Skip to main content
Log in

Do we need pharmacogenetics to personalize antidepressant therapy?

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

This review examines the role of drug metabolism and drug target polymorphism in determining the clinical response to antidepressants. Even though antidepressants are the most effective available treatment for depressive disorders, there is still substantial need for improvement due to the slow onset of appreciable clinical improvement and the association with side effects. Moreover, a substantial group of patients receiving antidepressant therapy does not achieve remission or fails to respond entirely. Even if the large variation in antidepressant treatment outcome across individuals remains poorly understood, one possible source of this variation in treatment outcome are genetic differences. The review focuses on a few polymorphisms which have been extensively studied, while reporting a more comprehensive reference to the existing literature in table format. It is relatively easy to predict the effect of polymorphisms in drug metabolizing enzymes, such as cytochromes P450 2D6 (CYP2D6) and cytochrome P450 2C19 (CYP2C19), which may be determined in the clinical context in order to explain or prevent serious adverse effects. The role of target polymorphism, however, is much more difficult to establish and may be more relevant for disease susceptibility and presentation rather than for response to therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hamet P, Tremblay J (2005) Genetics and genomics of depression. Metabolism 54:10–15

    PubMed  CAS  Google Scholar 

  2. Lanni C, Govoni S, Lucchelli A, Boselli C (2009) Depression and antidepressants: molecular and cellular aspects. Cell Mol Life Sci 66:2985–3008

    PubMed  CAS  Google Scholar 

  3. Franchini L, Serretti A, Gasperini M, Smeraldi E (1998) Familial concordance of fluvoxamine response as a tool for differentiating mood disorder pedigrees. J Psychiatr Res 32:255–259

    PubMed  CAS  Google Scholar 

  4. Evans WE, McLeod HL (2003) Pharmacogenomics—drug disposition, drug targets, and side effects. N Engl J Med 348:538–549

    PubMed  CAS  Google Scholar 

  5. Kato M, Serretti A (2010) Review and meta-analysis of antidepressant pharmacogenetic findings in major depressive disorder. Mol Psychiatry 15:473–500

    PubMed  CAS  Google Scholar 

  6. Uher R, Huezo-Diaz P, Perroud N, Smith R, Rietschel M, Mors O, Hauser J, Maier W, Kozel D, Henigsberg N, Barreto M, Placentino A, Dernovsek MZ, Schulze T, Kalember P, Zobel A, Czerski P, Larsen ER, Souery D, Govannini C, Gray JM, Lewis CM, Farmer A, Aitchison KJ, McGuffin P, Craig I (2009) Genetic predictors of antidepressant response in the GENDEP project. Pharmacogenomics J 9:225–233

    PubMed  CAS  Google Scholar 

  7. Shah RR (2005) Pharmacogenetics in drug regulation: promise, potential and pitfalls. Philos Trans R Soc Lond B 360:1617–1638

    CAS  Google Scholar 

  8. Tomalik-Scharte D, Lazar A, Fuhr U, Kirchheiner J (2008) The clinical role of genetic polymorphisms in drug-metabolizing enzymes. Pharmacogenomics J 8:4–15

    PubMed  CAS  Google Scholar 

  9. Ingelman-Sundberg M (2005) Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J 5:6–13

    PubMed  CAS  Google Scholar 

  10. Bradford LD (2002) CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics 3:229–243

    PubMed  CAS  Google Scholar 

  11. Fukuda T, Yamamoto I, Nishida Y, Zhou Q, Ohno M, Takada K, Azuma J (1999) Effect of the CYP2D6*10 genotype on venlafaxine pharmacokinetics in healthy adult volunteers. Br J Clin Pharmacol 47:450–453

    PubMed  CAS  Google Scholar 

  12. Dalén P, Dahl ML, Bernal Ruiz MLB, Nordin J, Bertilsson L (1998) 10-Hydroxylation of nortriptyline in white persons with 0, 1, 2, 3, and 13 functional CYP2D6 genes. Clin Pharmacol Ther 63:444–452

    PubMed  Google Scholar 

  13. Sachse C, Brockmöller J, Bauer S, Roots I (1997) Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am J Hum Genet 60:284–295

    PubMed  CAS  Google Scholar 

  14. Lessard E, Yessine MA, Hamelin BA, O’Hara G, LeBlanc J, Turgeon J (1999) Influence of CYP2D6 activity on the disposition and cardiovascular toxicity of the antidepressant agent venlafaxine in humans. Pharmacogenetics 9(4):435–443

    PubMed  CAS  Google Scholar 

  15. Mulder H, Herder A, Wilmink FW, Tamminga WJ, Belitser SV, Egberts AC (2006) The impact of cytochrome P450-2D6 genotype on the use and interpretation of therapeutic drug monitoring in long-stay patients treated with antidepressant and antipsychotic drugs in daily psychiatric practice. Pharmacoepidemiol Drug Saf 15:107–114

    PubMed  CAS  Google Scholar 

  16. McAlpine DE, O’Kane DJ, Black JL, Mrazek DA (2007) Cytochrome P450 2D6 genotype variation and venlafaxine dosage. Mayo Clin Proc 82:1065–1068

    PubMed  CAS  Google Scholar 

  17. Mulder H, Wilmink FW, Beumer TL, Tamminga WJ, Jedema JN, Egberts AC (2005) The association between cytochrome P450 2D6 genotype and prescription patterns of antipsychotic and antidepressant drugs in hospitalized psychiatric patients: a retrospective follow-up study. J Clin Psychopharmacol 25:188–191

    PubMed  Google Scholar 

  18. Bijl MJ, Visser LE, Hofman A, Vulto AG, van Gelder T, Stricker BH, van Schaik RH (2008) Influence of the CYP2D6*4 polymorphism on dose, switching and discontinuation of antidepressants. Br J Clin Pharmacol 65:558–564

    PubMed  CAS  Google Scholar 

  19. Murphy GM Jr, Kremer C, Rodrigues HE, Schatzberg AF (2003) Pharmacogenetics of antidepressant medication intolerance. Am J Psychiatry 160:1830–1835

    PubMed  Google Scholar 

  20. Rudberg I, Hermann M, Refsum H, Molden E (2008) Serum concentrations of sertraline and N-desmethyl sertraline in relation to CYP2C19 genotype in psychiatric patients. Eur J Clin Pharmacol 64:1181–1188

    PubMed  CAS  Google Scholar 

  21. Rudberg I, Mohebi B, Hermann M, Refsum H, Molden E (2008) Impact of the ultrarapid CYP2C19*17 allele on serum concentration of escitalopram in psychiatric patients. Clin Pharmacol Ther 83:322–327

    PubMed  CAS  Google Scholar 

  22. Yin OQ, Wing YK, Cheung Y, Wang ZJ, Lam SL, Chiu HF, Chow MS (2006) Phenotype-genotype relationship and clinical effects of citalopram in Chinese patients. J Clin Psychopharmacol 26:367–372

    PubMed  CAS  Google Scholar 

  23. Fukasawa T, Suzuki A, Otani K (2007) Effects of genetic polymorphism of cytochrome P450 enzymes on the pharmacokinetics of benzodiazepines. J Clin Pharmacol Ther 32:333–341

    CAS  Google Scholar 

  24. Sim SC, Nordin L, Andersson TM, Virding S, Olsson M, Pedersen NL, Ingelman-Sundberg M (2010) Association between CYP2C19 polymorphism and depressive symptoms. Am J Med Genet B Neuropsychiatr Genet 153B:1160–1166

    PubMed  CAS  Google Scholar 

  25. Fradette C, Yamaguchi N, Du Souich P (2004) 5-Hydroxytryptamine is biotransformed by CYP2C9, 2C19 and 2B6 to hydroxylamine, which is converted into nitric oxide. Br J Pharmacol 141:407–414

    PubMed  CAS  Google Scholar 

  26. Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM (1999) Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol 39:361–398

    PubMed  CAS  Google Scholar 

  27. Callen DF, Baker E, Simmers RN, Seshadri R, Roninson IB (1987) Localization of the human multiple drug resistance gene, MDR1, to 7q21.1. Hum Genet 77:142–144

    PubMed  CAS  Google Scholar 

  28. Schinkel AH, Jonker JW (2003) Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 55:3–29

    PubMed  CAS  Google Scholar 

  29. Horstmann S, Binder EB (2009) Pharmacogenomics of antidepressant drugs. Pharmacol Ther 124:57–73

    PubMed  CAS  Google Scholar 

  30. Rochat B, Baumann P, Audus KL (1999) Transport mechanisms for the antidepressant citalopram in brain microvessel endothelium. Brain Res 831:229–236

    PubMed  CAS  Google Scholar 

  31. Crisafulli C, Fabbri C, Porcelli S, Drago A, Spina E, De Ronchi D, Serretti A (2011) Pharmacogenetics of antidepressants. Front Pharmacol 2:6

    PubMed  CAS  Google Scholar 

  32. Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmöller J, Johne A, Cascorbi I, Gerloff T, Roots I, Eichelbaum M, Brinkmann U (2000) Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA 97:3473–3478

    PubMed  CAS  Google Scholar 

  33. Sakurai A, Onishi Y, Hirano H, Seigneuret M, Obanayama K, Kim G, Liew EL, Sakaeda T, Yoshiura K, Niikawa N, Sakurai M, Ishikawa T (2007) Quantitative structure-activity relationship analysis and molecular dynamics simulation to functionally validate nonsynonymous polymorphisms of human ABC transporter ABCB1 (P-glycoprotein/MDR1). Biochemistry 46:7678–7693

    PubMed  CAS  Google Scholar 

  34. Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM, Ambudkar SV, Gottesman MM (2007) A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315:525–528

    PubMed  CAS  Google Scholar 

  35. Uhr M, Tontsch A, Namendorf C, Ripke S, Lucae S, Ising M, Dose T, Ebinger M, Rosenhagen M, Kohli M, Kloiber S, Salyakina D, Bettecken T, Specht M, Pütz B, Binder EB, Müller-Myhsok B, Holsboer F (2008) Polymorphisms in the drug transporter gene ABCB1 predict antidepressant treatment response in depression. Neuron 57:203–209

    PubMed  CAS  Google Scholar 

  36. Peters EJ, Slager SL, Kraft JB, Jenkins GD, Reinalda MS, McGrath PJ, Hamilton SP (2008) Pharmacokinetic genes do not influence response or tolerance to citalopram in the STAR*D sample. PLoS ONE 3:e1872

    PubMed  Google Scholar 

  37. Kato M, Fukuda T, Serretti A, Wakeno M, Okugawa G, Ikenaga Y, Hosoi Y, Takekita Y, Mandelli L, Azuma J, Kinoshita T (2008) ABCB1 (MDR1) gene polymorphisms are associated with the clinical response to paroxetine in patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 32:398–404

    PubMed  CAS  Google Scholar 

  38. Vidal R, Pilar-Cuéllar F, dos Anjos S, Linge R, Treceño B, Vargas VI, Rodriguez-Gaztelumendi A, Mostany R, Castro E, Diaz A, Valdizán EM, Pazos A (2011) New strategies in the development of antidepressants: towards the modulation of neuroplasticity pathways. Curr Pharm Des 17:521–533

    PubMed  CAS  Google Scholar 

  39. Maron E, Tammiste A, Kallassalu K, Eller T, Vasar V, Nutt DJ, Metspalu A (2009) Serotonin transporter promoter region polymorphisms do not influence treatment response to escitalopram in patients with major depression. Eur Neuropsychopharmacol 19:451–456

    PubMed  CAS  Google Scholar 

  40. Serretti A, Kato M, De Ronchi D, Kinoshita T (2007) Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with selective serotonin reuptake inhibitor efficacy in depressed patients. Mol Psychiatry 12:247–257

    PubMed  CAS  Google Scholar 

  41. Murphy GM Jr, Hollander SB, Rodrigues HE, Kremer C, Schatzberg AF (2004) Effects of the serotonin transporter gene promoter polymorphism on mirtazapine and paroxetine efficacy and adverse events in geriatric major depression. Arch Gen Psychiatry 61:1163–1169

    PubMed  CAS  Google Scholar 

  42. Yoshida K, Takahashi H, Higuchi H, Kamata M, Ito K, Sato K, Naito S, Shimizu T, Itoh K, Inoue K, Suzuki T, Nemeroff CB (2004) Prediction of antidepressant response to milnacipran by norepinephrine transporter gene polymorphisms. Am J Psychiatry 161:1575–1580

    PubMed  Google Scholar 

  43. Kim H, Lim SW, Kim S, Kim JW, Chang YH, Carroll BJ, Kim DK (2006) Monoamine transporter gene polymorphisms and antidepressant response in Koreans with late-life depression. JAMA 296:1609–1618

    PubMed  CAS  Google Scholar 

  44. Higuchi H (2010) Prediction of antidepressant response to milnacipran and fluvoxamine using pharmacogenetical methods. Nihon Shinkei Seishin Yakurigaku Zasshi 30:71–76

    PubMed  CAS  Google Scholar 

  45. Min W, Li T, Ma X, Li Z, Yu T, Gao D, Zhang B, Yun Y, Sun X (2009) Monoamine transporter gene polymorphisms affect susceptibility to depression and predict antidepressant response. Psychopharmacology 205:409–417

    PubMed  CAS  Google Scholar 

  46. Dong C, Wong ML, Licinio J (2009) Sequence variations of ABCB1, SLC6A2, SLC6A3, SLC6A4, CREB1, CRHR1 and NTRK2: association with major depression and antidepressant response in Mexican-Americans. Mol Psychiatry 14:1105–1118

    PubMed  CAS  Google Scholar 

  47. Tzeng DS, Chien CC, Lung FW, Yang CY (2009) MAOA gene polymorphisms and response to mirtazapine in major depression. Hum Psychopharmacol 24:293–300

    PubMed  CAS  Google Scholar 

  48. Lung FW, Tzeng DS, Huang MF, Lee MB (2011) Association of the MAOA promoter uVNTR polymorphism with suicide attempts in patients with major depressive disorder. BMC Med Genet 12:74

    PubMed  CAS  Google Scholar 

  49. Lemonde S, Du L, Bakish D, Hrdina P, Albert PR (2004) Association of the C(-1019)G 5-HT1A functional promoter polymorphism with antidepressant response. Int J Neuropsychopharmacol 7:501–506

    PubMed  CAS  Google Scholar 

  50. Kato M, Fukuda T, Wakeno M, Okugawa G, Takekita Y, Watanabe S, Yamashita M, Hosoi Y, Azuma J, Kinoshita T, Serretti A (2009) Effect of 5-HT1A gene polymorphisms on antidepressant response in major depressive disorder. Am J Med Genet B Neuropsychiatr Genet 150B:115–123

    PubMed  CAS  Google Scholar 

  51. Choi MJ, Kang RH, Ham BJ, Jeong HY, Lee MS (2005) Serotonin receptor 2A gene polymorphism (−1438A/G) and short-term treatment response to citalopram. Neuropsychobiology 52:155–162

    PubMed  CAS  Google Scholar 

  52. Kato M, Fukuda T, Wakeno M, Fukuda K, Okugawa G, Ikenaga Y, Yamashita M, Takekita Y, Nobuhara K, Azuma J, Kinoshita T (2006) Effects of the serotonin type 2A, 3A and 3B receptor and the serotonin transporter genes on paroxetine and fluvoxamine efficacy and adverse drug reactions in depressed Japanese patients. Neuropsychobiology 53:186–195

    PubMed  CAS  Google Scholar 

  53. Minov C, Baghai TC, Schüle C, Zwanzger P, Schwarz MJ, Zill P, Rupprecht R, Bondy B (2001) Serotonin-2A-receptor and -transporter polymorphisms: lack of association in patients with major depression. Neurosci Lett 303:119–122

    PubMed  CAS  Google Scholar 

  54. Lee SH, Lee KJ, Lee HJ, Ham BJ, Ryu SH, Lee MS (2005) Association between the 5-HT6 receptor C267T polymorphism and response to antidepressant treatment in major depressive disorder. Psychiatry Clin Neurosci 59:140–145

    PubMed  CAS  Google Scholar 

  55. Illi A, Setälä-Soikkeli E, Viikki M, Poutanen O, Huhtala H, Mononen N, Lehtimäki T, Leinonen E, Kampman O (2009) 5-HTR1A, 5-HTR2A, 5-HTR6, TPH1 and TPH2 polymorphisms and major depression. NeuroReport 20:1125–1128

    PubMed  CAS  Google Scholar 

  56. Perroud N, Aitchison KJ, Uher R, Smith R, Huezo-Diaz P, Marusic A, Maier W, Mors O, Placentino A, Henigsberg N, Rietschel M, Hauser J, Souery D, Kapelski P, Bonvicini C, Zobel A, Jorgensen L, Petrovic A, Kalember P, Schulze TG, Gupta B, Gray J, Lewis CM, Farmer AE, McGuffin P, Craig I (2009) Genetic predictors of increase in suicidal ideation during antidepressant treatment in the GENDEP project. Neuropsychopharmacology 34:2517–2528

    PubMed  CAS  Google Scholar 

  57. Wakeno M, Kato M, Okugawa G, Fukuda T, Hosoi Y, Takekita Y, Yamashita M, Nonen S, Azuma J, Kinoshita T (2008) The alpha 2A-adrenergic receptor gene polymorphism modifies antidepressant responses to milnacipran. J Clin Psychopharmacol 28:518–524

    PubMed  CAS  Google Scholar 

  58. Laje G, Paddock S, Manji H, Rush AJ, Wilson AF, Charney D, McMahon FJ (2007) Genetic markers of suicidal ideation emerging during citalopram treatment of major depression. Am J Psychiatry 164:1530–1538

    PubMed  Google Scholar 

  59. Paddock S, Laje G, Charney D, Rush AJ, Wilson AF, Sorant AJ, Lipsky R, Wisniewski SR, Manji H, McMahon FJ (2007) Association of GRIK4 with outcome of antidepressant treatment in the STAR*D cohort. Am J Psychiatry 164:1181–1188

    PubMed  Google Scholar 

  60. Horstmann S, Lucae S, Menke A, Hennings JM, Ising M, Roeske D, Müller-Myhsok B, Holsboer F, Binder EB (2010) Polymorphisms in GRIK4, HTR2A, and FKBP5 show interactive effects in predicting remission to antidepressant treatment. Neuropsychopharmacology 35:727–740

    PubMed  CAS  Google Scholar 

  61. van Rossum EF, Binder EB, Majer M, Koper JW, Ising M, Modell S, Salyakina D, Lamberts SW, Holsboer F (2006) Polymorphisms of the glucocorticoid receptor gene and major depression. Biol Psychiatry 59:681–688

    PubMed  Google Scholar 

  62. Wu GS, Luo HR, Dong C, Mastronardi C, Licinio J, Wong ML (2011) Sequence polymorphisms of MC1R gene and their association with depression and antidepressant response. Psychiatr Genet 21:14–18

    PubMed  CAS  Google Scholar 

  63. Liu Z, Zhu F, Wang G, Xiao Z, Tang J, Liu W, Wang H, Liu H, Wang X, Wu Y, Cao Z, Li W (2007) Association study of corticotropin-releasing hormone receptor1 gene polymorphisms and antidepressant response in major depressive disorders. Neurosci Lett 414:155–158

    PubMed  CAS  Google Scholar 

  64. Licinio J, O’Kirwan F, Irizarry K, Merriman B, Thakur S, Jepson R, Lake S, Tantisira KG, Weiss ST, Wong ML (2004) Association of a corticotropin-releasing hormone receptor 1 haplotype and antidepressant treatment response in Mexican-Americans. Mol Psychiatry 9:1075–1082

    PubMed  CAS  Google Scholar 

  65. Papiol S, Arias B, Gastó C, Gutiérrez B, Catalán R, Fañanás L (2007) Genetic variability at HPA axis in major depression and clinical response to antidepressant treatment. J Affect Disord 104:83–90

    PubMed  CAS  Google Scholar 

  66. Lin E, Chen PS, Chang HH, Gean PW, Tsai HC, Yang YK, Lu RB (2009) Interaction of serotonin-related genes affects short-term antidepressant response in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 33:1167–1172

    PubMed  CAS  Google Scholar 

  67. Keers R, Bonvicini C, Scassellati C, Uher R, Placentino A, Giovannini C, Rietschel M, Henigsberg N, Kozel D, Mors O, Maier W, Hauser J, Souery D, Mendlewicz J, Schmäl C, Zobel A, Larsen ER, Szczepankiewicz A, Kovacic Z, Elkin A, Craig I, McGuffin P, Farmer AE, Aitchison KJ, Gennarelli M (2011) Variation in GNB3 predicts response and adverse reactions to antidepressants. J Psychopharmacol 25:867–874

    PubMed  CAS  Google Scholar 

  68. Lekman M, Laje G, Charney D, Rush AJ, Wilson AF, Sorant AJ, Lipsky R, Wisniewski SR, Manji H, McMahon FJ, Paddock S (2008) The FKBP5-gene in depression and treatment response–an association study in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) Cohort. Biol Psychiatry 63:1103–1110

    PubMed  CAS  Google Scholar 

  69. Appel K, Schwahn C, Mahler J, Schulz A, Spitzer C, Fenske K, Stender J, Barnow S, John U, Teumer A, Biffar R, Nauck M, Völzke H, Freyberger HJ, Grabe HJ (2011) Moderation of adult depression by a polymorphism in the FKBP5 gene and childhood physical abuse in the general population. Neuropsychopharmacology 36:1982–1991

    PubMed  Google Scholar 

  70. Zou YF, Wang Y, Liu P, Feng XL, Wang BY, Zang TH, Yu X, Wei J, Liu ZC, Liu Y, Tao M, Li HC, Li KQ, Hu J, Li M, Zhang KR, Ye DQ, Xu XP (2010) Association of brain-derived neurotrophic factor genetic Val66Met polymorphism with severity of depression, efficacy of fluoxetine and its side effects in Chinese major depressive patients. Int J Neuropsychopharmacol 13:93–101

    Google Scholar 

  71. Domschke K, Lawford B, Laje G, Berger K, Young R, Morris P, Deckert J, Arolt V, McMahon FJ, Baune BT (2010) Brain-derived neurotrophic factor (BDNF) gene: no major impact on antidepressant treatment response. Neuropsychobiology 61:71–78

    Google Scholar 

  72. Kocabas NA, Antonijevic I, Faghel C, Forray C, Kasper S, Lecrubier Y, Linotte S, Massat I, Mendlewicz J, Noro M, Montgomery S, Oswald P, Snyder L, Zohar J, Souery D (2011) Brain-derived neurotrophic factor gene polymorphisms: influence on treatment response phenotypes of major depressive disorder. Int Clin Psychopharmacol 26:1–10

    PubMed  Google Scholar 

  73. Licinio J, Dong C, Wong ML (2009) Novel sequence variations in the brain-derived neurotrophic factor gene and association with major depression and antidepressant treatment response. Arch Gen Psychiatry 66:488–497

    PubMed  CAS  Google Scholar 

  74. Heils A, Mossner R, Lesch KP (1997) The human serotonin transporter gene polymorphism—basic research and clinical implications. J Neural Transm 104:1005–1014

    PubMed  CAS  Google Scholar 

  75. Taylor MJ, Sen S, Bhagwagar Z (2010) Antidepressant response and the serotonin transporter gene-linked polymorphic region. Biol Psychiatry 68:536–543

    PubMed  CAS  Google Scholar 

  76. Mrazek DA, Rush AJ, Biernacka JM, O’Kane DJ, Cunningham JM, Wieben ED, Schaid DJ, Drews MS, Courson VL, Snyder KA, Black JL 3rd, Weinshilboum RM (2009) SLC6A4 variation and citalopram response. Am J Med Genet B Neuropsychiatr Genet 150B:341–351

    PubMed  CAS  Google Scholar 

  77. Hu XZ, Rush AJ, Charney D, Wilson AF, Sorant AJ, Papanicolaou GJ, Fava M, Trivedi MH, Wisniewski SR, Laje G, Paddock S, McMahon FJ, Manji H, Lipsky RH (2007) Association between a functional serotonin transporter promoter polymorphism and citalopram treatment in adult outpatients with major depression. Arch Gen Psychiatry 64:783–792

    PubMed  CAS  Google Scholar 

  78. Smeraldi E, Serretti A, Artioli P, Lorenzi C, Catalano M (2006) Serotonin transporter gene-linked polymorphic region: possible pharmacogenetic implications of rare variants. Psychiatr Genet 16:153–158

    PubMed  Google Scholar 

  79. Baffa A, Hohoff C, Baune BT, Muller-Tidow C, Tidow N, Freitag C, Zwanzger P, Deckert J, Arolt V, Domschke K (2010) Norepinephrine and serotonin transporter genes: impact on treatment response in depression. Neuropsychobiology 62:121–131

    PubMed  CAS  Google Scholar 

  80. Bonvicini C, Minelli A, Scassellati C, Bortolomasi M, Segala M, Sartori R, Giacopuzzi M, Gennarelli M (2010) Serotonin transporter gene polymorphisms and treatment-resistant depression. Prog Neuropsychopharmacol Biol Psychiatry 34:934–939

    PubMed  CAS  Google Scholar 

  81. Uher R, Perroud N, Ng MY, Hauser J, Henigsberg N, Maier W, Mors O, Placentino A, Rietschel M, Souery D, Zagar T, Czerski PM, Jerman B, Larsen ER, Schulze TG, Zobel A, Cohen-Woods S, Pirlo K, Butler AW, Muglia P, Barnes MR, Lathrop M, Farmer A, Breen G, Aitchison KJ, Craig I, Lewis CM, McGuffin P (2010) Genome-wide pharmacogenetics of antidepressant response in the GENDEP project. Am J Psychiatry 167:555–564

    PubMed  Google Scholar 

  82. Molteni R, Cattaneo A, Calabrese F, Macchi F, Olivier JD, Racagni G, Ellenbroek BA, Gennarelli M, Riva MA (2010) Reduced function of the serotonin transporter is associated with decreased expression of BDNF in rodents as well as in humans. Neurobiol Dis 37:747–755

    PubMed  CAS  Google Scholar 

  83. Calabrese F, Molteni R, Cattaneo A, Macchi F, Racagni G, Gennarelli M, Ellenbroek BA, Riva MA (2010) Long-term duloxetine treatment normalizes altered brain-derived neurotrophic factor expression in serotonin transporter knockout rats through the modulation of specific neurotrophin isoforms. Mol Pharmacol 77:846–853

    PubMed  CAS  Google Scholar 

  84. Ham BJ, Lee BC, Paik JW, Kang RH, Choi MJ, Choi IG, Lee MS (2007) Association between the tryptophan hydroxylase-1 gene A218C polymorphism and citalopram antidepressant response in a Korean population. Prog Neuropsychopharmacol Biol Psychiatry 31:104–107

    PubMed  CAS  Google Scholar 

  85. Kato M, Wakeno M, Okugawa G, Fukuda T, Azuma J, Kinoshita T, Serretti A (2007) No association of TPH1 218A/C polymorphism with treatment response and intolerance to SSRIs in Japanese patients with major depression. Neuropsychobiology 56:167–171

    PubMed  Google Scholar 

  86. Secher A, Bukh J, Bock C, Koefoed P, Rasmussen HB, Werge T, Kessing LV, Mellerup E (2009) Antidepressive-drug-induced bodyweight gain is associated with polymorphisms in genes coding for COMT and TPH1. Int Clin Psychopharmacol 24:199–203

    PubMed  Google Scholar 

  87. Peters EJ, Slager SL, McGrath PJ, Knowles JA, Hamilton SP (2004) Investigation of serotonin-related genes in antidepressant response. Mol Psychiatry 9:879–889

    PubMed  CAS  Google Scholar 

  88. Peters EJ, Slager SL, Jenkins GD, Reinalda MS, Garriock HA, Shyn SI, Kraft JB, McGrath PJ, Hamilton SP (2009) Resequencing of serotonin-related genes and association of tagging SNPs to citalopram response. Pharmacogenet Genomics 19:1–10

    PubMed  CAS  Google Scholar 

  89. Teicher MH, Glod CA, Cole JO (1993) Antidepressant drugs and the emergence of suicidal tendencies. Drug Saf 8:186–212

    PubMed  CAS  Google Scholar 

  90. Healy D, Whitaker C (2003) Antidepressants and suicide: risk–benefit conundrums. J Psychiatry Neurosci 28:331–337

    PubMed  Google Scholar 

  91. Olfson M, Marcus SC, Shaffer D (2006) Antidepressant drug therapy and suicide in severely depressed children and adults: a case–control study. Arch Gen Psychiatry 63:865–872

    PubMed  Google Scholar 

  92. Laje G, Perlis RH, Rush AJ, McMahon FJ (2009) Pharmacogenetics studies in STAR*D: strengths, limitations, and results. Psychiatr Serv 60:1446–1457

    PubMed  Google Scholar 

  93. Dowlatshahi D, MacQueen GM, Wang JF, Young LT (1998) Increased temporal cortex CREB concentrations and antidepressant treatment in major depression. Lancet 352:1754–1755

    PubMed  CAS  Google Scholar 

  94. Dwivedi Y, Rao JS, Rizavi HS, Kotowski J, Conley RR, Roberts RC, Tamminga CA, Pandey GN (2003) Abnormal expression and functional characteristics of cyclic adenosine monophosphate response element binding protein in postmortem brain of suicide subjects. Arch Gen Psychiatry 60:273–282

    PubMed  CAS  Google Scholar 

  95. Young LG, Bezchlibnyk YB, Chen B, Wang JF, MacQueen GM (2004) Amygdala cyclic adenosine monophosphate response element binding protein phosphorylation in patients with mood disorders: effects of diagnosis, suicide and drug treatment. Biol Psychiatry 55:570–577

    PubMed  CAS  Google Scholar 

  96. Perlis RH, Purcell S, Fava M, Fagerness J, Rush AJ, Trivedi MH, Smoller JW (2007) Association between treatment-emergent suicidal ideation with citalopram and polymorphisms near cyclic adenosine monophosphate response element bind protein in the STAR*D study. Arch Gen Psychiatry 64:689–697

    PubMed  CAS  Google Scholar 

  97. Dwivedi Y (2009) Brain-derived neurotrophic factor: role in depression and suicide. Neuropsychiatr Disord Treat 5(433):449

    Google Scholar 

  98. Sairanen M, O’Leary OF, Knuuttila JE, Castren E (2007) Chronic antidepressant treatment selectively increases expression of plasticity related proteins in the hippocampus and medial prefrontal cortex of the rat. Neuroscience 144:368–374

    PubMed  CAS  Google Scholar 

  99. Martinowich K, Manji H, Lu B (2007) New insights into BDNF function in depression and anxiety. Nat Neurosci 10:1089–1093

    PubMed  CAS  Google Scholar 

  100. Bueller JA, Aftab M, Sen S, Gomez-Hassan D, Burmeister M, Zubieta JK (2006) BDNF Val66Met allele is associated with reduced hippocampal volume in healthy subjects. Biol Psychiatry 59:812–815

    PubMed  CAS  Google Scholar 

  101. Sarchiapone M, Carli V, Roy A, Iacoviello L, Cuomo C, Latella MC, di Giannantonio M, Janiri L, de Gaetano M, Janal MN (2008) Association of polymorphism (Val66Met) of brain-derived neurotrophic factor with suicide attempts in depressed patients. Neuropsychobiology 57:139–145

    PubMed  CAS  Google Scholar 

  102. Henningsson S, Borg J, Lundberg J, Bah J, Lindström M, Ryding E, Jovanovic H, Saijo T, Inoue M, Rosén I, Träskman-Bendz L, Farde L, Eriksson E (2009) Genetic variation in brain-derived neurotrophic factor is associated with serotonin transporter but not serotonin-1A receptor availability in men. Biol Psychiatry 66:477–485

    PubMed  CAS  Google Scholar 

  103. Kohli MA, Salyakina D, Pfennig A, Lucae S, Horstmann S, Menke A, Kloiber S, Hennings J, Bradley BB, Ressler KJ, Uhr M, Müller-Myhsok B, Holsboer F, Binder EB (2010) Association of genetic variants in the neurotrophic receptor-encoding gene NTRK2 and a lifetime history of suicide attempts in depressed patients. Arch Gen Psychiatry 67:348–359

    PubMed  CAS  Google Scholar 

  104. Cheng R, Juo SH, Loth JE, Nee J, Iossifov I, Blumenthal R, Sharpe L, Kanyas K, Lerer B, Lilliston B, Smith M, Trautman K, Gilliam TC, Endicott J, Baron M (2006) Genome-wide linkage scan in a large bipolar disorder sample from the National Institute of Mental Health genetics initiative suggests putative loci for bipolar disorder, psychosis, suicide, and panic disorder. Mol Psychiatry 11:252–260

    PubMed  CAS  Google Scholar 

  105. Wochnik GM, Rüegg J, Abel GA, Schmidt U, Holsboer F, Rein T (2005) FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells. J Biol Chem 280:4609–4616

    PubMed  CAS  Google Scholar 

  106. Binder EB, Salyakina D, Lichtner P, Wochnik GM, Ising M, Pütz B, Papiol S, Seaman S, Lucae S, Kohli MA, Nickel T, Künzel HE, Fuchs B, Majer M, Pfennig A, Kern N, Brunner J, Modell S, Baghai T, Deiml T, Zill P, Bondy B, Rupprecht R, Messer T, Köhnlein O, Dabitz H, Brückl T, Müller N, Pfister H, Lieb R, Mueller JC, Lõhmussaar E, Strom TM, Bettecken T, Meitinger T, Uhr M, Rein T, Holsboer F, Muller-Myhsok B (2004) Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet 36:1319–1325

    PubMed  CAS  Google Scholar 

  107. Roy A, Gorodetsky E, Yuan Q, Goldman D, Enoch MA (2010) Interaction of FKBP5, a stress-related gene, with childhood trauma increases the risk for attempting suicide. Neuropsychopharmacology 35:1674–1683

    PubMed  CAS  Google Scholar 

  108. Palucha A, Pilc A (2005) The involvement of glutamate in the pathophysiology of depression. Drug News Perspect 18:262–268

    PubMed  CAS  Google Scholar 

  109. Sequeira A, Mamdani F, Ernst C, Vawter MP, Bunney WE, Lebel V, Rehal S, Klempan T, Gratton A, Benkelfat C, Rouleau GA, Mechawar N, Turecki G (2009) Global brain gene expression analysis links glutamatergic and GABAergic alterations to suicide and major depression. PLoS ONE 4:e6585

    PubMed  Google Scholar 

  110. Price RB, Nock MK, Charney DS, Mathew SJ (2009) Effects of intravenous ketamine on explicit and implicit measures of suicidality in treatment-resistant depression. Biol Psychiatry 66:522–526

    PubMed  CAS  Google Scholar 

  111. Smits KM, Smits LJ, Schouten JS, Stelma FF, Nelemans P, Prins MH (2004) Influence of SERTPR and STin2 in the serotonin transporter gene on the effect of selective serotonin reuptake inhibitors in depression: a systematic review. Mol Psychiatry 9:433–441

    PubMed  CAS  Google Scholar 

  112. de Leon J (2007) The crucial role of the therapeutic window in understanding the clinical relevance of the poor versus the ultrarapid metabolizer phenotypes in subjects taking drugs metabolized by CYP2D6 or CYP2C19. J Clin Psychopharmacol 27:241–245

    PubMed  Google Scholar 

  113. DiazGranados N, Ibrahim LA, Brutsche NE, Ameli R, Henter ID, Luckenbaugh DA, Machado-Vieira R, Zarate CA Jr (2010) Rapid resolution of suicidal ideation after a single infusion of an N-methyl-d-aspartate antagonist in patients with treatment-resistant major depressive disorder. J Clin Psychiatry 71:1605–1611

    PubMed  CAS  Google Scholar 

  114. Karr JR, Sanghvi JC, Macklin DN, Gutschow MV, Jacobs JM, Bolival B Jr, Assad-Garcia N, Glass JI, Covert MW (2012) A whole-cell computational model predicts phenotype from genotype. Cell 150:389–401

    PubMed  CAS  Google Scholar 

  115. Desta Z, Zhao X, Shin JG, Flockhart DA (2002) Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet 41:913–958

    Google Scholar 

Download references

Acknowledgments

The review was written as partially based on the work of the students of 2011 IUSS (Istituto Universitario di Studi Superiori) Course on Pharmacogenetics of the University of Pavia. The partecipating students, who collected various materials on the pharmacogenetics of psychiatric drugs, were: Aitala Becherucci Edoardo, Aloisio Elena, Azzolini Maria, Barone Gisella, Chiodaroli Elena, Conte Marco, Danesi Daniela, Di Lodovico Laura, Gavuzzi Marta, Giorgio Alessandro, Gitto Salvatore, Melotti Dario, Pelizzari Giacomo, Peluso Francesca, Pepe Antonella, Russo Giulia, Schiavi Susanna, and Vegezzi Elisa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Lanni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanni, C., Racchi, M. & Govoni, S. Do we need pharmacogenetics to personalize antidepressant therapy?. Cell. Mol. Life Sci. 70, 3327–3340 (2013). https://doi.org/10.1007/s00018-012-1237-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1237-5

Keywords

Navigation