Skip to main content
Log in

The stoichiometry of peptide-heparan sulfate binding as a determinant of uptake efficiency of cell-penetrating peptides

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Binding to negatively charged heparan sulfates (HS) at the cell surface is considered the first step in the internalization of cationic cell-penetrating peptides (CPPs). However, little is known about the relation of the characteristics of the HS-CPP interaction such as affinity, stoichiometry, and clustering with uptake. In this study, we investigated a collection of mutants of a cyclic CPP derived from human lactoferrin with respect to HS binding and uptake. The thermodynamic parameters of HS binding were determined by isothermal titration calorimetry, clustering of HS was investigated by dynamic light scattering, and cellular uptake by flow cytometry and confocal microscopy. Whereas mutations of non-arginine amino acids that are conserved across lactoferrins of different mammalia only had a minor effect on uptake efficiency, changes in the number of arginine residues influenced the uptake significantly. In general, introduction of arginine residues and cyclization improved the HS affinity and the ability to cluster HS. In particular, there was a strong negative correlation between stoichiometry and uptake, indicating that crosslinking of HS is the driving force for the uptake of arginine-rich CPPs. Using glycan microarrays presenting a collection of synthetic HS, we show that a minimal chain length of HS is required for peptide binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CPP:

Cell-penetrating peptide

DLS:

Dynamic light scattering

GAG:

Glycosaminoglycan

HS:

Heparan sulfate

hLF:

Human lactoferrin CPP

ITC:

Isothermal titration calorimetry

NZ:

Nucleation zones

References

  1. Andaloussi SE, Lehto T, Lundin P, Langel U (2011) Application of PepFect peptides for the delivery of splice-correcting oligonucleotides. Methods Mol Biol 683:361–373. doi:10.1007/978-1-60761-919-2_26

    Article  PubMed  Google Scholar 

  2. Milletti F (2012) Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov Today. doi:10.1016/j.drudis.2012.03.002

    PubMed  Google Scholar 

  3. Futaki S, Goto S, Sugiura Y (2003) Membrane permeability commonly shared among arginine-rich peptides. J Mol Recognit 16(5):260–264

    Article  CAS  PubMed  Google Scholar 

  4. Rothbard JB, Jessop TC, Wender PA (2005) Adaptive translocation: the role of hydrogen bonding and membrane potential in the uptake of guanidinium-rich transporters into cells. Adv Drug Deliv Rev 57(4):495–504

    Article  CAS  PubMed  Google Scholar 

  5. Sakai N, Matile S (2003) Anion-mediated transfer of polyarginine across liquid and bilayer membranes. J Am Chem Soc 125(47):14348–14356

    Article  CAS  PubMed  Google Scholar 

  6. Esteve E, Mabrouk K, Dupuis A, Smida-Rezgui S, Altafaj X, Grunwald D, Platel JC, Andreotti N, Marty I, Sabatier JM, Ronjat M, De Waard M (2005) Transduction of the scorpion toxin maurocalcine into cells. Evidence that the toxin crosses the plasma membrane. J Biol Chem 280(13):12833–12839. doi:10.1074/jbc.M412521200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Kerkis A, Kerkis I, Radis-Baptista G, Oliveira EB, Vianna-Morgante AM, Pereira LV, Yamane T (2004) Crotamine is a novel cell-penetrating protein from the venom of rattlesnake Crotalus durissus terrificus. Faseb J 18(12):1407–1409. doi:10.1096/fj.03-1459fje

    CAS  PubMed  Google Scholar 

  8. Jha D, Mishra R, Gottschalk S, Wiesmuller KH, Ugurbil K, Maier ME, Engelmann J (2011) CyLoP-1: a novel cysteine-rich cell-penetrating peptide for cytosolic delivery of cargoes. Bioconjug Chem 22(3):319–328. doi:10.1021/bc100045s

    Article  CAS  PubMed  Google Scholar 

  9. Duchardt F, Ruttekolk IR, Verdurmen WP, Lortat-Jacob H, Burck J, Hufnagel H, Fischer R, van den Heuvel M, Lowik DW, Vuister GW, Ulrich A, de Waard M, Brock R (2009) A cell-penetrating peptide derived from human lactoferrin with conformation-dependent uptake efficiency. J Biol Chem 284(52):36099–36108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Aubry S, Burlina F, Dupont E, Delaroche D, Joliot A, Lavielle S, Chassaing G, Sagan S (2009) Cell-surface thiols affect cell entry of disulfide-conjugated peptides. Faseb J 23(9):2956–2967. doi:10.1096/Fj.08-127563

    Article  CAS  PubMed  Google Scholar 

  11. Lattig-Tunnemann G, Prinz M, Hoffmann D, Behlke J, Palm-Apergi C, Morano I, Herce HD, Cardoso MC (2011) Backbone rigidity and static presentation of guanidinium groups increases cellular uptake of arginine-rich cell-penetrating peptides. Nat Commun 2:453. doi:10.1038/ncomms1459

    Article  PubMed Central  PubMed  Google Scholar 

  12. Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68:729–777. doi:10.1146/annurev.biochem.68.1.729

    Article  CAS  PubMed  Google Scholar 

  13. Goncalves E, Kitas E, Seelig J (2005) Binding of oligoarginine to membrane lipids and heparan sulfate: structural and thermodynamic characterization of a cell-penetrating peptide. Biochemistry 44(7):2692–2702

    Article  CAS  PubMed  Google Scholar 

  14. Tyagi M, Rusnati M, Presta M, Giacca M (2001) Internalization of HIV-1 tat requires cell surface heparan sulfate proteoglycans. J Biol Chem 276(5):3254–3261

    Article  CAS  PubMed  Google Scholar 

  15. Poon GM, Gariepy J (2007) Cell-surface proteoglycans as molecular portals for cationic peptide and polymer entry into cells. Biochem Soc Trans 35(Pt 4):788–793

    CAS  PubMed  Google Scholar 

  16. Ram N, Aroui S, Jaumain E, Bichraoui H, Mabrouk K, Ronjat M, Lortat-Jacob H, de Waard M (2008) Direct peptide interaction with surface glycosaminoglycans contributes to the cell penetration of maurocalcine. J Biol Chem 283(35):24274–24284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Verdurmen WP, Bovee-Geurts PH, Wadhwani P, Ulrich AS, Hallbrink M, van Kuppevelt TH, Brock R (2011) Preferential uptake of l-versus d-amino acid cell-penetrating peptides in a cell type-dependent manner. Chem Biol 18(8):1000–1010. doi:10.1016/j.chembiol.2011.06.006

    Article  CAS  PubMed  Google Scholar 

  18. Ziegler A, Seelig J (2008) Binding and clustering of glycosaminoglycans: a common property of mono- and multivalent cell-penetrating compounds. Biophys J 94(6):2142–2149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ziegler A, Seelig J (2011) Contributions of glycosaminoglycan binding and clustering to the biological uptake of the nonamphipathic cell-penetrating peptide WR9. Biochemistry 50(21):4650–4664. doi:10.1021/bi1019429

    Article  CAS  PubMed  Google Scholar 

  20. Amand HL, Rydberg HA, Fornander LH, Lincoln P, Norden B, Esbjorner EK (2012) Cell surface binding and uptake of arginine- and lysine-rich penetratin peptides in absence and presence of proteoglycans. Biochim Biophys Acta 1818(11):2669–2678. doi:10.1016/j.bbamem.2012.06.006

    Article  PubMed  Google Scholar 

  21. Verdurmen WP, Wallbrecher R, Schmidt S, Eilander J, Bovee-Geurts P, Fanghanel S, Burck J, Wadhwani P, Ulrich AS, Brock R (2013) Cell surface clustering of heparan sulfate proteoglycans by amphipathic cell-penetrating peptides does not contribute to uptake. J Control Release 170(1):83–91. doi:10.1016/j.jconrel.2013.05.001

    Article  CAS  PubMed  Google Scholar 

  22. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

    Article  CAS  PubMed  Google Scholar 

  23. Adibekian A, Bindschadler P, Timmer MS, Noti C, Schutzenmeister N, Seeberger PH (2007) De novo synthesis of uronic acid building blocks for assembly of heparin oligosaccharides. Chemistry 13(16):4510–4522. doi:10.1002/chem.200700141

    Article  CAS  PubMed  Google Scholar 

  24. de Paz JL, Noti C, Seeberger PH (2006) Microarrays of synthetic heparin oligosaccharides. J Am Chem Soc 128(9):2766–2767. doi:10.1021/ja057584v

    Article  PubMed  Google Scholar 

  25. Hecht ML, Rosental B, Horlacher T, Hershkovitz O, De Paz JL, Noti C, Schauer S, Porgador A, Seeberger PH (2009) Natural cytotoxicity receptors NKp30, NKp44 and NKp46 bind to different heparan sulfate/heparin sequences. J Proteome Res 8(2):712–720. doi:10.1021/pr800747c

    Article  CAS  PubMed  Google Scholar 

  26. Noti C, de Paz JL, Polito L, Seeberger PH (2006) Preparation and use of microarrays containing synthetic heparin oligosaccharides for the rapid analysis of heparin–protein interactions. Chemistry 12(34):8664–8686. doi:10.1002/chem.200601103

    Article  CAS  PubMed  Google Scholar 

  27. Duchardt F, Fotin-Mleczek M, Schwarz H, Fischer R, Brock R (2007) A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic 8(7):848–866. doi:10.1111/j.1600-0854.2007.00572.x

    Article  CAS  PubMed  Google Scholar 

  28. Verdurmen WP, Thanos M, Ruttekolk IR, Gulbins E, Brock R (2010) Cationic cell-penetrating peptides induce ceramide formation via acid sphingomyelinase: implications for uptake. J Control Release 147(2):171–179. doi:10.1016/j.jconrel.2010.06.030

    Article  CAS  PubMed  Google Scholar 

  29. Dom G, Shaw-Jackson C, Matis C, Bouffioux O, Picard JJ, Prochiantz A, Mingeot-Leclercq MP, Brasseur R, Rezsohazy R (2003) Cellular uptake of Antennapedia Penetratin peptides is a two-step process in which phase transfer precedes a tryptophan-dependent translocation. Nucleic Acids Res 31(2):556–561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Lecorche P, Walrant A, Burlina F, Dutot L, Sagan S, Mallet JM, Desbat B, Chassaing G, Alves ID, Lavielle S (2011) Cellular uptake and biophysical properties of galactose and/or tryptophan containing cell-penetrating peptides. Biochim Biophys Acta. doi:10.1016/j.bbamem.2011.12.003

    PubMed  Google Scholar 

  31. Derossi D, Joliot AH, Chassaing G, Prochiantz A (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269(14):10444–10450

    CAS  PubMed  Google Scholar 

  32. Cardin AD, Weintraub HJ (1989) Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis 9(1):21–32

    Article  CAS  PubMed  Google Scholar 

  33. Levy P, Robert A, Picard J (1988) Biosynthesis of glycosaminoglycans in the human colonic tumor cell line Caco-2: structural changes occurring with the morphological differentiation of the cells. Biol Cell 62(3):255–264

    Article  CAS  PubMed  Google Scholar 

  34. Molist A, Romaris M, Lindahl U, Villena J, Touab M, Bassols A (1998) Changes in glycosaminoglycan structure and composition of the main heparan sulphate proteoglycan from human colon carcinoma cells (perlecan) during cell differentiation. Eu J Biochem 254(2):371–377

    Article  CAS  Google Scholar 

  35. Fretz MM, Koning GA, Mastrobattista E, Jiskoot W, Storm G (2004) OVCAR-3 cells internalize TAT-peptide modified liposomes by endocytosis. Biochim Biophys Acta 1665(1–2):48–56. doi:10.1016/j.bbamem.2004.06.022

    Article  CAS  PubMed  Google Scholar 

  36. Kokenyesi R (2001) Ovarian carcinoma cells synthesize both chondroitin sulfate and heparan sulfate cell surface proteoglycans that mediate cell adhesion to interstitial matrix. J Cell Biochem 83(2):259–270

    Article  CAS  PubMed  Google Scholar 

  37. Inoue M, Tong W, Esko JD, Tor Y (2013) Aggregation-mediated macromolecular uptake by a molecular transporter. ACS Chem Biol. doi:10.1021/cb400172h

    PubMed Central  Google Scholar 

  38. Rehman Z, Sjollema KA, Kuipers J, Hoekstra D, Zuhorn IS (2012) Nonviral gene delivery vectors use syndecan-dependent transport mechanisms in filopodia to reach the cell surface. ACS Nano 6(8):7521–7532. doi:10.1021/nn3028562

    Article  CAS  Google Scholar 

  39. Ziegler A, Seelig J (2004) Interaction of the protein transduction domain of HIV-1 TAT with heparan sulfate: binding mechanism and thermodynamic parameters. Biophys J 86(1 Pt 1):254–263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Iozzo RV (2001) Heparan sulfate proteoglycans: intricate molecules with intriguing functions. J Clin Investig 108(2):165–167. doi:10.1172/JCI13560

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Alves ID, Bechara C, Walrant A, Zaltsman Y, Jiao CY, Sagan S (2011) Relationships between membrane binding, affinity and cell internalization efficacy of a cell-penetrating peptide: penetratin as a case study. PLoS ONE 6(9):e24096. doi:10.1371/journal.pone.0024096

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Bechara C, Pallerla M, Zaltsman Y, Burlina F, Alves ID, Lequin O, Sagan S (2013) Tryptophan within basic peptide sequences triggers glycosaminoglycan-dependent endocytosis. Faseb J 27(2):738–749. doi:10.1096/fj.12-216176

    Article  CAS  PubMed  Google Scholar 

  43. Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y (2001) Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276(8):5836–5840. doi:10.1074/jbc.M007540200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Max Planck Society and the Studienstiftung des Deutschen Volkes for their generous support of this work (scholarship to AR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Brock.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1328 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallbrecher, R., Verdurmen, W.P.R., Schmidt, S. et al. The stoichiometry of peptide-heparan sulfate binding as a determinant of uptake efficiency of cell-penetrating peptides. Cell. Mol. Life Sci. 71, 2717–2729 (2014). https://doi.org/10.1007/s00018-013-1517-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1517-8

Keywords

Navigation