Bricker DK, Taylor EB, Schell JC, Orsak T, Boutron A, Chen YC, Cox JE, Cardon CM, Van Vranken JG, Dephoure N, Redin C, Boudina S, Gygi SP, Brivet M, Thummel CS, Rutter J (2012) A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science 337(6090):96–100. doi:10.1126/science.1218099
CAS
PubMed
PubMed Central
Google Scholar
Herzig S, Raemy E, Montessuit S, Veuthey JL, Zamboni N, Westermann B, Kunji ER, Martinou JC (2012) Identification and functional expression of the mitochondrial pyruvate carrier. Science 337(6090):93–96. doi:10.1126/science.1218530
CAS
PubMed
Google Scholar
Tsutsumi H, Tani K, Fujii H, Miwa S (1988) Expression of L- and M-type pyruvate kinase in human tissues. Genomics 2(1):86–89
CAS
PubMed
Google Scholar
Takenaka M, Noguchi T, Sadahiro S, Hirai H, Yamada K, Matsuda T, Imai E, Tanaka T (1991) Isolation and characterization of the human pyruvate kinase M gene. Eur J Biochem 198(1):101–106
CAS
PubMed
Google Scholar
Noguchi T, Yamada K, Inoue H, Matsuda T, Tanaka T (1987) The L- and R-type isozymes of rat pyruvate kinase are produced from a single gene by use of different promoters. J Biol Chem 262(29):14366–14371
CAS
PubMed
Google Scholar
Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452(7184):230–233. doi:10.1038/nature06734
CAS
PubMed
Google Scholar
Yamada K, Noguchi T (1999) Nutrient and hormonal regulation of pyruvate kinase gene expression. Biochem J 337(Pt 1):1–11
CAS
PubMed
PubMed Central
Google Scholar
Valentini G, Chiarelli LR, Fortin R, Dolzan M, Galizzi A, Abraham DJ, Wang C, Bianchi P, Zanella A, Mattevi A (2002) Structure and function of human erythrocyte pyruvate kinase. Molecular basis of nonspherocytic hemolytic anemia. J Biol Chem 277(26):23807–23814. doi:10.1074/jbc.M202107200
CAS
PubMed
Google Scholar
Larsen TM, Laughlin LT, Holden HM, Rayment I, Reed GH (1994) Structure of rabbit muscle pyruvate kinase complexed with Mn2+, K+, and pyruvate. Biochemistry 33(20):6301–6309
CAS
PubMed
Google Scholar
Larsen TM, Benning MM, Rayment I, Reed GH (1998) Structure of the bis(Mg2+)-ATP-oxalate complex of the rabbit muscle pyruvate kinase at 2.1 A resolution: ATP binding over a barrel. Biochemistry 37(18):6247–6255. doi:10.1021/bi980243s
CAS
PubMed
Google Scholar
Wang C, Chiarelli LR, Bianchi P, Abraham DJ, Galizzi A, Mattevi A, Zanella A, Valentini G (2001) Human erythrocyte pyruvate kinase: characterization of the recombinant enzyme and a mutant form (R510Q) causing nonspherocytic hemolytic anemia. Blood 98(10):3113–3120
CAS
PubMed
Google Scholar
Ashizawa K, Willingham MC, Liang CM, Cheng SY (1991) In vivo regulation of monomer-tetramer conversion of pyruvate kinase subtype M2 by glucose is mediated via fructose 1,6-bisphosphate. J Biol Chem 266(25):16842–16846
CAS
PubMed
Google Scholar
Ikeda Y, Noguchi T (1998) Allosteric regulation of pyruvate kinase M2 isozyme involves a cysteine residue in the intersubunit contact. J Biol Chem 273(20):12227–12233
CAS
PubMed
Google Scholar
Ikeda Y, Tanaka T, Noguchi T (1997) Conversion of non-allosteric pyruvate kinase isozyme into an allosteric enzyme by a single amino acid substitution. J Biol Chem 272(33):20495–20501
CAS
PubMed
Google Scholar
Zanella A, Fermo E, Bianchi P, Chiarelli LR, Valentini G (2007) Pyruvate kinase deficiency: the genotype-phenotype association. Blood Rev 21(4):217–231. doi:10.1016/j.blre.2007.01.001
CAS
PubMed
Google Scholar
Zanella A, Fermo E, Bianchi P, Valentini G (2005) Red cell pyruvate kinase deficiency: molecular and clinical aspects. Br J Haematol 130(1):11–25. doi:10.1111/j.1365-2141.2005.05527.x
CAS
PubMed
Google Scholar
Rider NL, Strauss KA, Brown K, Finkenstedt A, Puffenberger EG, Hendrickson CL, Robinson DL, Muenke N, Tselepis C, Saunders L, Zoller H, Morton DH (2011) Erythrocyte pyruvate kinase deficiency in an old-order Amish cohort: longitudinal risk and disease management. Am J Hematol 86(10):827–834. doi:10.1002/ajh.22118
CAS
PubMed
Google Scholar
Ayi K, Min-Oo G, Serghides L, Crockett M, Kirby-Allen M, Quirt I, Gros P, Kain KC (2008) Pyruvate kinase deficiency and malaria. New Engl J Med 358(17):1805–1810. doi:10.1056/NEJMoa072464
CAS
PubMed
Google Scholar
Ayi K, Liles WC, Gros P, Kain KC (2009) Adenosine triphosphate depletion of erythrocytes simulates the phenotype associated with pyruvate kinase deficiency and confers protection against Plasmodium falciparum in vitro. J Infect Dis 200(8):1289–1299. doi:10.1086/605843
CAS
PubMed
Google Scholar
Fermo E, Bianchi P, Chiarelli LR, Cotton F, Vercellati C, Writzl K, Baker K, Hann I, Rodwell R, Valentini G, Zanella A (2005) Red cell pyruvate kinase deficiency: 17 new mutations of the PK-LR gene. Br J Haematol 129(6):839–846. doi:10.1111/j.1365-2141.2005.05520.x
CAS
PubMed
Google Scholar
Nakashima K, Miwa S, Fujii H, Shinohara K, Yamauchi K, Tsuji Y, Yanai M (1977) Characterization of pyruvate kinase from the liver of a patient with aberrant erythrocyte pyruvate kinase, PK Nagasaki. J Lab Clin Med 90(6):1012–1020
CAS
PubMed
Google Scholar
Bigley RH, Koler RD (1968) Liver pyruvate kinase (PK) isozymes in a PK-deficient patient. Ann Hum Genet 31(4):383–388
CAS
PubMed
Google Scholar
Raphael MF, Van Wijk R, Schweizer JJ, Schouten-van Meeteren NA, Kindermann A, van Solinge WW, Smiers FJ (2007) Pyruvate kinase deficiency associated with severe liver dysfunction in the newborn. Am J Hematol 82(11):1025–1028. doi:10.1002/ajh.20942
CAS
PubMed
Google Scholar
Kopperschlager G, Kirchberger J (1996) Methods for the separation of lactate dehydrogenases and clinical significance of the enzyme. J Chromatogr B 684(1–2):25–49
CAS
Google Scholar
Quistorff B, Grunnet N (2011) The isoenzyme pattern of LDH does not play a physiological role; except perhaps during fast transitions in energy metabolism. Aging 3(5):457–460
CAS
PubMed
PubMed Central
Google Scholar
Stambaugh R, Post D (1966) Substrate and product inhibition of rabbit muscle lactic dehydrogenase heart (H4) and muscle (M4) isozymes. J Biol Chem 241(7):1462–1467
CAS
PubMed
Google Scholar
Dawson DM, Goodfriend TL, Kaplan NO (1964) Lactic dehydrogenases: functions of the two types rates of synthesis of the two major forms can be correlated with metabolic differentiation. Science 143(3609):929–933
CAS
PubMed
Google Scholar
Ward RA, Brassington C, Breeze AL, Caputo A, Critchlow S, Davies G, Goodwin L, Hassall G, Greenwood R, Holdgate GA, Mrosek M, Norman RA, Pearson S, Tart J, Tucker JA, Vogtherr M, Whittaker D, Wingfield J, Winter J, Hudson K (2012) Design and synthesis of novel lactate dehydrogenase A inhibitors by fragment-based lead generation. J Med Chem 55(7):3285–3306. doi:10.1021/jm201734r
CAS
PubMed
Google Scholar
Goldberg E, Eddy EM, Duan C, Odet F (2010) LDHC: the ultimate testis-specific gene. J Androl 31(1):86–94. doi:10.2164/jandrol.109.008367
CAS
PubMed
PubMed Central
Google Scholar
Edwards YH, Povey S, LeVan KM, Driscoll CE, Millan JL, Goldberg E (1987) Locus determining the human sperm-specific lactate dehydrogenase, LDHC, is syntenic with LDHA. Dev Genet 8(4):219–232. doi:10.1002/dvg.1020080406
CAS
PubMed
Google Scholar
Flick MJ, Konieczny SF (2002) Identification of putative mammalian d-lactate dehydrogenase enzymes. Biochem Biophys Res Commun 295(4):910–916
CAS
PubMed
Google Scholar
Zhang F, Xu X, Zhou B, He Z, Zhai Q (2011) Gene expression profile change and associated physiological and pathological effects in mouse liver induced by fasting and refeeding. PLoS ONE 6(11):e27553. doi:10.1371/journal.pone.0027553
CAS
PubMed
PubMed Central
Google Scholar
Zhang F, Xu X, Zhang Y, Zhou B, He Z, Zhai Q (2013) Gene expression profile analysis of type 2 diabetic mouse liver. PLoS ONE 8(3):e57766. doi:10.1371/journal.pone.0057766
CAS
PubMed
PubMed Central
Google Scholar
Anai T, Urata K, Tanaka Y, Miyakawa I (2002) Pregnancy complicated with lactate dehydrogenase M-subunit deficiency: the first case report. J Obstet Gynaecol Res 28(2):108–111
PubMed
Google Scholar
Takayasu S, Fujiwara S, Waki T (1991) Hereditary lactate dehydrogenase M-subunit deficiency: lactate dehydrogenase activity in skin lesions and in hair follicles. J Am Acad Dermatol 24(2 Pt 2):339–342
CAS
PubMed
Google Scholar
Sudo K, Maekawa M, Houki N, Okuda T, Akizuki S, Magara T, Kawano K (1999) A novel in-frame deletion mutation in a case of lactate dehydrogenase (LD) H subunit deficiency showing an atypical LD isoenzyme pattern in serum and erythrocytes. Clin Biochem 32(2):137–141
CAS
PubMed
Google Scholar
Terrettaz J, Jeanrenaud B (1990) Contribution of glycerol and alanine to basal hepatic glucose production in the genetically obese (fa/fa) rat. Biochem J 270(3):803–807
CAS
PubMed
PubMed Central
Google Scholar
Felig P (1975) Amino acid metabolism in man. Annu Rev Biochem 44:933–955. doi:10.1146/annurev.bi.44.070175.004441
CAS
PubMed
Google Scholar
Brosnan JT (2000) Glutamate, at the interface between amino acid and carbohydrate metabolism. J Nutr 130(4S Suppl):988S–990S
CAS
PubMed
Google Scholar
Rafter I, Graberg T, Kotronen A, Strommer L, Mattson CM, Kim RW, Ehrenborg E, Andersson HB, Yki-Jarvinen H, Schuppe-Koistinen I, Ekblom B, Cotgreave I, Glinghammar B (2012) Isoform-specific alanine aminotransferase measurement can distinguish hepatic from extrahepatic injury in humans. Int J Mol Med 30(5):1241–1249. doi:10.3892/ijmm.2012.1106
CAS
PubMed
Google Scholar
Glinghammar B, Rafter I, Lindstrom AK, Hedberg JJ, Andersson HB, Lindblom P, Berg AL, Cotgreave I (2009) Detection of the mitochondrial and catalytically active alanine aminotransferase in human tissues and plasma. Int J Mol Med 23(5):621–631
CAS
PubMed
Google Scholar
Lindblom P, Rafter I, Copley C, Andersson U, Hedberg JJ, Berg AL, Samuelsson A, Hellmold H, Cotgreave I, Glinghammar B (2007) Isoforms of alanine aminotransferases in human tissues and serum—differential tissue expression using novel antibodies. Arch Biochem Biophys 466(1):66–77. doi:10.1016/j.abb.2007.07.023
CAS
PubMed
Google Scholar
Senior JR (2012) Alanine aminotransferase: a clinical and regulatory tool for detecting liver injury-past, present, and future. Clin Pharmacol Ther 92(3):332–339. doi:10.1038/clpt.2012.108
CAS
PubMed
Google Scholar
Coss CC, Bauler M, Narayanan R, Miller DD, Dalton JT (2012) Alanine aminotransferase regulation by androgens in non-hepatic tissues. Pharm Res 29(4):1046–1056. doi:10.1007/s11095-011-0649-5
CAS
PubMed
Google Scholar
Hebert AS, Dittenhafer-Reed KE, Yu W, Bailey DJ, Selen ES, Boersma MD, Carson JJ, Tonelli M, Balloon AJ, Higbee AJ, Westphall MS, Pagliarini DJ, Prolla TA, Assadi-Porter F, Roy S, Denu JM, Coon JJ (2013) Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol Cell 49(1):186–199. doi:10.1016/j.molcel.2012.10.024
CAS
PubMed
PubMed Central
Google Scholar
Deng WJ, Nie S, Dai J, Wu JR, Zeng R (2010) Proteome, phosphoproteome, and hydroxyproteome of liver mitochondria in diabetic rats at early pathogenic stages. Mol Cell Proteomics 9(1):100–116. doi:10.1074/mcp.M900020-MCP200
CAS
PubMed
PubMed Central
Google Scholar
Beranek M, Drsata J, Palicka V (2001) Inhibitory effect of glycation on catalytic activity of alanine aminotransferase. Mol Cell Biochem 218(1–2):35–39
CAS
PubMed
Google Scholar
Sparkes MC, Crist M, Sparkes RS (1983) Glutamate pyruvate transaminase null allele in seven new families. Hum Genet 65(2):147–148
CAS
PubMed
Google Scholar
Uno S, Kaito M, Kobayashi Y, Ishida S, Kato H, Gabazza E, Tamaki S, Ikoma J, Imoto I, Watanabe S, Adachi Y (1998) Case report: alanine aminotransferase deficiency detected in a patient with chronic hepatitis C. J Gastroenterol Hepatol 13(5):480–482
CAS
PubMed
Google Scholar
Akarsu M, Tankurt E, Tunca M, Ozsan H, Tutucu KN, Ormen M, Onvural B (2002) Alanine aminotransferase deficiency in a hepatitis B surface antigen positive patient presenting with acute hepatitis. Turkish J Gastroenterol Off J Turkish Soc Gastroenterol 13(1):60–62
Google Scholar
Mak CM, Fong BM, Lam CW, Tam S (2010) Genotype-confirmed alanine aminotransferase deficiency in a Chinese patient with acute liver failure: a potential diagnostic pitfall. Pathology 42(1):94–95. doi:10.3109/00313020903434678
CAS
PubMed
Google Scholar
Papa S, Francavilla A, Paradies G, Meduri B (1971) The transport of pyruvate in rat liver mitochondria. FEBS Lett 12(5):285–288
CAS
PubMed
Google Scholar
Halestrap AP (1975) The mitochondrial pyruvate carrier. Kinetics and specificity for substrates and inhibitors. Biochem J 148(1):85–96
CAS
PubMed
PubMed Central
Google Scholar
Halestrap AP, Brand MD, Denton RM (1974) Inhibition of mitochondrial pyruvate transport by phenylpyruvate and alpha-ketoisocaproate. Biochim Biophys Acta 367(1):102–108
CAS
PubMed
Google Scholar
Halestrap AP, Denton RM (1974) Specific inhibition of pyruvate transport in rat liver mitochondria and human erythrocytes by alpha-cyano-4-hydroxycinnamate. Biochem J 138(2):313–316
CAS
PubMed
PubMed Central
Google Scholar
Titheradge MA, Coore HG (1976) Hormonal regulation of liver mitochondrial pyruvate carrier in relation to gluconeogenesis and lipogenesis. FEBS Lett 72(1):73–78
CAS
PubMed
Google Scholar
Titheradge MA, Coore HG (1976) The mitochondrial pyruvate carrier, its exchange properties and its regulation by glucagon. FEBS Lett 63(1):45–50
CAS
PubMed
Google Scholar
Hildyard JC, Halestrap AP (2003) Identification of the mitochondrial pyruvate carrier in Saccharomyces cerevisiae. Biochem J 374(Pt 3):607–611. doi:10.1042/BJ20030995
CAS
PubMed
PubMed Central
Google Scholar
Jezegou A, Llinares E, Anne C, Kieffer-Jaquinod S, O’Regan S, Aupetit J, Chabli A, Sagne C, Debacker C, Chadefaux-Vekemans B, Journet A, Andre B, Gasnier B (2012) Heptahelical protein PQLC2 is a lysosomal cationic amino acid exporter underlying the action of cysteamine in cystinosis therapy. Proc Natl Acad Sci USA. doi:10.1073/pnas.1211198109
PubMed
PubMed Central
Google Scholar
Saudek V (2012) Cystinosin, MPDU1, SWEETs and KDELR belong to a well-defined protein family with putative function of cargo receptors involved in vesicle trafficking. PLoS ONE 7(2):e30876. doi:10.1371/journal.pone.0030876
CAS
PubMed
PubMed Central
Google Scholar
Halestrap AP (1978) Pyruvate and ketone-body transport across the mitochondrial membrane. Exchange properties, pH-dependence and mechanism of the carrier. Biochem J 172(3):377–387
CAS
PubMed
PubMed Central
Google Scholar
Hildyard JC, Ammala C, Dukes ID, Thomson SA, Halestrap AP (2005) Identification and characterisation of a new class of highly specific and potent inhibitors of the mitochondrial pyruvate carrier. Biochim Biophys Acta 1707(2–3):221–230. doi:10.1016/j.bbabio.2004.12.005
CAS
PubMed
Google Scholar
Divakaruni AS, Wiley SE, Rogers GW, Andreyev AY, Petrosyan S, Loviscach M, Wall EA, Yadava N, Heuck AP, Ferrick DA, Henry RR, McDonald WG, Colca JR, Simon MI, Ciaraldi TP, Murphy AN (2013) Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier. Proc Natl Acad Sci USA 110(14):5422–5427. doi:10.1073/pnas.1303360110
CAS
PubMed
PubMed Central
Google Scholar
Halestrap AP (1976) Transport of pyruvate nad lactate into human erythrocytes. Evidence for the involvement of the chloride carrier and a chloride-independent carrier. Biochem J 156(2):193–207
CAS
PubMed
PubMed Central
Google Scholar
Poole RC, Halestrap AP (1993) Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am J Physiol 264(4 Pt 1):C761–C782
CAS
PubMed
Google Scholar
Carpenter L, Halestrap AP (1994) The kinetics, substrate and inhibitor specificity of the lactate transporter of Ehrlich-Lettre tumour cells studied with the intracellular pH indicator BCECF. Biochem J 304(Pt 3):751–760
CAS
PubMed
PubMed Central
Google Scholar
Jackson VN, Halestrap AP (1996) The kinetics, substrate, and inhibitor specificity of the monocarboxylate (lactate) transporter of rat liver cells determined using the fluorescent intracellular pH indicator, 2′,7′-bis(carboxyethyl)-5(6)-carboxyfluorescein. J Biol Chem 271(2):861–868
CAS
PubMed
Google Scholar
Brivet M, Garcia-Cazorla A, Lyonnet S, Dumez Y, Nassogne MC, Slama A, Boutron A, Touati G, Legrand A, Saudubray JM (2003) Impaired mitochondrial pyruvate importation in a patient and a fetus at risk. Mol Genet Metab 78(3):186–192
CAS
PubMed
Google Scholar
Patel MS, Korotchkina LG (2006) Regulation of the pyruvate dehydrogenase complex. Biochem Soc Trans 34(Pt 2):217–222. doi:10.1042/BST20060217
CAS
PubMed
Google Scholar
Harris RA, Bowker-Kinley MM, Huang B, Wu P (2002) Regulation of the activity of the pyruvate dehydrogenase complex. Adv Enzyme Regul 42:249–259
CAS
PubMed
Google Scholar
Strumilo S (2005) Short-term regulation of the mammalian pyruvate dehydrogenase complex. Acta Biochim Pol 52(4):759–764
CAS
PubMed
Google Scholar
Patel MS, Korotchkina LG, Sidhu S (2009) Interaction of E1 and E3 components with the core proteins of the human pyruvate dehydrogenase complex. J Mol Catal B 61(1–2):2–6. doi:10.1016/j.molcatb.2009.05.001
CAS
Google Scholar
Vijayakrishnan S, Callow P, Nutley MA, McGow DP, Gilbert D, Kropholler P, Cooper A, Byron O, Lindsay JG (2011) Variation in the organization and subunit composition of the mammalian pyruvate dehydrogenase complex E2/E3BP core assembly. Biochem J 437(3):565–574. doi:10.1042/BJ20101784
CAS
PubMed
Google Scholar
Vijayakrishnan S, Kelly SM, Gilbert RJ, Callow P, Bhella D, Forsyth T, Lindsay JG, Byron O (2010) Solution structure and characterisation of the human pyruvate dehydrogenase complex core assembly. J Mol Biol 399(1):71–93. doi:10.1016/j.jmb.2010.03.043
CAS
PubMed
PubMed Central
Google Scholar
Brautigam CA, Wynn RM, Chuang JL, Chuang DT (2009) Subunit and catalytic component stoichiometries of an in vitro reconstituted human pyruvate dehydrogenase complex. J Biol Chem 284(19):13086–13098. doi:10.1074/jbc.M806563200
CAS
PubMed
PubMed Central
Google Scholar
Smolle M, Prior AE, Brown AE, Cooper A, Byron O, Lindsay JG (2006) A new level of architectural complexity in the human pyruvate dehydrogenase complex. J Biol Chem 281(28):19772–19780. doi:10.1074/jbc.M601140200
CAS
PubMed
PubMed Central
Google Scholar
Seifert F, Ciszak E, Korotchkina L, Golbik R, Spinka M, Dominiak P, Sidhu S, Brauer J, Patel MS, Tittmann K (2007) Phosphorylation of serine 264 impedes active site accessibility in the E1 component of the human pyruvate dehydrogenase multienzyme complex. Biochemistry 46(21):6277–6287. doi:10.1021/bi700083z
CAS
PubMed
Google Scholar
Chueh FY, Leong KF, Cronk RJ, Venkitachalam S, Pabich S, Yu CL (2011) Nuclear localization of pyruvate dehydrogenase complex-E2 (PDC-E2), a mitochondrial enzyme, and its role in signal transducer and activator of transcription 5 (STAT5)-dependent gene transcription. Cell Signal 23(7):1170–1178. doi:10.1016/j.cellsig.2011.03.004
CAS
PubMed
PubMed Central
Google Scholar
Odievre MH, Chretien D, Munnich A, Robinson BH, Dumoulin R, Masmoudi S, Kadhom N, Rotig A, Rustin P, Bonnefont JP (2005) A novel mutation in the dihydrolipoamide dehydrogenase E3 subunit gene (DLD) resulting in an atypical form of alpha-ketoglutarate dehydrogenase deficiency. Hum Mutat 25(3):323–324. doi:10.1002/humu.9319
PubMed
Google Scholar
Brautigam CA, Wynn RM, Chuang JL, Naik MT, Young BB, Huang TH, Chuang DT (2011) Structural and thermodynamic basis for weak interactions between dihydrolipoamide dehydrogenase and subunit-binding domain of the branched-chain alpha-ketoacid dehydrogenase complex. J Biol Chem 286(26):23476–23488. doi:10.1074/jbc.M110.202960
CAS
PubMed
PubMed Central
Google Scholar
Ciszak EM, Makal A, Hong YS, Vettaikkorumakankauv AK, Korotchkina LG, Patel MS (2006) How dihydrolipoamide dehydrogenase-binding protein binds dihydrolipoamide dehydrogenase in the human pyruvate dehydrogenase complex. J Biol Chem 281(1):648–655. doi:10.1074/jbc.M507850200
CAS
PubMed
Google Scholar
Hiromasa Y, Fujisawa T, Aso Y, Roche TE (2004) Organization of the cores of the mammalian pyruvate dehydrogenase complex formed by E2 and E2 plus the E3-binding protein and their capacities to bind the E1 and E3 components. J Biol Chem 279(8):6921–6933. doi:10.1074/jbc.M308172200
CAS
PubMed
Google Scholar
Kato M, Wynn RM, Chuang JL, Tso SC, Machius M, Li J, Chuang DT (2008) Structural basis for inactivation of the human pyruvate dehydrogenase complex by phosphorylation: role of disordered phosphorylation loops. Structure 16(12):1849–1859. doi:10.1016/j.str.2008.10.010
CAS
PubMed
PubMed Central
Google Scholar
Rowles J, Scherer SW, Xi T, Majer M, Nickle DC, Rommens JM, Popov KM, Harris RA, Riebow NL, Xia J, Tsui LC, Bogardus C, Prochazka M (1996) Cloning and characterization of PDK4 on 7q21.3 encoding a fourth pyruvate dehydrogenase kinase isoenzyme in human. J Biol Chem 271(37):22376–22382
CAS
PubMed
Google Scholar
Gudi R, Bowker-Kinley MM, Kedishvili NY, Zhao Y, Popov KM (1995) Diversity of the pyruvate dehydrogenase kinase gene family in humans. J Biol Chem 270(48):28989–28994
CAS
PubMed
Google Scholar
Korotchkina LG, Patel MS (2001) Site specificity of four pyruvate dehydrogenase kinase isoenzymes toward the three phosphorylation sites of human pyruvate dehydrogenase. J Biol Chem 276(40):37223–37229. doi:10.1074/jbc.M103069200
CAS
PubMed
Google Scholar
Yeaman SJ, Hutcheson ET, Roche TE, Pettit FH, Brown JR, Reed LJ, Watson DC, Dixon GH (1978) Sites of phosphorylation on pyruvate dehydrogenase from bovine kidney and heart. Biochemistry 17(12):2364–2370
CAS
PubMed
Google Scholar
Huang B, Gudi R, Wu P, Harris RA, Hamilton J, Popov KM (1998) Isoenzymes of pyruvate dehydrogenase phosphatase. DNA-derived amino acid sequences, expression, and regulation. J Biol Chem 273(28):17680–17688
CAS
PubMed
Google Scholar
Patel KP, O’Brien TW, Subramony SH, Shuster J, Stacpoole PW (2012) The spectrum of pyruvate dehydrogenase complex deficiency: clinical, biochemical and genetic features in 371 patients. Mol Genet Metab 105(1):34–43. doi:10.1016/j.ymgme.2011.09.032
CAS
PubMed
PubMed Central
Google Scholar
Imbard A, Boutron A, Vequaud C, Zater M, de Lonlay P, de Baulny HO, Barnerias C, Mine M, Marsac C, Saudubray JM, Brivet M (2011) Molecular characterization of 82 patients with pyruvate dehydrogenase complex deficiency. Structural implications of novel amino acid substitutions in E1 protein. Mol Genet Metab 104(4):507–516. doi:10.1016/j.ymgme.2011.08.008
CAS
PubMed
Google Scholar
Head RA, Brown RM, Zolkipli Z, Shahdadpuri R, King MD, Clayton PT, Brown GK (2005) Clinical and genetic spectrum of pyruvate dehydrogenase deficiency: dihydrolipoamide acetyltransferase (E2) deficiency. Ann Neurol 58(2):234–241. doi:10.1002/ana.20550
CAS
PubMed
Google Scholar
Meirleir L, Coster R, Lissens W (2006) Disorders of pyruvate metabolism and the tricarboxylic acid cycle. In: Fernandes J, Saudubray J-M, Berghe G, Walter J (eds) Inborn metabolic diseases. Springer, Berlin, pp 161–174. doi:10.1007/978-3-540-28785-8_12
Okajima K, Korotchkina LG, Prasad C, Rupar T, Phillips JA 3rd, Ficicioglu C, Hertecant J, Patel MS, Kerr DS (2008) Mutations of the E1beta subunit gene (PDHB) in four families with pyruvate dehydrogenase deficiency. Mol Genet Metab 93(4):371–380. doi:10.1016/j.ymgme.2007.10.135
CAS
PubMed
Google Scholar
McWilliam CA, Ridout CK, Brown RM, McWilliam RC, Tolmie J, Brown GK (2010) Pyruvate dehydrogenase E2 deficiency: a potentially treatable cause of episodic dystonia. Eur J Paediatr Neurol 14(4):349–353. doi:10.1016/j.ejpn.2009.11.001
PubMed
Google Scholar
Robinson BH, MacKay N, Petrova-Benedict R, Ozalp I, Coskun T, Stacpoole PW (1990) Defects in the E2 lipoyl transacetylase and the X-lipoyl containing component of the pyruvate dehydrogenase complex in patients with lactic acidemia. J Clin Investig 85(6):1821–1824. doi:10.1172/JCI114641
CAS
PubMed
PubMed Central
Google Scholar
Tajir M, Arnoux JB, Boutron A, Elalaoui SC, De Lonlay P, Sefiani A, Brivet M (2012) Pyruvate dehydrogenase deficiency caused by a new mutation of PDHX gene in two Moroccan patients. Eur J Med Genet 55(10):535–540. doi:10.1016/j.ejmg.2012.06.006
PubMed
Google Scholar
Marsac C, Stansbie D, Bonne G, Cousin J, Jehenson P, Benelli C, Leroux JP, Lindsay G (1993) Defect in the lipoyl-bearing protein X subunit of the pyruvate dehydrogenase complex in two patients with encephalomyelopathy. J Pediatr 123(6):915–920
CAS
PubMed
Google Scholar
Wynn RM, Kato M, Chuang JL, Tso SC, Li J, Chuang DT (2008) Pyruvate dehydrogenase kinase-4 structures reveal a metastable open conformation fostering robust core-free basal activity. J Biol Chem 283(37):25305–25315. doi:10.1074/jbc.M802249200
CAS
PubMed
PubMed Central
Google Scholar
Green T, Grigorian A, Klyuyeva A, Tuganova A, Luo M, Popov KM (2008) Structural and functional insights into the molecular mechanisms responsible for the regulation of pyruvate dehydrogenase kinase 2. J Biol Chem 283(23):15789–15798. doi:10.1074/jbc.M800311200
CAS
PubMed
PubMed Central
Google Scholar
Devedjiev Y, Steussy CN, Vassylyev DG (2007) Crystal structure of an asymmetric complex of pyruvate dehydrogenase kinase 3 with lipoyl domain 2 and its biological implications. J Mol Biol 370(3):407–416. doi:10.1016/j.jmb.2007.04.083
CAS
PubMed
PubMed Central
Google Scholar
Steussy CN, Popov KM, Bowker-Kinley MM, Sloan RB Jr, Harris RA, Hamilton JA (2001) Structure of pyruvate dehydrogenase kinase. Novel folding pattern for a serine protein kinase. J Biol Chem 276(40):37443–37450. doi:10.1074/jbc.M104285200
Google Scholar
Boulatnikov I, Popov KM (2003) Formation of functional heterodimers by isozymes 1 and 2 of pyruvate dehydrogenase kinase. Biochim Biophys Acta 1645(2):183–192
CAS
PubMed
Google Scholar
Tuganova A, Boulatnikov I, Popov KM (2002) Interaction between the individual isoenzymes of pyruvate dehydrogenase kinase and the inner lipoyl-bearing domain of transacetylase component of pyruvate dehydrogenase complex. Biochem J 366(Pt 1):129–136. doi:10.1042/BJ20020301
CAS
PubMed
PubMed Central
Google Scholar
Baker JC, Yan X, Peng T, Kasten S, Roche TE (2000) Marked differences between two isoforms of human pyruvate dehydrogenase kinase. J Biol Chem 275(21):15773–15781. doi:10.1074/jbc.M909488199
CAS
PubMed
Google Scholar
Roche TE, Hiromasa Y (2007) Pyruvate dehydrogenase kinase regulatory mechanisms and inhibition in treating diabetes, heart ischemia, and cancer. Cell Mol Life Sci 64(7–8):830–849. doi:10.1007/s00018-007-6380-z
CAS
PubMed
Google Scholar
Kolobova E, Tuganova A, Boulatnikov I, Popov KM (2001) Regulation of pyruvate dehydrogenase activity through phosphorylation at multiple sites. Biochem J 358(Pt 1):69–77
CAS
PubMed
PubMed Central
Google Scholar
Wu P, Blair PV, Sato J, Jaskiewicz J, Popov KM, Harris RA (2000) Starvation increases the amount of pyruvate dehydrogenase kinase in several mammalian tissues. Arch Biochem Biophys 381(1):1–7. doi:10.1006/abbi.2000.1946
CAS
PubMed
Google Scholar
Hitosugi T, Fan J, Chung TW, Lythgoe K, Wang X, Xie J, Ge Q, Gu TL, Polakiewicz RD, Roesel JL, Chen GZ, Boggon TJ, Lonial S, Fu H, Khuri FR, Kang S, Chen J (2011) Tyrosine phosphorylation of mitochondrial pyruvate dehydrogenase kinase 1 is important for cancer metabolism. Mol Cell 44(6):864–877. doi:10.1016/j.molcel.2011.10.015
CAS
PubMed
PubMed Central
Google Scholar
Huang B, Wu P, Popov KM, Harris RA (2003) Starvation and diabetes reduce the amount of pyruvate dehydrogenase phosphatase in rat heart and kidney. Diabetes 52(6):1371–1376
CAS
PubMed
PubMed Central
Google Scholar
Kato J, Kato M (2010) Crystallization and preliminary crystallographic studies of the catalytic subunits of human pyruvate dehydrogenase phosphatase isoforms 1 and 2. Acta Crystallogr F 66(Pt 3):342–345. doi:10.1107/S1744309110003131
CAS
Google Scholar
Vassylyev DG, Symersky J (2007) Crystal structure of pyruvate dehydrogenase phosphatase 1 and its functional implications. J Mol Biol 370(3):417–426. doi:10.1016/j.jmb.2007.05.002
CAS
PubMed
PubMed Central
Google Scholar
Caruso M, Maitan MA, Bifulco G, Miele C, Vigliotta G, Oriente F, Formisano P, Beguinot F (2001) Activation and mitochondrial translocation of protein kinase Cdelta are necessary for insulin stimulation of pyruvate dehydrogenase complex activity in muscle and liver cells. J Biol Chem 276(48):45088–45097. doi:10.1074/jbc.M105451200
CAS
PubMed
Google Scholar
Maj MC, MacKay N, Levandovskiy V, Addis J, Baumgartner ER, Baumgartner MR, Robinson BH, Cameron JM (2005) Pyruvate dehydrogenase phosphatase deficiency: identification of the first mutation in two brothers and restoration of activity by protein complementation. J Clin Endocrinol Metab 90(7):4101–4107. doi:10.1210/jc.2005-0123
CAS
PubMed
Google Scholar
Cameron JM, Maj M, Levandovskiy V, Barnett CP, Blaser S, Mackay N, Raiman J, Feigenbaum A, Schulze A, Robinson BH (2009) Pyruvate dehydrogenase phosphatase 1 (PDP1) null mutation produces a lethal infantile phenotype. Hum Genet 125(3):319–326. doi:10.1007/s00439-009-0629-6
CAS
PubMed
Google Scholar
Utter MF, Keech DB (1960) Formation of oxaloacetate from pyruvate and carbon dioxide. J Biol Chem 235:PC17–PC18
Google Scholar
Wexler ID, Du Y, Lisgaris MV, Mandal SK, Freytag SO, Yang BS, Liu TC, Kwon M, Patel MS, Kerr DS (1994) Primary amino acid sequence and structure of human pyruvate carboxylase. Biochim Biophys Acta 1227(1–2):46–52
CAS
PubMed
Google Scholar
Wallace JC (2010) My favorite pyruvate carboxylase. IUBMB Life 62(7):535–538. doi:10.1002/iub.332
CAS
PubMed
PubMed Central
Google Scholar
Adina-Zada A, Zeczycki TN, Attwood PV (2012) Regulation of the structure and activity of pyruvate carboxylase by acetyl CoA. Arch Biochem Biophys 519(2):118–130. doi:10.1016/j.abb.2011.11.015
CAS
PubMed
PubMed Central
Google Scholar
Owen OE, Kalhan SC, Hanson RW (2002) The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem 277(34):30409–30412. doi:10.1074/jbc.R200006200
CAS
PubMed
Google Scholar
Chung J, Chen C, Paw BH (2012) Heme metabolism and erythropoiesis. Curr Opin Hematol 19(3):156–162. doi:10.1097/MOH.0b013e328351c48b
CAS
PubMed
Google Scholar
Cheng T, Sudderth J, Yang C, Mullen AR, Jin ES, Mates JM, DeBerardinis RJ (2011) Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc Natl Acad Sci USA 108(21):8674–8679. doi:10.1073/pnas.1016627108
CAS
PubMed
PubMed Central
Google Scholar
Jitrapakdee S, Walker ME, Wallace JC (1996) Identification of novel alternatively spliced pyruvate carboxylase mRNAs with divergent 5′-untranslated regions which are expressed in a tissue-specific manner. Biochem Biophys Res Commun 223(3):695–700. doi:10.1006/bbrc.1996.0958
CAS
PubMed
Google Scholar
Bottger I, Wieland O, Brdiczka D, Pette D (1969) Intracellular localization of pyruvate carboxylase and phosphoenolpyruvate carboxykinase in rat liver. Eur J Biochem 8(1):113–119
CAS
PubMed
Google Scholar
Xiang S, Tong L (2008) Crystal structures of human and Staphylococcus aureus pyruvate carboxylase and molecular insights into the carboxyltransfer reaction. Nat Struct Mol Biol 15(3):295–302. doi:10.1038/nsmb.1393
CAS
PubMed
Google Scholar
Jitrapakdee S, St Maurice M, Rayment I, Cleland WW, Wallace JC, Attwood PV (2008) Structure, mechanism and regulation of pyruvate carboxylase. Biochem J 413(3):369–387. doi:10.1042/BJ20080709
CAS
PubMed
PubMed Central
Google Scholar
Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, Yao J, Zhou L, Zeng Y, Li H, Li Y, Shi J, An W, Hancock SM, He F, Qin L, Chin J, Yang P, Chen X, Lei Q, Xiong Y, Guan KL (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327(5968):1000–1004. doi:10.1126/science.1179689
CAS
PubMed
PubMed Central
Google Scholar
Ostergaard E, Duno M, Moller LB, Kalkanoglu-Sivri HS, Dursun A, Aliefendioglu D, Leth H, Dahl M, Christensen E, Wibrand F (2013) Novel mutations in the PC gene in patients with type B pyruvate carboxylase deficiency. JIMD Rep 9:1–5. doi:10.1007/8904_2012_173
PubMed
PubMed Central
Google Scholar
Wang D, Yang H, De Braganca KC, Lu J, Yu Shih L, Briones P, Lang T, De Vivo DC (2008) The molecular basis of pyruvate carboxylase deficiency: mosaicism correlates with prolonged survival. Mol Genet Metab 95(1–2):31–38. doi:10.1016/j.ymgme.2008.06.006
CAS
PubMed
PubMed Central
Google Scholar
Marin-Valencia I, Roe CR, Pascual JM (2010) Pyruvate carboxylase deficiency: mechanisms, mimics and anaplerosis. Mol Genet Metab 101(1):9–17. doi:10.1016/j.ymgme.2010.05.004
CAS
PubMed
Google Scholar
Robinson BH (2006) Lactic acidemia and mitochondrial disease. Mol Genet Metab 89(1–2):3–13. doi:10.1016/j.ymgme.2006.05.015
CAS
PubMed
Google Scholar
Van Coster RN, Fernhoff PM, De Vivo DC (1991) Pyruvate carboxylase deficiency: a benign variant with normal development. Pediatr Res 30(1):1–4. doi:10.1203/00006450-199107000-00001
PubMed
Google Scholar
Upadhyay M, Samal J, Kandpal M, Singh OV, Vivekanandan P (2013) The Warburg effect: insights from the past decade. Pharmacol Ther 137(3):318–330. doi:10.1016/j.pharmthera.2012.11.003
CAS
PubMed
Google Scholar
Warburg O (1956) On respiratory impairment in cancer cells. Science 124(3215):269–270
CAS
PubMed
Google Scholar
Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314
CAS
PubMed
Google Scholar
Yang W, Lu Z (2013) Regulation and function of pyruvate kinase M2 in cancer. Cancer Lett. doi:10.1016/j.canlet.2013.06.008
PubMed Central
Google Scholar
Filipp FV (2013) Cancer metabolism meets systems biology: pyruvate kinase isoform PKM2 is a metabolic master regulator. J Carcinog 12:14. doi:10.4103/1477-3163.115423
PubMed
PubMed Central
Google Scholar
Semenza GL (2013) Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Ann Rev Pathol. doi:10.1146/annurev-pathol-012513-104720
Google Scholar
Soga T (2013) Cancer metabolism: key players in metabolic reprogramming. Cancer Sci 104(3):275–281. doi:10.1111/cas.12085
CAS
PubMed
Google Scholar
Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, Gottfried E, Schwarz S, Rothe G, Hoves S, Renner K, Timischl B, Mackensen A, Kunz-Schughart L, Andreesen R, Krause SW, Kreutz M (2007) Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109(9):3812–3819. doi:10.1182/blood-2006-07-035972
CAS
PubMed
Google Scholar
Choi SY, Collins CC, Gout PW, Wang Y (2013) Cancer-generated lactic acid: a regulatory, immunosuppressive metabolite? J Pathol 230(4):350–355. doi:10.1002/path.4218
CAS
PubMed
PubMed Central
Google Scholar
Tsai YP, Wu KJ (2012) Hypoxiaregulated target genes implicated in tumor metastasis. J Biomed Sci 19:102. doi:10.1186/1423-0127-19-102
CAS
PubMed
PubMed Central
Google Scholar
Deryugina EI, Quigley JP (2006) Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 25(1):9–34. doi:10.1007/s10555-006-7886-9
CAS
PubMed
Google Scholar
Baumann F, Leukel P, Doerfelt A, Beier CP, Dettmer K, Oefner PJ, Kastenberger M, Kreutz M, Nickl-Jockschat T, Bogdahn U, Bosserhoff AK, Hau P (2009) Lactate promotes glioma migration by TGF-beta2-dependent regulation of matrix metalloproteinase-2. Neurooncology 11(4):368–380. doi:10.1215/15228517-2008-106
CAS
Google Scholar
Boidot R, Vegran F, Meulle A, Le Breton A, Dessy C, Sonveaux P, Lizard-Nacol S, Feron O (2012) Regulation of monocarboxylate transporter MCT1 expression by p53 mediates inward and outward lactate fluxes in tumors. Cancer Res 72(4):939–948. doi:10.1158/0008-5472.CAN-11-2474
CAS
PubMed
Google Scholar
Meijer TW, Kaanders JH, Span PN, Bussink J (2012) Targeting hypoxia, HIF-1, and tumor glucose metabolism to improve radiotherapy efficacy. Clin Cancer Res 18(20):5585–5594. doi:10.1158/1078-0432.CCR-12-0858
CAS
PubMed
Google Scholar
Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG Jr (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292(5516):464–468. doi:10.1126/science.1059817
CAS
PubMed
Google Scholar
Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, von Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2regulated prolyl hydroxylation. Science 292(5516):468–472. doi:10.1126/science.1059796
CAS
PubMed
Google Scholar
Chan DA, Sutphin PD, Yen SE, Giaccia AJ (2005) Coordinate regulation of the oxygen-dependent degradation domains of hypoxia-inducible factor 1 alpha. Mol Cell Biol 25(15):6415–6426. doi:10.1128/MCB.25.15.6415-6426.2005
CAS
PubMed
PubMed Central
Google Scholar
Lo R, Matthews J (2012) High-resolution genome-wide mapping of AHR and ARNT binding sites by ChIP-Seq. Toxicol Sci 130(2):349–361. doi:10.1093/toxsci/kfs253
CAS
PubMed
Google Scholar
Schodel J, Oikonomopoulos S, Ragoussis J, Pugh CW, Ratcliffe PJ, Mole DR (2011) High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood 117(23):e207–e217. doi:10.1182/blood-2010-10-314427
CAS
PubMed
PubMed Central
Google Scholar
Denko NC (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8(9):705–713. doi:10.1038/nrc2468
CAS
PubMed
Google Scholar
Kim S, Jung WH, Koo JS (2013) The expression of Glut-1, CAIX, and MCT4 in mucinous carcinoma. J Breast Cancer 16(2):146–151. doi:10.4048/jbc.2013.16.2.146
PubMed
PubMed Central
Google Scholar
Rong Y, Wu W, Ni X, Kuang T, Jin D, Wang D, Lou W (2013) Lactate dehydrogenase A is overexpressed in pancreatic cancer and promotes the growth of pancreatic cancer cells. Tumour Biol 34(3):1523–1530. doi:10.1007/s13277-013-0679-1
CAS
PubMed
Google Scholar
Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B, Zeller KI, Dang CV, Semenza GL (2007) HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 11(5):407–420. doi:10.1016/j.ccr.2007.04.001
CAS
PubMed
Google Scholar
Tang CM, Yu J (2013) Hypoxia-inducible factor-1 as a therapeutic target in cancer. J Gastroenterol Hepatol 28(3):401–405. doi:10.1111/jgh.12038
CAS
PubMed
Google Scholar
Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, Gottlieb E, Vousden KH (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126(1):107–120. doi:10.1016/j.cell.2006.05.036
CAS
PubMed
Google Scholar
Kim HR, Roe JS, Lee JE, Cho EJ, Youn HD (2013) p53 regulates glucose metabolism by miR-34a. Biochem Biophys Res Commun 437(2):225–231. doi:10.1016/j.bbrc.2013.06.043
CAS
PubMed
Google Scholar
Li H, Jogl G (2009) Structural and biochemical studies of TIGAR (TP53-induced glycolysis and apoptosis regulator). J Biol Chem 284(3):1748–1754. doi:10.1074/jbc.M807821200
CAS
PubMed
PubMed Central
Google Scholar
Wong N, De Melo J, Tang D (2013) PKM2, a central point of regulation in cancer metabolism. Int J Cell Biol 2013:242513. doi:10.1155/2013/242513
PubMed
PubMed Central
Google Scholar
Gupta V, Bamezai RN (2010) Human pyruvate kinase M2: a multifunctional protein. Protein Sci 19(11):2031–2044. doi:10.1002/pro.505
CAS
PubMed
PubMed Central
Google Scholar
Barrera G (2012) Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol 2012:137289. doi:10.5402/2012/137289
PubMed
PubMed Central
Google Scholar
Toyokuni S, Okamoto K, Yodoi J, Hiai H (1995) Persistent oxidative stress in cancer. FEBS Lett 358(1):1–3
CAS
PubMed
Google Scholar
Szatrowski TP, Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51(3):794–798
CAS
PubMed
Google Scholar
Nogueira V, Hay N (2013) Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin Cancer Res 19(16):4309–4314. doi:10.1158/1078-0432.CCR-12-1424
CAS
PubMed
Google Scholar
Ayyanathan K, Kesaraju S, Dawson-Scully K, Weissbach H (2012) Combination of sulindac and dichloroacetate kills cancer cells via oxidative damage. PLoS ONE 7(7):e39949. doi:10.1371/journal.pone.0039949
CAS
PubMed
PubMed Central
Google Scholar
Sutendra G, Dromparis P, Kinnaird A, Stenson TH, Haromy A, Parker JMR, McMurtry MS, Michelakis ED (2013) Mitochondrial activation by inhibition of PDKII suppresses HIF1a signaling and angiogenesis in cancer. Oncogene 32 (13):1638–1650. doi:http://www.nature.com/onc/journal/v32/n13/suppinfo/onc2012198s1.html
Google Scholar
Sun RC, Fadia M, Dahlstrom JE, Parish CR, Board PG, Blackburn AC (2010) Reversal of the glycolytic phenotype by dichloroacetate inhibits metastatic breast cancer cell growth in vitro and in vivo. Breast Cancer Res Treat 120(1):253–260. doi:10.1007/s10549-009-0435-9
CAS
PubMed
Google Scholar
Michelakis ED, Webster L, Mackey JR (2008) Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br J Cancer 99(7):989–994. doi:10.1038/sj.bjc.6604554
CAS
PubMed
PubMed Central
Google Scholar
Zhao Y, Butler EB, Tan M (2013) Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis 4:e532. doi:10.1038/cddis.2013.60
CAS
PubMed
PubMed Central
Google Scholar
Simons AL, Mattson DM, Dornfeld K, Spitz DR (2009) Glucose deprivation-induced metabolic oxidative stress and cancer therapy. J Cancer Res Therapeutics 5(Suppl 1):S2–S6. doi:10.4103/0973-1482.55133
CAS
Google Scholar
Patra KC, Wang Q, Bhaskar PT, Miller L, Wang Z, Wheaton W, Chandel N, Laakso M, Muller WJ, Allen EL, Jha AK, Smolen GA, Clasquin MF, Robey RB, Hay N (2013) Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell 24(2):213–228. doi:10.1016/j.ccr.2013.06.014
CAS
PubMed
Google Scholar
Pedersen PL (2007) Warburg, me and Hexokinase 2: multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg Effect”, i.e., elevated glycolysis in the presence of oxygen. J Bioenerg Biomembr 39(3):211–222. doi:10.1007/s10863-007-9094-x
CAS
PubMed
Google Scholar
Ko YH, Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS, Hullihen J, Pedersen PL (2004) Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun 324(1):269–275. doi:10.1016/j.bbrc.2004.09.047
CAS
PubMed
Google Scholar
Frauwirth KA, Thompson CB (2004) Regulation of T lymphocyte metabolism. J Immunol 172(8):4661–4665
CAS
PubMed
Google Scholar
Rai PR, Cool CD, King JA, Stevens T, Burns N, Winn RA, Kasper M, Voelkel NF (2008) The cancer paradigm of severe pulmonary arterial hypertension. Am J Respir Crit Care Med 178(6):558–564. doi:10.1164/rccm.200709-1369PP
PubMed
PubMed Central
Google Scholar
Rehman J, Archer SL (2010) A proposed mitochondrial-metabolic mechanism for initiation and maintenance of pulmonary arterial hypertension in fawn-hooded rats: the Warburg model of pulmonary arterial hypertension. Adv Exp Med Biol 661:171–185. doi:10.1007/978-1-60761-500-2_11
CAS
PubMed
Google Scholar
Sakao S, Tatsumi K (2011) Vascular remodeling in pulmonary arterial hypertension: multiple cancer-like pathways and possible treatment modalities. Int J Cardiol 147(1):4–12. doi:10.1016/j.ijcard.2010.07.003
PubMed
Google Scholar
Amaral AI (2012) Effects of hypoglycaemia on neuronal metabolism in the adult brain: role of alternative substrates to glucose. J Inherit Metab Dis. doi:10.1007/s10545-012-9553-3
PubMed
Google Scholar
White H, Venkatesh B (2011) Clinical review: ketones and brain injury. Crit Care 15(2):219. doi:10.1186/cc10020
PubMed
PubMed Central
Google Scholar
Martin E, Rosenthal RE, Fiskum G (2005) Pyruvate dehydrogenase complex: metabolic link to ischemic brain injury and target of oxidative stress. J Neurosci Res 79(1–2):240–247. doi:10.1002/jnr.20293
CAS
PubMed
PubMed Central
Google Scholar
Parnetti L, Gaiti A, Polidori MC, Brunetti M, Palumbo B, Chionne F, Cadini D, Cecchetti R, Senin U (1995) Increased cerebrospinal fluid pyruvate levels in Alzheimer’s’s disease. Neurosci Lett 199(3):231–233
CAS
PubMed
Google Scholar
Ahmed SS, Santosh W, Kumar S, Christlet HT (2009) Metabolic profiling of Parkinson’s disease: evidence of biomarker from gene expression analysis and rapid neural network detection. J Biomed Sci 16:63. doi:10.1186/1423-0127-16-63
PubMed
PubMed Central
Google Scholar
Sheu KF, Kim YT, Blass JP, Weksler ME (1985) An immunochemical study of the pyruvate dehydrogenase deficit in Alzheimer’s’s disease brain. Ann Neurol 17(5):444–449. doi:10.1002/ana.410170505
CAS
PubMed
Google Scholar
Mannan AA, Sharma MC, Shrivastava P, Ralte AM, Gupta V, Behari M, Sarkar C (2004) Leigh’s syndrome. Indian J Pediatr 71(11):1029–1033
CAS
PubMed
Google Scholar
Koopman WJ, Distelmaier F, Smeitink JA, Willems PH (2013) OXPHOS mutations and neurodegeneration. EMBO J 32(1):9–29. doi:10.1038/emboj.2012.300
CAS
PubMed
PubMed Central
Google Scholar
Bouzier-Sore AK, Voisin P, Bouchaud V, Bezancon E, Franconi JM, Pellerin L (2006) Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: a comparative NMR study. Eur J Neurosci 24(6):1687–1694. doi:10.1111/j.1460-9568.2006.05056.x
PubMed
Google Scholar
Itoh Y, Esaki T, Shimoji K, Cook M, Law MJ, Kaufman E, Sokoloff L (2003) Dichloroacetate effects on glucose and lactate oxidation by neurons and astroglia in vitro and on glucose utilization by brain in vivo. Proc Natl Acad Sci USA 100(8):4879–4884. doi:10.1073/pnas.0831078100
CAS
PubMed
PubMed Central
Google Scholar
Bolanos JP, Almeida A, Moncada S (2010) Glycolysis: a bioenergetic or a survival pathway? Trends Biochem Sci 35(3):145–149. doi:10.1016/j.tibs.2009.10.006
CAS
PubMed
Google Scholar
Brown AM (2004) Brain glycogen re-awakened. J Neurochem 89(3):537–552. doi:10.1111/j.1471-4159.2004.02421.x
CAS
PubMed
Google Scholar
Garcia-Nogales P, Almeida A, Bolanos JP (2003) Peroxynitrite protects neurons against nitric oxide-mediated apoptosis. A key role for glucose-6-phosphate dehydrogenase activity in neuroprotection. J Biol Chem 278(2):864–874. doi:10.1074/jbc.M206835200
CAS
PubMed
Google Scholar
Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98(3):641–653. doi:10.1111/j.1471-4159.2006.03913.x
CAS
PubMed
Google Scholar
Magistretti PJ, Chatton JY (2005) Relationship between L-glutamateregulated intracellular Na+ dynamics and ATP hydrolysis in astrocytes. J Neural Transm 112(1):77–85. doi:10.1007/s00702-004-0171-6
CAS
PubMed
Google Scholar
Stuart CA, Ross IR, Howell ME, McCurry MP, Wood TG, Ceci JD, Kennel SJ, Wall J (2011) Brain glucose transporter (Glut3) haploinsufficiency does not impair mouse brain glucose uptake. Brain Res 1384:15–22. doi:10.1016/j.brainres.2011.02.014
CAS
PubMed
PubMed Central
Google Scholar
Wang D, Pascual JM, Yang H, Engelstad K, Mao X, Cheng J, Yoo J, Noebels JL, De Vivo DC (2006) A mouse model for Glut-1 haploinsufficiency. Hum Mol Genet 15(7):1169–1179. doi:10.1093/hmg/ddl032
CAS
PubMed
Google Scholar
Mao P, Reddy PH (2011) Aging and amyloid beta-induced oxidative DNA damage and mitochondrial dysfunction in Alzheimer’s’s disease: implications for early intervention and therapeutics. Biochim Biophys Acta 1812(11):1359–1370. doi:10.1016/j.bbadis.2011.08.005
CAS
PubMed
PubMed Central
Google Scholar
Leuner K, Schutt T, Kurz C, Eckert SH, Schiller C, Occhipinti A, Mai S, Jendrach M, Eckert GP, Kruse SE, Palmiter RD, Brandt U, Drose S, Wittig I, Willem M, Haass C, Reichert AS, Muller WE (2012) Mitochondrion-derived reactive oxygen species lead to enhanced amyloid beta formation. Antioxid Redox Signal 16(12):1421–1433. doi:10.1089/ars.2011.4173
CAS
PubMed
PubMed Central
Google Scholar
von Bernhardi R, Eugenin J (2012) Alzheimer’s’s disease: redox dysregulation as a common denominator for diverse pathogenic mechanisms. Antioxid Redox Signal 16(9):974–1031. doi:10.1089/ars.2011.4082
Google Scholar
Horan MP, Pichaud N, Ballard JW (2012) Review: quantifying mitochondrial dysfunction in complex diseases of aging. J Gerontol A 67(10):1022–1035. doi:10.1093/gerona/glr263
Google Scholar
Weir HJ, Murray TK, Kehoe PG, Love S, Verdin EM, O’Neill MJ, Lane JD, Balthasar N (2012) CNS SIRT3 expression is altered by reactive oxygen species and in Alzheimer’s’s disease. PLoS ONE 7(11):e48225. doi:10.1371/journal.pone.0048225
CAS
PubMed
PubMed Central
Google Scholar
Khan A, Vaibhav K, Javed H, Khan MM, Tabassum R, Ahmed ME, Srivastava P, Khuwaja G, Islam F, Siddiqui MS, Shafi MM, Islam F (2012) Attenuation of Abeta-induced neurotoxicity by thymoquinone via inhibition of mitochondrial dysfunction and oxidative stress. Mol Cell Biochem 369(1–2):55–65. doi:10.1007/s11010-012-1368-x
CAS
PubMed
Google Scholar
Gao HM, Zhou H, Hong JS (2012) NADPH oxidases: novel therapeutic targets for neurodegenerative diseases. Trends Pharmacol Sci 33(6):295–303. doi:10.1016/j.tips.2012.03.008
PubMed
PubMed Central
Google Scholar
Shelat PB, Chalimoniuk M, Wang JH, Strosznajder JB, Lee JC, Sun AY, Simonyi A, Sun GY (2008) Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons. J Neurochem 106(1):45–55. doi:10.1111/j.1471-4159.2008.05347.x
CAS
PubMed
Google Scholar
Zilberter M, Ivanov A, Ziyatdinova S, Mukhtarov M, Malkov A, Alpar A, Tortoriello G, Botting CH, Fulop L, Osypov AA, Pitkanen A, Tanila H, Harkany T, Zilberter Y (2013) Dietary energy substrates reverse early neuronal hyperactivity in a mouse model of Alzheimer’s’s disease. J Neurochem 125(1):157–171. doi:10.1111/jnc.12127
CAS
PubMed
Google Scholar
Pocernich CB, Butterfield DA (2003) Acrolein inhibits NADH-linked mitochondrial enzyme activity: implications for Alzheimer’s’s disease. Neurotox Res 5(7):515–520
PubMed
Google Scholar
Holmquist L, Stuchbury G, Berbaum K, Muscat S, Young S, Hager K, Engel J, Munch G (2007) Lipoic acid as a novel treatment for Alzheimer’s’s disease and related dementias. Pharmacol Ther 113(1):154–164. doi:10.1016/j.pharmthera.2006.07.001
CAS
PubMed
Google Scholar
Vaishnavi SN, Vlassenko AG, Rundle MM, Snyder AZ, Mintun MA, Raichle ME (2010) Regional aerobic glycolysis in the human brain. Proc Natl Acad Sci USA 107(41):17757–17762. doi:10.1073/pnas.1010459107
CAS
PubMed
PubMed Central
Google Scholar
Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann NY Acad Sci 1124:1–38. doi:10.1196/annals.1440.011
PubMed
Google Scholar
Mark RJ, Pang Z, Geddes JW, Uchida K, Mattson MP (1997) Amyloid beta-peptide impairs glucose transport in hippocampal and cortical neurons: involvement of membrane lipid peroxidation. J Neurosci 17(3):1046–1054
CAS
PubMed
Google Scholar
Prapong T, Buss J, Hsu WH, Heine P, West Greenlee H, Uemura E (2002) Amyloid beta-peptide decreases neuronal glucose uptake despite causing increase in GLUT3 mRNA transcription and GLUT3 translocation to the plasma membrane. Exp Neurol 174(2):253–258. doi:10.1006/exnr.2001.7861
CAS
PubMed
Google Scholar
Parpura-Gill A, Beitz D, Uemura E (1997) The inhibitory effects of beta-amyloid on glutamate and glucose uptakes by cultured astrocytes. Brain Res 754(1–2):65–71
CAS
PubMed
Google Scholar
Morbelli S, Drzezga A, Perneczky R, Frisoni GB, Caroli A, van Berckel BN, Ossenkoppele R, Guedj E, Didic M, Brugnolo A, Sambuceti G, Pagani M, Salmon E, Nobili F (2012) Resting metabolic connectivity in prodromal Alzheimer’s’s disease. A European Alzheimer’s Disease Consortium (EADC) project. Neurobiol Aging 33(11):2533–2550. doi:10.1016/j.neurobiolaging.2012.01.005
PubMed
Google Scholar
Vlassenko AG, Vaishnavi SN, Couture L, Sacco D, Shannon BJ, Mach RH, Morris JC, Raichle ME, Mintun MA (2010) Spatial correlation between brain aerobic glycolysis and amyloid-beta (Abeta) deposition. Proc Natl Acad Sci USA 107(41):17763–17767. doi:10.1073/pnas.1010461107
CAS
PubMed
PubMed Central
Google Scholar
La Joie R, Perrotin A, Barre L, Hommet C, Mezenge F, Ibazizene M, Camus V, Abbas A, Landeau B, Guilloteau D, de La Sayette V, Eustache F, Desgranges B, Chetelat G (2012) Region-specific hierarchy between atrophy, hypometabolism, and beta-amyloid (Abeta) load in Alzheimer’s’s disease dementia. J Neurosci 32(46):16265–16273. doi:10.1523/JNEUROSCI.2170-12.2012
PubMed
Google Scholar
Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, Alberini CM (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144(5):810–823. doi:10.1016/j.cell.2011.02.018
CAS
PubMed
PubMed Central
Google Scholar
Gold PE, Newman LA, Scavuzzo CJ, Korol DL (2013) Modulation of multiple memory systems: from neurotransmitters to metabolic substrates. Hippocampus. doi:10.1002/hipo.22182
Google Scholar
Hauser DN, Hastings TG (2013) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease and monogenic parkinsonism. Neurobiol Dis 51:35–42. doi:10.1016/j.nbd.2012.10.011
CAS
PubMed
PubMed Central
Google Scholar
Surmeier DJ, Guzman JN, Sanchez-Padilla J, Schumacker PT (2011) The role of calcium and mitochondrial oxidant stress in the loss of substantia nigra pars compacta dopaminergic neurons in Parkinson’s disease. Neuroscience 198:221–231. doi:10.1016/j.neuroscience.2011.08.045
CAS
PubMed
PubMed Central
Google Scholar
Ben-Shachar D, Youdim MB (1993) Iron, melanin and dopamine interaction: relevance to Parkinson’s disease. Prog Neuropsychopharmacol Biol Psychiatry 17(1):139–150
CAS
PubMed
Google Scholar
Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79(4):368–376. doi:10.1136/jnnp.2007.131045
CAS
PubMed
Google Scholar
Zheng B, Liao Z, Locascio JJ, Lesniak KA, Roderick SS, Watt ML, Eklund AC, Zhang-James Y, Kim PD, Hauser MA, Grunblatt E, Moran LB, Mandel SA, Riederer P, Miller RM, Federoff HJ, Wullner U, Papapetropoulos S, Youdim MB, Cantuti-Castelvetri I, Young AB, Vance JM, Davis RL, Hedreen JC, Adler CH, Beach TG, Graeber MB, Middleton FA, Rochet JC, Scherzer CR, Global PDGEC (2010) PGC-1alpha, a potential therapeutic target for early intervention in Parkinson’s disease. Sci Transl Med 2(52):52ra73. doi:10.1126/scitranslmed.3001059
Google Scholar
Hu MT, Taylor-Robinson SD, Chaudhuri KR, Bell JD, Labbe C, Cunningham VJ, Koepp MJ, Hammers A, Morris RG, Turjanski N, Brooks DJ (2000) Cortical dysfunction in non-demented Parkinson’s disease patients: a combined (31)P-MRS and (18)FDG-PET study. Brain J Neurol 123(Pt 2):340–352
Google Scholar
Andreux PA, Houtkooper RH, Auwerx J (2013) Pharmacological approaches to restore mitochondrial function. Nat Rev Drug Discov 12(6):465–483. doi:10.1038/nrd4023
CAS
PubMed
PubMed Central
Google Scholar
Winslow BT, Onysko MK, Stob CM, Hazlewood KA (2011) Treatment of Alzheimer’s disease. Am Fam Physician 83(12):1403–1412
PubMed
Google Scholar
Olanow CW, Watts RL, Koller WC (2001) An algorithm (decision tree) for the management of Parkinson’s disease (2001): treatment guidelines. Neurology 56(11 Suppl 5):S1–S88
CAS
PubMed
Google Scholar
Brand K (1997) Aerobic glycolysis by proliferating cells: protection against oxidative stress at the expense of energy yield. J Bioenerg Biomembr 29(4):355–364
CAS
PubMed
Google Scholar
Ervens B, Gligorovski S, Herrmann H (2003) Temperature-dependent rate constants for hydroxyl radical reactions with organic compounds in aqueous solutions. Phys Chem Chem Phys 5(9):1811–1824. doi:10.1039/B300072A
CAS
Google Scholar
Varma SD, Hegde KR (2007) Lens thiol depletion by peroxynitrite. Protective effect of pyruvate. Mol Cell Biochem 298(1–2):199–204. doi:10.1007/s11010-006-9352-y
CAS
PubMed
Google Scholar
Fink MP (2003) Ethyl pyruvate: a novel anti-inflammatory agent. Crit Care Med 31(1 Suppl):S51–S56. doi:10.1097/01.CCM.0000042476.32014.43
CAS
PubMed
Google Scholar
Alvarez G, Ramos M, Ruiz F, Satrustegui J, Bogonez E (2003) Pyruvate protection against beta-amyloid-induced neuronal death: role of mitochondrial redox state. J Neurosci Res 73(2):260–269. doi:10.1002/jnr.10648
CAS
PubMed
Google Scholar
Nakamichi N, Kambe Y, Oikawa H, Ogura M, Takano K, Tamaki K, Inoue M, Hinoi E, Yoneda Y (2005) Protection by exogenous pyruvate through a mechanism related to monocarboxylate transporters against cell death induced by hydrogen peroxide in cultured rat cortical neurons. J Neurochem 93(1):84–93. doi:10.1111/j.1471-4159.2005.02999.x
CAS
PubMed
Google Scholar
Huh SH, Chung YC, Piao Y, Jin MY, Son HJ, Yoon NS, Hong JY, Pak YK, Kim YS, Hong JK, Hwang O, Jin BK (2011) Ethyl pyruvate rescues nigrostriatal dopaminergic neurons by regulating glial activation in a mouse model of Parkinson’s disease. J Immunol 187(2):960–969. doi:10.4049/jimmunol.1100009
CAS
PubMed
Google Scholar
Chen W, Jia Z, Zhu H, Zhou K, Li Y, Misra HP (2010) Ethyl pyruvate inhibits peroxynitrite-induced DNA damage and hydroxyl radical generation: implications for neuroprotection. Neurochem Res 35(2):336–342. doi:10.1007/s11064-009-0059-9
CAS
PubMed
Google Scholar
Desagher S, Glowinski J, Premont J (1997) Pyruvate protects neurons against hydrogen peroxide-induced toxicity. J Neurosci 17(23):9060–9067
CAS
PubMed
Google Scholar
Gameiro PA, Laviolette LA, Kelleher JK, Iliopoulos O, Stephanopoulos G (2013) Cofactor balance by nicotinamide nucleotide transhydrogenase (NNT) coordinates reductive carboxylation and glucose catabolism in the tricarboxylic acid (TCA) cycle. J Biol Chem 288(18):12967–12977. doi:10.1074/jbc.M112.396796
CAS
PubMed
PubMed Central
Google Scholar
Pellerin L, Magistretti PJ (1996) Excitatory amino acids stimulate aerobic glycolysis in astrocytes via an activation of the Na+/K+ ATPase. Dev Neurosci 18(5–6):336–342
CAS
PubMed
Google Scholar
Pellerin L, Bouzier-Sore AK, Aubert A, Serres S, Merle M, Costalat R, Magistretti PJ (2007) Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 55(12):1251–1262. doi:10.1002/glia.20528
PubMed
Google Scholar
Delgado-Esteban M, Almeida A, Bolanos JP (2000) d-Glucose prevents glutathione oxidation and mitochondrial damage after glutamate receptor stimulation in rat cortical primary neurons. J Neurochem 75(4):1618–1624
CAS
PubMed
Google Scholar
Ries V, Oertel WH, Hoglinger GU (2011) Mitochondrial dysfunction as a therapeutic target in progressive supranuclear palsy. J Mol Neurosci 45(3):684–689. doi:10.1007/s12031-011-9606-3
CAS
PubMed
Google Scholar
Stamelou M, de Silva R, Arias-Carrion O, Boura E, Hollerhage M, Oertel WH, Muller U, Hoglinger GU (2010) Rational therapeutic approaches to progressive supranuclear palsy. Brain J Neurol 133(Pt 6):1578–1590. doi:10.1093/brain/awq115
Google Scholar
Neubauer S (2007) The failing heart—an engine out of fuel. New Engl J Med 356(11):1140–1151. doi:10.1056/NEJMra063052
PubMed
Google Scholar
McMurray JJ, Pfeffer MA (2005) Heart failure. Lancet 365(9474):1877–1889. doi:10.1016/S0140-6736(05)66621-4
PubMed
Google Scholar
Revenco D, Morgan JP (2009) Metabolic modulation and cellular therapy of cardiac dysfunction and failure. J Cell Mol Med 13(5):811–825. doi:10.1111/j.1582-4934.2009.00759.x
CAS
PubMed
Google Scholar
Wang J, Bai L, Li J, Sun C, Zhao J, Cui C, Han K, Liu Y, Zhuo X, Wang T, Liu P, Fan F, Guan Y, Ma A (2009) Proteomic analysis of mitochondria reveals a metabolic switch from fatty acid oxidation to glycolysis in the failing heart. Sci China C 52(11):1003–1010. doi:10.1007/s11427-009-0140-2
CAS
Google Scholar
Barth AS, Aiba T, Halperin V, DiSilvestre D, Chakir K, Colantuoni C, Tunin RS, Dimaano VL, Yu W, Abraham TP, Kass DA, Tomaselli GF (2009) Cardiac resynchronization therapy corrects dyssynchrony-induced regional gene expression changes on a genomic level. Circ Cardiovas Genet 2(4):371–378. doi:10.1161/CIRCGENETICS.108.832345
CAS
Google Scholar
Jullig M, Hickey AJ, Chai CC, Skea GL, Middleditch MJ, Costa S, Choong SY, Philips AR, Cooper GJ (2008) Is the failing heart out of fuel or a worn engine running rich? A study of mitochondria in old spontaneously hypertensive rats. Proteomics 8(12):2556–2572. doi:10.1002/pmic.200700977
CAS
PubMed
Google Scholar
Turer AT, Malloy CR, Newgard CB, Podgoreanu MV (2010) Energetics and metabolism in the failing heart: important but poorly understood. Curr Opin Clin Nutr Metab Care 13(4):458–465. doi:10.1097/MCO.0b013e32833a55a5
PubMed
PubMed Central
Google Scholar
Jameel MN, Zhang J (2009) Heart failure management: the present and the future. Antioxid Redox Signal 11(8):1989–2010. doi:10.1089/ARS.2009.2488
CAS
PubMed
PubMed Central
Google Scholar
Fillmore N, Lopaschuk GD (2013) Targeting mitochondrial oxidative metabolism as an approach to treat heart failure. Biochim Biophys Acta 1833(4):857–865. doi:10.1016/j.bbamcr.2012.08.014
CAS
PubMed
Google Scholar
Agnetti G, Kaludercic N, Kane LA, Elliott ST, Guo Y, Chakir K, Samantapudi D, Paolocci N, Tomaselli GF, Kass DA, Van Eyk JE (2010) Modulation of mitochondrial proteome and improved mitochondrial function by biventricular pacing of dyssynchronous failing hearts. Circ Cardiovasc Genet 3(1):78–87. doi:10.1161/CIRCGENETICS.109.871236
CAS
PubMed
PubMed Central
Google Scholar
Nagoshi T, Yoshimura M, Rosano GM, Lopaschuk GD, Mochizuki S (2011) Optimization of cardiac metabolism in heart failure. Curr Pharm Des 17(35):3846–3853
CAS
PubMed
PubMed Central
Google Scholar
Funada J, Betts TR, Hodson L, Humphreys SM, Timperley J, Frayn KN, Karpe F (2009) Substrate utilization by the failing human heart by direct quantification using arterio-venous blood sampling. PLoS ONE 4(10):e7533. doi:10.1371/journal.pone.0007533
PubMed
PubMed Central
Google Scholar
Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90(1):207–258. doi:10.1152/physrev.00015.2009
CAS
PubMed
Google Scholar
Palaniswamy C, Mellana WM, Selvaraj DR, Mohan D (2011) Metabolic modulation: a new therapeutic target in treatment of heart failure. Am J Ther 18(6):e197–e201. doi:10.1097/MJT.0b013e3181d70453
PubMed
Google Scholar
Jaswal JS, Keung W, Wang W, Ussher JR, Lopaschuk GD (2011) Targeting fatty acid and carbohydrate oxidation—a novel therapeutic intervention in the ischemic and failing heart. Biochim Biophys Acta 1813(7):1333–1350. doi:10.1016/j.bbamcr.2011.01.015
CAS
PubMed
Google Scholar
Piao L, Fang YH, Cadete VJ, Wietholt C, Urboniene D, Toth PT, Marsboom G, Zhang HJ, Haber I, Rehman J, Lopaschuk GD, Archer SL (2010) The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy: resuscitating the hibernating right ventricle. J Mol Med 88(1):47–60. doi:10.1007/s00109-009-0524-6
CAS
PubMed
PubMed Central
Google Scholar
Liu Q, Docherty JC, Rendell JC, Clanachan AS, Lopaschuk GD (2002) High levels of fatty acids delay the recovery of intracellular pH and cardiac efficiency in post-ischemic hearts by inhibiting glucose oxidation. J Am Coll Cardiol 39(4):718–725
CAS
PubMed
Google Scholar
Liu B, Clanachan AS, Schulz R, Lopaschuk GD (1996) Cardiac efficiency is improved after ischemia by altering both the source and fate of protons. Circ Res 79(5):940–948
CAS
PubMed
Google Scholar
Whittom F, Jobin J, Simard PM, Leblanc P, Simard C, Bernard S, Belleau R, Maltais F (1998) Histochemical and morphological characteristics of the vastus lateralis muscle in patients with chronic obstructive pulmonary disease. Med Sci Sports Exerc 30(10):1467–1474
CAS
PubMed
Google Scholar
Gosker HR, van Mameren H, van Dijk PJ, Engelen MP, van der Vusse GJ, Wouters EF, Schols AM (2002) Skeletal muscle fibre-type shifting and metabolic profile in patients with chronic obstructive pulmonary disease. Eur Respir J 19(4):617–625
CAS
PubMed
Google Scholar
Maltais F, LeBlanc P, Whittom F, Simard C, Marquis K, Belanger M, Breton MJ, Jobin J (2000) Oxidative enzyme activities of the vastus lateralis muscle and the functional status in patients with COPD. Thorax 55(10):848–853
CAS
PubMed
PubMed Central
Google Scholar
Maltais F, Simard AA, Simard C, Jobin J, Desgagnes P, LeBlanc P (1996) Oxidative capacity of the skeletal muscle and lactic acid kinetics during exercise in normal subjects and in patients with COPD. Am J Respir Crit Care Med 153(1):288–293. doi:10.1164/ajrccm.153.1.8542131
CAS
PubMed
Google Scholar
Calvert LD, Shelley R, Singh SJ, Greenhaff PL, Bankart J, Morgan MD, Steiner MC (2008) Dichloroacetate enhances performance and reduces blood lactate during maximal cycle exercise in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 177(10):1090–1094. doi:10.1164/rccm.200707-1032OC
CAS
PubMed
Google Scholar
Mercken EM, Calvert LD, Singh SJ, Hageman GJ, Schols AM, Steiner MC (2009) Dichloroacetate modulates the oxidative stress and inflammatory response to exercise in COPD. Chest 136(3):744–751. doi:10.1378/chest.08-2890
CAS
PubMed
Google Scholar
Chockalingam A, Linden MA, Del Rosario M, Govindarajan G, Dellsperger KC, Thomas TR (2010) Exercise and weight loss improve exercise capacity independent of cardiac function in metabolic syndrome. Angiology 61(2):192–197. doi:10.1177/0003319709336418
CAS
PubMed
Google Scholar
Green S, Askew CD, Walker PJ (2007) Effect of type 2 diabetes mellitus on exercise intolerance and the physiological responses to exercise in peripheral arterial disease. Diabetologia 50(4):859–866. doi:10.1007/s00125-006-0587-7
CAS
PubMed
Google Scholar
Kelley DE, Mandarino LJ (2000) Fuel selection in human skeletal muscle in insulin resistance: a reexamination. Diabetes 49(5):677–683
CAS
PubMed
Google Scholar
Prior SJ, Ryan AS, Stevenson TG, Goldberg AP (2013) Metabolic inflexibility during submaximal aerobic exercise is associated with glucose intolerance in obese older adults. Obesity. doi:10.1002/oby.20609
PubMed
Google Scholar
Kiilerich K, Gudmundsson M, Birk JB, Lundby C, Taudorf S, Plomgaard P, Saltin B, Pedersen PA, Wojtaszewski JF, Pilegaard H (2010) Low muscle glycogen and elevated plasma free fatty acid modify but do not prevent exercise-induced PDH activation in human skeletal muscle. Diabetes 59(1):26–32. doi:10.2337/db09-1032
CAS
PubMed
PubMed Central
Google Scholar
Constantin-Teodosiu D, Constantin D, Stephens F, Laithwaite D, Greenhaff PL (2012) The role of FOXO and PPAR transcription factors in diet-mediated inhibition of PDC activation and carbohydrate oxidation during exercise in humans and the role of pharmacological activation of PDC in overriding these changes. Diabetes 61(5):1017–1024. doi:10.2337/db11-0799
CAS
PubMed
PubMed Central
Google Scholar
Peters SJ, Harris RA, Wu P, Pehleman TL, Heigenhauser GJ, Spriet LL (2001) Human skeletal muscle PDH kinase activity and isoform expression during a 3-day high-fat/low-carbohydrate diet. Am J Physiol Endocrinol Metab 281(6):E1151–E1158
CAS
PubMed
Google Scholar
St Amand TA, Spriet LL, Jones NL, Heigenhauser GJ (2000) Pyruvate overrides inhibition of PDH during exercise after a low-carbohydrate diet. Am J Physiol Endocrinol Metab 279(2):E275–E283
CAS
PubMed
Google Scholar
Sugden MC, Orfali KA, Fryer LG, Holness MJ, Priestman DA (1997) Molecular mechanisms underlying the long-term impact of dietary fat to increase cardiac pyruvate dehydrogenase kinase: regulation by insulin, cyclic AMP and pyruvate. J Mol Cell Cardiol 29(7):1867–1875. doi:10.1006/jmcc.1997.0425
CAS
PubMed
Google Scholar
Linn TC, Pettit FH, Hucho F, Reed LJ (1969) Alpha-keto acid dehydrogenase complexes. XI. Comparative studies of regulatory properties of the pyruvate dehydrogenase complexes from kidney, heart, and liver mitochondria. Proc Natl Acad Sci USA 64(1):227–234
CAS
PubMed
PubMed Central
Google Scholar
Kalman D, Colker CM, Wilets I, Roufs JB, Antonio J (1999) The effects of pyruvate supplementation on body composition in overweight individuals. Nutrition 15(5):337–340
CAS
PubMed
Google Scholar
Zhou YP, Ostenson CG, Ling ZC, Grill V (1995) Deficiency of pyruvate dehydrogenase activity in pancreatic islets of diabetic GK rats. Endocrinology 136(8):3546–3551
CAS
PubMed
Google Scholar
Zhou YP, Berggren PO, Grill V (1996) A fatty acid-induced decrease in pyruvate dehydrogenase activity is an important determinant of beta-cell dysfunction in the obese diabetic db/db mouse. Diabetes 45(5):580–586
CAS
PubMed
Google Scholar
Han J, Liu YQ (2010) Reduction of islet pyruvate carboxylase activity might be related to the development of type 2 diabetes mellitus in Agouti-K mice. J Endocrinol 204(2):143–152. doi:10.1677/JOE-09-0391
CAS
PubMed
PubMed Central
Google Scholar
Liu YQ, Han J, Epstein PN, Long YS (2005) Enhanced rat beta-cell proliferation in 60% pancreatectomized islets by increased glucose metabolic flux through pyruvate carboxylase pathway. Am J Physiol Endocrinol Metab 288(3):E471–E478. doi:10.1152/ajpendo.00427.2004
CAS
PubMed
Google Scholar
Liu YQ, Jetton TL, Leahy JL (2002) beta-Cell adaptation to insulin resistance. Increased pyruvate carboxylase and malate-pyruvate shuttle activity in islets of nondiabetic Zucker fatty rats. J Biol Chem 277(42):39163–39168. doi:10.1074/jbc.M207157200
CAS
PubMed
Google Scholar
Chambers KT, Leone TC, Sambandam N, Kovacs A, Wagg CS, Lopaschuk GD, Finck BN, Kelly DP (2011) Chronic inhibition of pyruvate dehydrogenase in heart triggers an adaptive metabolic response. J Biol Chem 286(13):11155–11162. doi:10.1074/jbc.M110.217349
CAS
PubMed
PubMed Central
Google Scholar
Kulkarni SS, Salehzadeh F, Fritz T, Zierath JR, Krook A, Osler ME (2012) Mitochondrial regulators of fatty acid metabolism reflect metabolic dysfunction in type 2 diabetes mellitus. Metab Clin Exp 61(2):175–185. doi:10.1016/j.metabol.2011.06.014
CAS
PubMed
Google Scholar
Bajotto G, Murakami T, Nagasaki M, Qin B, Matsuo Y, Maeda K, Ohashi M, Oshida Y, Sato Y, Shimomura Y (2006) Increased expression of hepatic pyruvate dehydrogenase kinases 2 and 4 in young and middle-aged Otsuka Long-Evans Tokushima Fatty rats: induction by elevated levels of free fatty acids. Metab Clin Exp 55(3):317–323. doi:10.1016/j.metabol.2005.09.014
CAS
PubMed
Google Scholar
Guder WG, Schmolke M, Wirthensohn G (1992) Carbohydrate and lipid metabolism of the renal tubule in diabetes mellitus. Eur J Clin Chem Clin Biochem J Forum Eur Clin Chem Soc 30(10):669–674
CAS
Google Scholar
Rosca MG, Vazquez EJ, Chen Q, Kerner J, Kern TS, Hoppel CL (2012) Oxidation of fatty acids is the source of increased mitochondrial reactive oxygen species production in kidney cortical tubules in early diabetes. Diabetes 61(8):2074–2083. doi:10.2337/db11-1437
CAS
PubMed
PubMed Central
Google Scholar
Ju KD, Shin EK, Cho EJ, Yoon HB, Kim HS, Kim H, Yang J, Hwang YH, Ahn C, Oh KH (2012) Ethyl pyruvate ameliorates albuminuria and glomerular injury in the animal model of diabetic nephropathy. Am J Physiol Renal Physiol 302(5):F606–F613. doi:10.1152/ajprenal.00415.2011
CAS
PubMed
Google Scholar
Hegde KR, Varma SD (2005) Prevention of cataract by pyruvate in experimentally diabetic mice. Mol Cell Biochem 269(1–2):115–120
CAS
PubMed
Google Scholar
Chang I, Cho N, Koh JY, Lee MS (2003) Pyruvate inhibits zinc-mediated pancreatic islet cell death and diabetes. Diabetologia 46(9):1220–1227. doi:10.1007/s00125-003-1171-z
CAS
PubMed
Google Scholar
Ross JM, Oberg J, Brene S, Coppotelli G, Terzioglu M, Pernold K, Goiny M, Sitnikov R, Kehr J, Trifunovic A, Larsson NG, Hoffer BJ, Olson L (2010) High brain lactate is a hallmark of aging and caused by a shift in the lactate dehydrogenase A/B ratio. Proc Natl Acad Sci USA 107(46):20087–20092. doi:10.1073/pnas.1008189107
CAS
PubMed
PubMed Central
Google Scholar
Mouchiroud L, Molin L, Kasturi P, Triba MN, Dumas ME, Wilson MC, Halestrap AP, Roussel D, Masse I, Dalliere N, Segalat L, Billaud M, Solari F (2011) Pyruvate imbalance mediates metabolic reprogramming and mimics lifespan extension by dietary restriction in Caenorhabditis elegans. Aging Cell 10(1):39–54. doi:10.1111/j.1474-9726.2010.00640.x
CAS
PubMed
Google Scholar
Schaffer S, Gruber J, Ng LF, Fong S, Wong YT, Tang SY, Halliwell B (2011) The effect of dichloroacetate on health- and lifespan in C. elegans. Biogerontology 12(3):195–209. doi:10.1007/s10522-010-9310-7
CAS
PubMed
Google Scholar
Formenti F, Constantin-Teodosiu D, Emmanuel Y, Cheeseman J, Dorrington KL, Edwards LM, Humphreys SM, Lappin TR, McMullin MF, McNamara CJ, Mills W, Murphy JA, O’Connor DF, Percy MJ, Ratcliffe PJ, Smith TG, Treacy M, Frayn KN, Greenhaff PL, Karpe F, Clarke K, Robbins PA (2010) Regulation of human metabolism by hypoxia-inducible factor. Proc Natl Acad Sci USA 107(28):12722–12727. doi:10.1073/pnas.1002339107
CAS
PubMed
PubMed Central
Google Scholar
Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3(3):177–185. doi:10.1016/j.cmet.2006.02.002
PubMed
Google Scholar
Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3(3):187–197. doi:10.1016/j.cmet.2006.01.012
CAS
PubMed
Google Scholar
Maekawa M, Kanda S, Sudo K, Kanno T (1984) Estimation of the gene frequency of lactate dehydrogenase subunit deficiencies. Am J Hum Genet 36(6):1204–1214
CAS
PubMed
PubMed Central
Google Scholar