Skip to main content

Methods to Study the Role of the Glycocalyx in the Uptake of Cell-Penetrating Peptides

  • Protocol
Cell-Penetrating Peptides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1324))

Abstract

Cells are covered by a layer of negatively charged oligo- and polysaccharides, the glycocalyx. Cell-penetrating peptides and other drug delivery vehicles first encounter these polyanions before contacting the lipid bilayer of the plasma membrane. While a large body of data supports the notion that interactions with the glycocalyx promote or even trigger uptake, in some cases, the glycocalyx compromises delivery. As a consequence there is a need to address the role of the glycocalyx in delivery for each specific delivery vehicle and for each particular type of cell. Here, we describe protocols to obtain information on the composition and dynamics of the glycocalyx, and the role of individual glycocalyx components in the uptake of drug delivery vehicles.

An erratum to this chapter is available at 10.1007/978-1-4939-2806-4_32

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-4939-2806-4_32

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Couchman JR (2010) Transmembrane signaling proteoglycans. Annu Rev Cell Dev Biol 26:89–114

    Article  CAS  PubMed  Google Scholar 

  2. Favretto ME, Wallbrecher R, Schmidt S, van de Putte R, Brock R (2014) Glycosaminoglycans in the cellular uptake of drug delivery vectors - bystanders or active players? J Control Release 180C:81–90

    Article  Google Scholar 

  3. Christianson HC, Belting M (2014) Heparan sulfate proteoglycan as a cell-surface endocytosis receptor. Matrix Biol 35:51–55

    Article  CAS  PubMed  Google Scholar 

  4. Gerbal-Chaloin S, Gondeau C, Aldrian-Herrada G, Heitz F, Gauthier-Rouviere C, Divita G (2007) First step of the cell-penetrating peptide mechanism involves Rac1 GTPase-dependent actin-network remodelling. Biol Cell 99:223–238

    Article  CAS  PubMed  Google Scholar 

  5. Subrizi A, Tuominen E, Bunker A, Rog T, Antopolsky M, Urtti A (2012) Tat(48-60) peptide amino acid sequence is not unique in its cell penetrating properties and cell-surface glycosaminoglycans inhibit its cellular uptake. J Control Release 158:277–285

    Article  CAS  PubMed  Google Scholar 

  6. Esko JD, Stewart TE, Taylor WH (1985) Animal cell mutants defective in glycosaminoglycan biosynthesis. Proc Natl Acad Sci U S A 82:3197–3201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Esko JD, Weinke JL, Taylor WH, Ekborg G, Roden L, Anantharamaiah G, Gawish A (1987) Inhibition of chondroitin and heparan sulfate biosynthesis in Chinese hamster ovary cell mutants defective in galactosyltransferase I. J Biol Chem 262:12189–12195

    CAS  PubMed  Google Scholar 

  8. Lidholt K, Weinke JL, Kiser CS, Lugemwa FN, Bame KJ, Cheifetz S, Massague J, Lindahl U, Esko JD (1992) A single mutation affects both N-acetylglucosaminyltransferase and glucuronosyltransferase activities in a Chinese hamster ovary cell mutant defective in heparan sulfate biosynthesis. Proc Natl Acad Sci U S A 89:2267–2271

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. van Kuppevelt TH, Dennissen MA, van Venrooij WJ, Hoet RM, Veerkamp JH (1998) Generation and application of type-specific anti-heparan sulfate antibodies using phage display technology. Further evidence for heparan sulfate heterogeneity in the kidney. J Biol Chem 273:12960–12966

    Article  PubMed  Google Scholar 

  10. Jenniskens GJ, Oosterhof A, Brandwijk R, Veerkamp JH, van Kuppevelt TH (2000) Heparan sulfate heterogeneity in skeletal muscle basal lamina: demonstration by phage display-derived antibodies. J Neurosci 20:4099–4111

    CAS  PubMed  Google Scholar 

  11. Smits NC, Robbesom AA, Versteeg EM, van de Westerlo EM, Dekhuijzen PN, van Kuppevelt TH (2004) Heterogeneity of heparan sulfates in human lung. Am J Respir Cell Mol Biol 30:166–173

    Article  CAS  PubMed  Google Scholar 

  12. Ten Dam GB, Yamada S, Kobayashi F, Purushothaman A, van de Westerlo EM, Bulten J, Malmstrom A, Sugahara K, Massuger LF, van Kuppevelt TH (2009) Dermatan sulfate domains defined by the novel antibody GD3A12, in normal tissues and ovarian adenocarcinomas. Histochem Cell Biol 132:117–127

    Article  PubMed  Google Scholar 

  13. Lensen JF, Wijnhoven TJ, Kuik LH, Versteeg EM, Hafmans T, Rops AL, Pavao MS, van der Vlag J, van den Heuvel LP, Berden JH, van Kuppevelt TH (2006) Selection and characterization of a unique phage display-derived antibody against dermatan sulfate. Matrix Biol 25:457–461

    Article  CAS  PubMed  Google Scholar 

  14. Smetsers TF, van de Westerlo EM, ten Dam GB, Overes IM, Schalkwijk J, van Muijen GN, van Kuppevelt TH (2004) Human single-chain antibodies reactive with native chondroitin sulfate detect chondroitin sulfate alterations in melanoma and psoriasis. J Invest Dermatol 122:707–716

    Article  CAS  PubMed  Google Scholar 

  15. Wallbrecher R, Verdurmen WP, Schmidt S, Bovee-Geurts PH, Broecker F, Reinhardt A, van Kuppevelt TH, Seeberger PH, Brock R (2014) The stoichiometry of peptide-heparan sulfate binding as a determinant of uptake efficiency of cell-penetrating peptides. Cell Mol Life Sci 71:2717–2729

    CAS  PubMed  Google Scholar 

  16. Munster-Kuhnel AK, Tiralongo J, Krapp S, Weinhold B, Ritz-Sedlacek V, Jacob U, Gerardy-Schahn R (2004) Structure and function of vertebrate CMP-sialic acid synthetases. Glycobiology 14:43R–51R

    Article  PubMed  Google Scholar 

  17. Dommerholt J, Schmidt S, Temming R, Hendriks LJ, Rutjes FP, van Hest JC, Lefeber DJ, Friedl P, van Delft FL (2010) Readily accessible bicyclononynes for bioorthogonal labeling and three-dimensional imaging of living cells. Angew Chem Int Ed Engl 49:9422–9425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Verdurmen WP, Wallbrecher R, Schmidt S, Eilander J, Bovee-Geurts P, Fanghanel S, Burck J, Wadhwani P, Ulrich AS, Brock R (2013) Cell surface clustering of heparan sulfate proteoglycans by amphipathic cell-penetrating peptides does not contribute to uptake. J Control Release 170:83–91

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S. S. was supported by the Roche postdoc programme (ID 272).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Brock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Schmidt, S., Wallbrecher, R., van Kuppevelt, T.H., Brock, R. (2015). Methods to Study the Role of the Glycocalyx in the Uptake of Cell-Penetrating Peptides. In: Langel, Ü. (eds) Cell-Penetrating Peptides. Methods in Molecular Biology, vol 1324. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2806-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2806-4_8

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2805-7

  • Online ISBN: 978-1-4939-2806-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics