Skip to main content
Log in

The admiR-able advances in cardiovascular biology through the zebrafish model system

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

MicroRNAs are small non-coding RNAs endogenously expressed by all tissues during development and adulthood. They regulate gene expression by controlling the stability of targeted messenger RNA. In cardiovascular tissues microRNAs play a role by modulating essential genes involved in heart and blood vessel development and homeostasis. The zebrafish (Danio rerio) system is a recognized vertebrate model system useful to study cardiovascular biology; recently, it has been used to investigate microRNA functions during natural and pathological states. In this review, we will illustrate the advantages of the zebrafish model in the study of microRNAs in heart and vascular cells, providing an update on recent discoveries using the zebrafish to identify new microRNAs and their targeted genes in cardiovascular tissues. Lastly, we will provide evidence that the zebrafish is an optimal model system to undercover new microRNA functions in vertebrates and to improve microRNA-based therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355. doi:10.1038/nature02871

    Article  PubMed  CAS  Google Scholar 

  2. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  PubMed  CAS  Google Scholar 

  3. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. doi:10.1016/j.cell.2009.01.002

    Article  PubMed  CAS  Google Scholar 

  4. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9(2):102–114. doi:10.1038/nrg2290

    Article  PubMed  CAS  Google Scholar 

  5. Du T, Zamore PD (2005) microPrimer: the biogenesis and function of microRNA. Development 132(21):4645–4652. doi:10.1242/dev.02070

    Article  PubMed  CAS  Google Scholar 

  6. Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E, Horvitz HR, Kauppinen S, Plasterk RH (2005) MicroRNA expression in zebrafish embryonic development. Science 309(5732):310–311. doi:10.1126/science.1114519

    Article  PubMed  CAS  Google Scholar 

  7. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11(9):597–610. doi:10.1038/nrg2843

    PubMed  CAS  Google Scholar 

  8. Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318(5858):1931–1934. doi:10.1126/science.1149460

    Article  PubMed  CAS  Google Scholar 

  9. Seitz H (2009) Redefining microRNA targets. Curr Biol 19(10):870–873. doi:10.1016/j.cub.2009.03.059

    Article  PubMed  CAS  Google Scholar 

  10. Davis BN, Hata A (2009) Regulation of MicroRNA Biogenesis: a miRiad of mechanisms. Cell Commun Signal 7:18. doi:10.1186/1478-811X-7-18

    Article  PubMed  CAS  Google Scholar 

  11. Kai ZS, Pasquinelli AE (2010) MicroRNA assassins: factors that regulate the disappearance of miRNAs. Nat Struct Mol Biol 17(1):5–10. doi:10.1038/nsmb.1762

    Article  PubMed  CAS  Google Scholar 

  12. Liu N, Olson EN (2010) MicroRNA regulatory networks in cardiovascular development. Dev Cell 18(4):510–525. doi:10.1016/j.devcel.2010.03.010

    Article  PubMed  CAS  Google Scholar 

  13. Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38(2):228–233. doi:10.1038/ng1725

    Article  PubMed  CAS  Google Scholar 

  14. Zhao Z, Boyle TJ, Liu Z, Murray JI, Wood WB, Waterston RH (2010) A negative regulatory loop between microRNA and Hox gene controls posterior identities in Caenorhabditis elegans. PLoS genetics 6(9). doi:10.1371/journal.pgen.1001089

  15. Didiano D, Hobert O (2008) Molecular architecture of a miRNA-regulated 3′ UTR. RNA 14(7):1297–1317. doi:10.1261/rna.1082708

    Article  PubMed  CAS  Google Scholar 

  16. Plasterk RH (2006) Micro RNAs in animal development. Cell 124(5):877–881. doi:10.1016/j.cell.2006.02.030

    Article  PubMed  CAS  Google Scholar 

  17. Bushati N, Cohen SM (2008) MicroRNAs in neurodegeneration. Curr Opin Neurobiol 18(3):292–296. doi:10.1016/j.conb.2008.07.001

    Article  PubMed  CAS  Google Scholar 

  18. Bruneau BG (2008) The developmental genetics of congenital heart disease. Nature 451(7181):943–948. doi:10.1038/nature06801

    Article  PubMed  CAS  Google Scholar 

  19. Olson EN, Schneider MD (2003) Sizing up the heart: development redux in disease. Genes Dev 17(16):1937–1956. doi:10.1101/gad.1110103

    Article  PubMed  CAS  Google Scholar 

  20. Stainier DY (2001) Zebrafish genetics and vertebrate heart formation. Nat Rev Genet 2(1):39–48. doi:10.1038/35047564

    Article  PubMed  CAS  Google Scholar 

  21. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438(7070):932–936. doi:10.1038/nature04478

    Article  PubMed  CAS  Google Scholar 

  22. Red-Horse K, Crawford Y, Shojaei F, Ferrara N (2007) Endothelium-microenvironment interactions in the developing embryo and in the adult. Dev Cell 12(2):181–194. doi:10.1016/j.devcel.2007.01.013

    Article  PubMed  CAS  Google Scholar 

  23. Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9(6):685–693. doi:10.1038/nm0603-685

    Article  PubMed  CAS  Google Scholar 

  24. Santoro MM, Pesce G, Stainier DY (2009) Characterization of vascular mural cells during zebrafish development. Mech Dev 126(8–9):638–649. doi:10.1016/j.mod.2009.06.1080

    Article  PubMed  CAS  Google Scholar 

  25. Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV, Hannon GJ (2003) Dicer is essential for mouse development. Nat Genet 35(3):215–217. doi:10.1038/ng1253

    Article  PubMed  CAS  Google Scholar 

  26. Murchison EP, Partridge JF, Tam OH, Cheloufi S, Hannon GJ (2005) Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci USA 102(34):12135–12140. doi:10.1073/pnas.0505479102

    Article  PubMed  CAS  Google Scholar 

  27. Yang WJ, Yang DD, Na S, Sandusky GE, Zhang Q, Zhao G (2005) Dicer is required for embryonic angiogenesis during mouse development. J Biol Chem 280(10):9330–9335. doi:10.1074/jbc.M413394200

    Article  PubMed  CAS  Google Scholar 

  28. Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S, Hammond SM, Bartel DP, Schier AF (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science 308(5723):833–838. doi:10.1126/science.1109020

    Article  PubMed  CAS  Google Scholar 

  29. Wienholds E, Koudijs MJ, van Eeden FJ, Cuppen E, Plasterk RH (2003) The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nat Genet 35(3):217–218. doi:10.1038/ng1251

    Article  PubMed  CAS  Google Scholar 

  30. Harfe BD, McManus MT, Mansfield JH, Hornstein E, Tabin CJ (2005) The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc Natl Acad Sci USA 102(31):10898–10903. doi:10.1073/pnas.0504834102

    Article  PubMed  CAS  Google Scholar 

  31. Chen JF, Murchison EP, Tang R, Callis TE, Tatsuguchi M, Deng Z, Rojas M, Hammond SM, Schneider MD, Selzman CH, Meissner G, Patterson C, Hannon GJ, Wang DZ (2008) Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci USA 105(6):2111–2116. doi:10.1073/pnas.0710228105

    Article  PubMed  CAS  Google Scholar 

  32. Suarez Y, Fernandez-Hernando C, Yu J, Gerber SA, Harrison KD, Pober JS, Iruela-Arispe ML, Merkenschlager M, Sessa WC (2008) Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc Natl Acad Sci USA 105(37):14082–14087. doi:10.1073/pnas.0804597105

    Article  PubMed  CAS  Google Scholar 

  33. Albinsson S, Suarez Y, Skoura A, Offermanns S, Miano JM, Sessa WC (2010) MicroRNAs are necessary for vascular smooth muscle growth, differentiation, and function. Arterioscler Thromb Vasc Biol 30(6):1118–1126. doi:10.1161/ATVBAHA.109.200873

    Article  PubMed  CAS  Google Scholar 

  34. Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright AJ, Schier AF (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312(5770):75–79. doi:10.1126/science.1122689

    Article  PubMed  CAS  Google Scholar 

  35. Lagendijk AK, Goumans MJ, Burkhard SB, Bakkers J (2011) MicroRNA-23 restricts cardiac valve formation by inhibiting Has2 and extracellular hyaluronic acid production. Circ Res 109(6):649–657. doi:10.1161/CIRCRESAHA.111.247635

    Article  PubMed  CAS  Google Scholar 

  36. Santoro MM (2011) “Fishing” for endothelial microRNA functions and dysfunction. Vascul Pharmacol 55(4):60–68. doi:10.1016/j.vph.2011.08.224

    Article  PubMed  CAS  Google Scholar 

  37. Thisse C, Zon LI (2002) Organogenesis—heart and blood formation from the zebrafish point of view. Science 295(5554):457–462. doi:10.1126/science.1063654

    Article  PubMed  CAS  Google Scholar 

  38. Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8(5):353–367. doi:10.1038/nrg2091

    Article  PubMed  CAS  Google Scholar 

  39. Skromne I, Prince VE (2008) Current perspectives in zebrafish reverse genetics: moving forward. Dev Dyn 237(4):861–882. doi:10.1002/dvdy.21484

    Article  PubMed  CAS  Google Scholar 

  40. Lawson ND, Weinstein BM (2002) Arteries and veins: making a difference with zebrafish. Nat Rev Genet 3(9):674–682. doi:10.1038/nrg888

    Article  PubMed  CAS  Google Scholar 

  41. Stainier DY, Fouquet B, Chen JN, Warren KS, Weinstein BM, Meiler SE, Mohideen MA, Neuhauss SC, Solnica-Krezel L, Schier AF, Zwartkruis F, Stemple DL, Malicki J, Driever W, Fishman MC (1996) Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development 123:285–292

    PubMed  CAS  Google Scholar 

  42. Kawakami K (2007) Tol2: a versatile gene transfer vector in vertebrates. Genome Biol 8(Suppl 1):S7. doi:10.1186/gb-2007-8-s1-s7

    Article  PubMed  Google Scholar 

  43. Lawson ND, Weinstein BM (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248(2):307–318

    Article  PubMed  CAS  Google Scholar 

  44. Jin SW, Beis D, Mitchell T, Chen JN, Stainier DY (2005) Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development 132(23):5199–5209. doi:10.1242/dev.02087

    Article  PubMed  CAS  Google Scholar 

  45. Traver D, Paw BH, Poss KD, Penberthy WT, Lin S, Zon LI (2003) Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat Immunol 4(12):1238–1246. doi:10.1038/ni1007

    Article  PubMed  CAS  Google Scholar 

  46. Lin HF, Traver D, Zhu H, Dooley K, Paw BH, Zon LI, Handin RI (2005) Analysis of thrombocyte development in CD41-GFP transgenic zebrafish. Blood 106(12):3803–3810. doi:10.1182/blood-2005-01-0179

    Article  PubMed  CAS  Google Scholar 

  47. Burns CG, Milan DJ, Grande EJ, Rottbauer W, MacRae CA, Fishman MC (2005) High-throughput assay for small molecules that modulate zebrafish embryonic heart rate. Nat Chem Biol 1(5):263–264. doi:10.1038/nchembio732

    Article  PubMed  CAS  Google Scholar 

  48. Seiler C, Abrams J, Pack M (2010) Characterization of zebrafish intestinal smooth muscle development using a novel sm22alpha-b promoter. Dev Dyn 239(11):2806–2812. doi:10.1002/dvdy.22420

    Article  PubMed  CAS  Google Scholar 

  49. Scherz PJ, Huisken J, Sahai-Hernandez P, Stainier DY (2008) High-speed imaging of developing heart valves reveals interplay of morphogenesis and function. Development 135(6):1179–1187. doi:10.1242/dev.010694

    Article  PubMed  CAS  Google Scholar 

  50. Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EH (2008) Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322(5904):1065–1069. doi:10.1126/science.1162493

    Article  PubMed  CAS  Google Scholar 

  51. Bakkers J (2011) Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc Res 91(2):279–288. doi:10.1093/cvr/cvr098

    Article  PubMed  CAS  Google Scholar 

  52. Tu S, Chi NC (2012) Zebrafish models in cardiac development and congenital heart birth defects. Differentiation. doi:10.1016/j.diff.2012.05.005

    PubMed  Google Scholar 

  53. Jin SW, Herzog W, Santoro MM, Mitchell TS, Frantsve J, Jungblut B, Beis D, Scott IC, D’Amico LA, Ober EA, Verkade H, Field HA, Chi NC, Wehman AM, Baier H, Stainier DY (2007) A transgene-assisted genetic screen identifies essential regulators of vascular development in vertebrate embryos. Dev Biol 307(1):29–42. doi:10.1016/j.ydbio.2007.03.526

    Article  PubMed  CAS  Google Scholar 

  54. Dahme T, Katus HA, Rottbauer W (2009) Fishing for the genetic basis of cardiovascular disease. Dis Models Mech 2(1–2):18–22. doi:10.1242/dmm.000687

    Article  CAS  Google Scholar 

  55. Wienholds E, Plasterk RH (2005) MicroRNA function in animal development. FEBS Lett 579(26):5911–5922. doi:10.1016/j.febslet.2005.07.070

    Article  PubMed  CAS  Google Scholar 

  56. Schier AF, Giraldez AJ (2006) MicroRNA function and mechanism: insights from zebra fish. Cold Spring Harb Symp Quant Biol 71:195–203. doi:10.1101/sqb.2006.71.055

    Article  PubMed  CAS  Google Scholar 

  57. Begemann G (2008) MicroRNAs and RNA interference in zebrafish development. Zebrafish 5(2):111–119. doi:10.1089/zeb.2008.0528

    Article  PubMed  CAS  Google Scholar 

  58. Takacs CM, Giraldez AJ (2010) MicroRNAs as genetic sculptors: fishing for clues. Semin Cell Dev Biol 21(7):760–767. doi:10.1016/j.semcdb.2010.02.003

    Article  PubMed  CAS  Google Scholar 

  59. Chen PY, Manninga H, Slanchev K, Chien M, Russo JJ, Ju J, Sheridan R, John B, Marks DS, Gaidatzis D, Sander C, Zavolan M, Tuschl T (2005) The developmental miRNA profiles of zebrafish as determined by small RNA cloning. Genes Dev 19(11):1288–1293. doi:10.1101/gad.1310605

    Article  PubMed  CAS  Google Scholar 

  60. Kloosterman WP, Steiner FA, Berezikov E, de Bruijn E, van de Belt J, Verheul M, Cuppen E, Plasterk RH (2006) Cloning and expression of new microRNAs from zebrafish. Nucleic Acids Res 34(9):2558–2569. doi:10.1093/nar/gkl278

    Article  PubMed  CAS  Google Scholar 

  61. Thatcher EJ, Bond J, Paydar I, Patton JG (2008) Genomic organization of zebrafish microRNAs. BMC Genom 9:253. doi:10.1186/1471-2164-9-253

    Article  CAS  Google Scholar 

  62. Thatcher EJ, Flynt AS, Li N, Patton JR, Patton JG (2007) MiRNA expression analysis during normal zebrafish development and following inhibition of the Hedgehog and Notch signaling pathways. Dev Dyn 236(8):2172–2180. doi:10.1002/dvdy.21211

    Article  PubMed  CAS  Google Scholar 

  63. Kloosterman WP, Wienholds E, de Bruijn E, Kauppinen S, Plasterk RH (2006) In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat Methods 3(1):27–29. doi:10.1038/nmeth843

    Article  PubMed  CAS  Google Scholar 

  64. He X, Yan YL, DeLaurier A, Postlethwait JH (2011) Observation of miRNA gene expression in zebrafish embryos by in situ hybridization to microRNA primary transcripts. Zebrafish 8(1):1–8. doi:10.1089/zeb.2010.0680

    Article  PubMed  CAS  Google Scholar 

  65. Nicoli S, Knyphausen CP, Zhu LJ, Lakshmanan A, Lawson ND (2012) miR-221 is required for endothelial tip cell behaviors during vascular development. Dev Cell 22(2):418–429

    Article  PubMed  CAS  Google Scholar 

  66. Zeng L, Carter AD, Childs SJ (2009) miR-145 directs intestinal maturation in zebrafish. Proc Natl Acad Sci USA 106(42):17793–17798. doi:10.1073/pnas.0903693106

    Article  PubMed  CAS  Google Scholar 

  67. Nicoli S, Standley C, Walker P, Hurlstone A, Fogarty KE, Lawson ND (2010) MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis. Nature 464(7292):1196–1200. doi:10.1038/nature08889

    Article  PubMed  CAS  Google Scholar 

  68. Hans S, Freudenreich D, Geffarth M, Kaslin J, Machate A, Brand M (2011) Generation of a non-leaky heat shock-inducible Cre line for conditional Cre/lox strategies in zebrafish. Dev Dyn 240(1):108–115. doi:10.1002/dvdy.22497

    Article  PubMed  CAS  Google Scholar 

  69. Mosimann C, Kaufman CK, Li P, Pugach EK, Tamplin OJ, Zon LI (2011) Ubiquitous transgene expression and Cre-based recombination driven by the ubiquitin promoter in zebrafish. Development 138(1):169–177. doi:10.1242/dev.059345

    Article  PubMed  CAS  Google Scholar 

  70. Morton SU, Scherz PJ, Cordes KR, Ivey KN, Stainier DY, Srivastava D (2008) microRNA-138 modulates cardiac patterning during embryonic development. Proc Natl Acad Sci USA 105(46):17830–17835. doi:10.1073/pnas.0804673105

    Article  PubMed  CAS  Google Scholar 

  71. Nasevicius A, Ekker SC (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26(2):216–220. doi:10.1038/79951

    Article  PubMed  CAS  Google Scholar 

  72. Chen E, Ekker SC (2004) Zebrafish as a genomics research model. Curr Pharm Biotechnol 5(5):409–413

    Article  PubMed  CAS  Google Scholar 

  73. Eisen JS, Smith JC (2008) Controlling morpholino experiments: don’t stop making antisense. Development 135(10):1735–1743. doi:10.1242/dev.001115

    Article  PubMed  CAS  Google Scholar 

  74. Flynt AS, Li N, Thatcher EJ, Solnica-Krezel L, Patton JG (2007) Zebrafish miR-214 modulates Hedgehog signaling to specify muscle cell fate. Nat Genet 39(2):259–263. doi:10.1038/ng1953

    Article  PubMed  CAS  Google Scholar 

  75. Kloosterman WP, Lagendijk AK, Ketting RF, Moulton JD, Plasterk RH (2007) Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol 5(8):e203. doi:10.1371/journal.pbio.0050203

    Article  PubMed  CAS  Google Scholar 

  76. Brown BD, Naldini L (2009) Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nat Rev Genet 10(8):578–585. doi:10.1038/nrg2628

    Article  PubMed  CAS  Google Scholar 

  77. Ebert MS, Sharp PA (2010) Emerging roles for natural microRNA sponges. Curr Biol 20(19):R858–R861. doi:10.1016/j.cub.2010.08.052

    Article  PubMed  CAS  Google Scholar 

  78. Brown BD, Gentner B, Cantore A, Colleoni S, Amendola M, Zingale A, Baccarini A, Lazzari G, Galli C, Naldini L (2007) Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat Biotechnol 25(12):1457–1467. doi:10.1038/nbt1372

    Article  PubMed  CAS  Google Scholar 

  79. Yin VP, Lepilina A, Smith A, Poss KD (2012) Regulation of zebrafish heart regeneration by miR-133. Dev Biol 365(2):319–327. doi:10.1016/j.ydbio.2012.02.018

    Article  PubMed  CAS  Google Scholar 

  80. Zhu C, Smith T, McNulty J, Rayla AL, Lakshmanan A, Siekmann AF, Buffardi M, Meng X, Shin J, Padmanabhan A, Cifuentes D, Giraldez AJ, Look AT, Epstein JA, Lawson ND, Wolfe SA (2011) Evaluation and application of modularly assembled zinc-finger nucleases in zebrafish. Development 138(20):4555–4564. doi:10.1242/dev.066779

    Article  PubMed  CAS  Google Scholar 

  81. Lawson ND, Wolfe SA (2011) Forward and reverse genetic approaches for the analysis of vertebrate development in the zebrafish. Dev Cell 21(1):48–64. doi:10.1016/j.devcel.2011.06.007

    Article  PubMed  CAS  Google Scholar 

  82. Cade L, Reyon D, Hwang WY, Tsai SQ, Patel S, Khayter C, Joung JK, Sander JD, Peterson RT, Yeh JR (2012) Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic Acids Res. doi:10.1093/nar/gks518

    Google Scholar 

  83. Moore FE, Reyon D, Sander JD, Martinez SA, Blackburn JS, Khayter C, Ramirez CL, Joung JK, Langenau DM (2012) Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs). PLoS ONE 7(5):e37877. doi:10.1371/journal.pone.0037877

    Article  PubMed  CAS  Google Scholar 

  84. Yoon S, De Micheli G (2006) Computational identification of microRNAs and their targets. Birth Defects Res Part C Embryo Today Rev 78(2):118–128. doi:10.1002/bdrc.20067

    Article  CAS  Google Scholar 

  85. Witkos TM, Koscianska E, Krzyzosiak WJ (2011) Practical aspects of microRNA target prediction. Curr Mol Med 11(2):93–109

    Article  PubMed  CAS  Google Scholar 

  86. Min H, Yoon S (2010) Got target? Computational methods for microRNA target prediction and their extension. Exp Mol Med 42(4):233–244

    Article  PubMed  CAS  Google Scholar 

  87. Dangwal S, Bang C, Thum T (2011) Novel techniques and targets in cardiovascular microRNA research. Cardiovasc Res. doi:10.1093/cvr/cvr297

    PubMed  Google Scholar 

  88. Pase L, Lieschke GJ (2009) Validating microRNA target transcripts using zebrafish assays. Methods Mol Biol 546:227–240. doi:10.1007/978-1-60327-977-2_14

    Article  PubMed  CAS  Google Scholar 

  89. Choi J, Dong L, Ahn J, Dao D, Hammerschmidt M, Chen JN (2007) FoxH1 negatively modulates flk1 gene expression and vascular formation in zebrafish. Dev Biol 304(2):735–744. doi:10.1016/j.ydbio.2007.01.023

    Article  PubMed  CAS  Google Scholar 

  90. Staton AA, Giraldez AJ (2011) Use of target protector morpholinos to analyze the physiological roles of specific miRNA-mRNA pairs in vivo. Nat Protoc 6(12):2035–2049. doi:10.1038/nprot.2011.423

    Article  PubMed  CAS  Google Scholar 

  91. Staton AA, Knaut H, Giraldez AJ (2011) miRNA regulation of Sdf1 chemokine signaling provides genetic robustness to germ cell migration. Nat Genet 43(3):204–211. doi:10.1038/ng.758

    Article  PubMed  CAS  Google Scholar 

  92. Armstrong EJ, Bischoff J (2004) Heart valve development: endothelial cell signaling and differentiation. Circ Res 95(5):459–470. doi:10.1161/01.RES.0000141146.95728.da

    Article  PubMed  CAS  Google Scholar 

  93. Camenisch TD, Spicer AP, Brehm-Gibson T, Biesterfeldt J, Augustine ML, Calabro A Jr, Kubalak S, Klewer SE, McDonald JA (2000) Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J Clin Investig 106(3):349–360. doi:10.1172/JCI10272

    Article  PubMed  CAS  Google Scholar 

  94. Srivastava D (2006) Making or breaking the heart: from lineage determination to morphogenesis. Cell 126(6):1037–1048. doi:10.1016/j.cell.2006.09.003

    Article  PubMed  CAS  Google Scholar 

  95. Niederreither K, Subbarayan V, Dolle P, Chambon P (1999) Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat Genet 21(4):444–448. doi:10.1038/7788

    Article  PubMed  CAS  Google Scholar 

  96. Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN, Lee TH, Miano JM, Ivey KN, Srivastava D (2009) miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460(7256):705–710. doi:10.1038/nature08195

    PubMed  CAS  Google Scholar 

  97. Elia L, Quintavalle M, Zhang J, Contu R, Cossu L, Latronico MV, Peterson KL, Indolfi C, Catalucci D, Chen J, Courtneidge SA, Condorelli G (2009) The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease. Cell Death Differ 16(12):1590–1598. doi:10.1038/cdd.2009.153

    Article  PubMed  CAS  Google Scholar 

  98. Xin M, Small EM, Sutherland LB, Qi X, McAnally J, Plato CF, Richardson JA, Bassel-Duby R, Olson EN (2009) MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes Dev 23(18):2166–2178. doi:10.1101/gad.1842409

    Article  PubMed  CAS  Google Scholar 

  99. Boettger T, Beetz N, Kostin S, Schneider J, Kruger M, Hein L, Braun T (2009) Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J Clin Investig 119(9):2634–2647. doi:10.1172/JCI38864

    Article  PubMed  CAS  Google Scholar 

  100. Miyasaka KY, Kida YS, Banjo T, Ueki Y, Nagayama K, Matsumoto T, Sato M, Ogura T (2011) Heartbeat regulates cardiogenesis by suppressing retinoic acid signaling via expression of miR-143. Mech Dev 128(1–2):18–28. doi:10.1016/j.mod.2010.09.002

    Article  PubMed  CAS  Google Scholar 

  101. Deacon DC, Nevis KR, Cashman TJ, Zhou Y, Zhao L, Washko D, Guner-Ataman B, Burns CG, Burns CE (2010) The miR-143-adducin3 pathway is essential for cardiac chamber morphogenesis. Development 137(11):1887–1896. doi:10.1242/dev.050526

    Article  PubMed  CAS  Google Scholar 

  102. Fish JE, Wythe JD, Xiao T, Bruneau BG, Stainier DY, Srivastava D, Woo S (2011) A Slit/miR-218/Robo regulatory loop is required during heart tube formation in zebrafish. Development 138(7):1409–1419. doi:10.1242/dev.060046

    Article  PubMed  CAS  Google Scholar 

  103. Small EM, Sutherland LB, Rajagopalan KN, Wang S, Olson EN (2010) MicroRNA-218 regulates vascular patterning by modulation of Slit-Robo signaling. Circ Res 107(11):1336–1344. doi:10.1161/CIRCRESAHA.110.227926

    Article  PubMed  CAS  Google Scholar 

  104. Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298(5601):2188–2190. doi:10.1126/science.1077857

    Article  PubMed  CAS  Google Scholar 

  105. Jopling C, Sleep E, Raya M, Marti M, Raya A, Izpisua Belmonte JC (2010) Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464(7288):606–609. doi:10.1038/nature08899

    Article  PubMed  CAS  Google Scholar 

  106. Kikuchi K, Holdway JE, Werdich AA, Anderson RM, Fang Y, Egnaczyk GF, Evans T, Macrae CA, Stainier DY, Poss KD (2010) Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464(7288):601–605. doi:10.1038/nature08804

    Article  PubMed  CAS  Google Scholar 

  107. Poss KD, Nechiporuk A, Hillam AM, Johnson SL, Keating MT (2002) Mps1 defines a proximal blastemal proliferative compartment essential for zebrafish fin regeneration. Development 129(22):5141–5149

    PubMed  CAS  Google Scholar 

  108. Bruce AF, Rothery S, Dupont E, Severs NJ (2008) Gap junction remodelling in human heart failure is associated with increased interaction of connexin43 with ZO-1. Cardiovasc Res 77(4):757–765. doi:10.1093/cvr/cvm083

    Article  PubMed  CAS  Google Scholar 

  109. Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, Olson EN (2008) microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 22(23):3242–3254. doi:10.1101/gad.1738708

    Article  PubMed  CAS  Google Scholar 

  110. Fiedler J, Jazbutyte V, Kirchmaier BC, Gupta SK, Lorenzen J, Hartmann D, Galuppo P, Kneitz S, Pena JT, Sohn-Lee C, Loyer X, Soutschek J, Brand T, Tuschl T, Heineke J, Martin U, Schulte-Merker S, Ertl G, Engelhardt S, Bauersachs J, Thum T (2011) MicroRNA-24 regulates vascularity after myocardial infarction. Circulation 124(6):720–730. doi:10.1161/CIRCULATIONAHA.111.039008

    Article  PubMed  CAS  Google Scholar 

  111. Bang C, Fiedler J, Thum T (2011) Cardiovascular importance of the microRNA-23/27/24 family. Microcirculation. doi:10.1111/j.1549-8719.2011.00153.x

    Google Scholar 

  112. Pedrioli DM, Karpanen T, Dabouras V, Jurisic G, van de Hoek G, Shin JW, Marino D, Kalin RE, Leidel S, Cinelli P, Schulte-Merker S, Brandli AW, Detmar M (2010) miR-31 functions as a negative regulator of lymphatic vascular lineage-specific differentiation in vitro and vascular development in vivo. Mol Cell Biol 30(14):3620–3634. doi:10.1128/MCB.00185-10

    Article  PubMed  CAS  Google Scholar 

  113. Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E, Furth EE, Lee WM, Enders GH, Mendell JT, Thomas-Tikhonenko A (2006) Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 38(9):1060–1065. doi:10.1038/ng1855

    Article  PubMed  CAS  Google Scholar 

  114. Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, Burchfield J, Fox H, Doebele C, Ohtani K, Chavakis E, Potente M, Tjwa M, Urbich C, Zeiher AM, Dimmeler S (2009) MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324(5935):1710–1713. doi:10.1126/science.1174381

    Article  PubMed  CAS  Google Scholar 

  115. Francis SE, Goh KL, Hodivala-Dilke K, Bader BL, Stark M, Davidson D, Hynes RO (2002) Central roles of alpha5beta1 integrin and fibronectin in vascular development in mouse embryos and embryoid bodies. Arterioscler Thromb Vasc Biol 22(6):927–933

    Article  PubMed  CAS  Google Scholar 

  116. Wu W, Xiao H, Laguna-Fernandez A, Villarreal G Jr, Wang KC, Geary GG, Zhang Y, Wang WC, Huang HD, Zhou J, Li YS, Chien S, Garcia-Cardena G, Shyy JY (2011) Flow-dependent regulation of Kruppel-like factor 2 is mediated by microrNA-92a. Circulation 124(5):633–641. doi:10.1161/CIRCULATIONAHA.110.005108

    Article  PubMed  CAS  Google Scholar 

  117. Suarez Y, Fernandez-Hernando C, Pober JS, Sessa WC (2007) Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res 100(8):1164–1173. doi:10.1161/01.RES.0000265065.26744.17

    Article  PubMed  CAS  Google Scholar 

  118. Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K, Mercatanti A, Hammond S, Rainaldi G (2006) MicroRNAs modulate the angiogenic properties of HUVECs. Blood 108(9):3068–3071. doi:10.1182/blood-2006-01-012369

    Article  PubMed  CAS  Google Scholar 

  119. Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, Ivey KN, Bruneau BG, Stainier DY, Srivastava D (2008) miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 15(2):272–284. doi:10.1016/j.devcel.2008.07.008

    Article  PubMed  CAS  Google Scholar 

  120. Kuhnert F, Mancuso MR, Hampton J, Stankunas K, Asano T, Chen CZ, Kuo CJ (2008) Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development 135(24):3989–3993. doi:10.1242/dev.029736

    Article  PubMed  CAS  Google Scholar 

  121. Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R, Olson EN (2008) The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 15(2):261–271. doi:10.1016/j.devcel.2008.07.002

    Article  PubMed  CAS  Google Scholar 

  122. Stankunas K, Ma GK, Kuhnert FJ, Kuo CJ, Chang CP (2010) VEGF signaling has distinct spatiotemporal roles during heart valve development. Dev Biol 347(2):325–336. doi:10.1016/j.ydbio.2010.08.030

    Article  PubMed  CAS  Google Scholar 

  123. Wakioka T, Sasaki A, Kato R, Shouda T, Matsumoto A, Miyoshi K, Tsuneoka M, Komiya S, Baron R, Yoshimura A (2001) Spred is a sprouty-related suppressor of Ras signalling. Nature 412(6847):647–651. doi:10.1038/35088082

    Article  PubMed  CAS  Google Scholar 

  124. Ueki K, Fruman DA, Yballe CM, Fasshauer M, Klein J, Asano T, Cantley LC, Kahn CR (2003) Positive and negative roles of p85 alpha and p85 beta regulatory subunits of phosphoinositide 3-kinase in insulin signaling. J Biol Chem 278(48):48453–48466. doi:10.1074/jbc.M305602200

    Article  PubMed  CAS  Google Scholar 

  125. Fish JE, Srivastava D (2009) MicroRNAs: opening a new vein in angiogenesis research. Science signaling 2 (52):pe1. doi:10.1126/scisignal.252pe1

  126. Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146(6):873–887. doi:10.1016/j.cell.2011.08.039

    Article  PubMed  CAS  Google Scholar 

  127. Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S (2007) Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res 101(1):59–68. doi:10.1161/CIRCRESAHA.107.153916

    Article  PubMed  CAS  Google Scholar 

  128. Liu X, Cheng Y, Yang J, Xu L, Zhang C (2012) Cell-specific effects of miR-221/222 in vessels: molecular mechanism and therapeutic application. J Mol Cell Cardiol 52(1):245–255. doi:10.1016/j.yjmcc.2011.11.008

    Article  PubMed  CAS  Google Scholar 

  129. Li Y, Song YH, Li F, Yang T, Lu YW, Geng YJ (2009) MicroRNA-221 regulates high glucose-induced endothelial dysfunction. Biochem Biophys Res Commun 381(1):81–83. doi:10.1016/j.bbrc.2009.02.013

    Article  PubMed  CAS  Google Scholar 

  130. Minami Y, Satoh M, Maesawa C, Takahashi Y, Tabuchi T, Itoh T, Nakamura M (2009) Effect of atorvastatin on microRNA 221/222 expression in endothelial progenitor cells obtained from patients with coronary artery disease. Eur J Clin Invest 39(5):359–367. doi:10.1111/j.1365-2362.2009.02110.x

    Article  PubMed  CAS  Google Scholar 

  131. Poss KD (2007) Getting to the heart of regeneration in zebrafish. Semin Cell Dev Biol 18(1):36–45. doi:10.1016/j.semcdb.2006.11.009

    Article  PubMed  CAS  Google Scholar 

  132. Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B, Hristov M, Koppel T, Jahantigh MN, Lutgens E, Wang S, Olson EN, Schober A, Weber C (2009) Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2(100):ra81. doi:10.1126/scisignal.2000610

  133. Hergenreider E, Heydt S, Treguer K, Boettger T, Horrevoets AJ, Zeiher AM, Scheffer MP, Frangakis AS, Yin X, Mayr M, Braun T, Urbich C, Boon RA, Dimmeler S (2012) Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol. doi:10.1038/ncb2441

    PubMed  Google Scholar 

Download references

Acknowledgments

We apologize to the many researchers whose work was not cited in this review because of space limitations. We would like to thank all members of Santoro's laboratory for support and discussion, Stefania Nicoli for sharing information before publication, Ellen Jane Corcoran for editorial assistance, and our anonymous reviewers for their insightful comments on this manuscript. Work in Massimo Santoro’s laboratory is supported by a HFSP Career Developmental Award, Marie Curie Action (IRG 247852), Telethon (GGP10195), and AIRC (MFAG 8911).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Mattia Santoro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gays, D., Santoro, M.M. The admiR-able advances in cardiovascular biology through the zebrafish model system. Cell. Mol. Life Sci. 70, 2489–2503 (2013). https://doi.org/10.1007/s00018-012-1181-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1181-4

Keywords

Navigation