of the K65R mutation in HIV-1 reverse transcriptase polymerization, excision antagonism, and tenofovir resistance. J Biol Chem 284:35092–35100
PubMed
CAS
PubMed Central
Google Scholar
Lemm JA, Rumenapf T, Strauss EG, Rice CM, Strauss JH (1994) Polypeptide requirements for assembly of functional Sindbis virus replication complexes: a model for the temporal regulation of minus- and plus-strand RNA synthesis. EMBO J 13:2925–2934
PubMed
CAS
PubMed Central
Google Scholar
Fodor E (2013) The RNA polymerase of influenza A virus: mechanisms of viral transcription and replication. Acta Virol 57:113–122
PubMed
CAS
Google Scholar
Paterson D, Fodor E (2012) Emerging roles for the influenza A virus nuclear export protein (NEP). PLoS Pathog 8:e1003019
PubMed
CAS
PubMed Central
Google Scholar
Perez JT, Varble A, Sachidanandam R, Zlatev I, Manoharan M, García-Sastre A, tenOever BR (2010) Influenza A virus-generated small RNAs regulate the switch from transcription to replication. Proc Natl Acad Sci USA 107:11525–11530
PubMed
CAS
PubMed Central
Google Scholar
Sawicki SG, Sawicki DL, Siddell SG (2007) A contemporary view of coronavirus transcription. J Virol 81:20–29
PubMed
CAS
PubMed Central
Google Scholar
Nedialkova DD, Gorbalenya AE, Snijder EJ (2010) Arterivirus nsp1 modulates the accumulation of minus-strand templates to control the relative abundance of viral mRNAs. PLoS Pathog 6:e1000772
PubMed
PubMed Central
Google Scholar
Furuta Y, Gowen B, Takahashi K, Shiraki K, Smee D, Barnard D (2013) Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Res 100:446–454
PubMed
CAS
Google Scholar
Muratore G, Goracci L, Mercorelli B, Foeglein Á, Digard P, Cruciani G, Palù G, Loregian A (2012) Small molecule inhibitors of influenza A and B viruses that act by disrupting subunit interactions of the viral polymerase. Proc Natl Acad Sci USA 109:6247–6252
PubMed
CAS
PubMed Central
Google Scholar
Mänz B, Götz V, Wunderlich K, Eisel J, Kirchmair J, Stech J, Stech O, Chase G, Frank R, Schwemmle M (2011) Disruption of the viral polymerase complex assembly as a novel approach to attenuate influenza A virus. J Biol Chem 286:8414–8424
PubMed
PubMed Central
Google Scholar
Kowalinski E, Zubieta C, Wolkerstorfer A, Szolar O, Ruigrok R, Cusack S (2012) Structural analysis of specific metal chelating inhibitor binding to the endonuclease domain of influenza pH1N1 (2009) polymerase. PLoS Pathog 8:e1002831
PubMed
CAS
PubMed Central
Google Scholar
Garriga D, Ferrer-Orta C, Querol-Audí J, Oliva B, Verdaguer N (2013) Role of motif B loop in allosteric regulation of RNA-dependent RNA polymerization activity. J Mol Biol 425:2279–2287
PubMed
CAS
Google Scholar
Ahlquist P (2002) RNA-dependent RNA polymerases, viruses, and RNA silencing. Science 296:1270–1273
PubMed
CAS
Google Scholar
Bartenschlager R, Lohmann V (2000) Replication of hepatitis C virus. J Gen Virol 81:1631–1648
PubMed
CAS
Google Scholar
Trask SD, McDonald SM, Patton JT (2012) Structural insights into the coupling of virion assembly and rotavirus replication. Nat Rev Microbiol 10:165–177
PubMed
CAS
PubMed Central
Google Scholar
Mertens P (2004) The dsRNA viruses. Virus Res 101:3–13
PubMed
CAS
Google Scholar
Poch O, Sauvaget I, Delarue M, Tordo N (1989) Identification of four conserved motifs among the RNA-dependent polymearse encoding elements. EMBO J 8:3867–3874
PubMed
CAS
PubMed Central
Google Scholar
Vasquez-del Carpio R, Morales JL, Barro M, Ricardo A, Spencer E (2006) Bioinformatic prediction of polymerase elements in the rotavirus VP1 protein. Biol Res 39:649–659
PubMed
CAS
Google Scholar