Skip to main content

Advertisement

Log in

Regulatory T cells, mTOR kinase, and metabolic activity

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The field that links immunity and metabolism is rapidly expanding. Apparently, non-immunological disorders such as obesity and type 2 diabetes have been linked to immune dysregulation, suggesting that metabolic alterations can be induced by or be a consequence of an altered self-immune tolerance. In this context, a key role is played by signaling systems acting as metabolic “sensors” linking energy/nutritional status to regulatory T (Treg) cell functions. We propose that a dynamic/oscillatory activity of intracellular metabolism, through mTOR modulation, might represent a shift in understanding the molecular mechanisms governing Treg cell tolerance. In particular, the decision between Treg cell proliferation and hyporesponsiveness arises from their ability to probe the extracellular milieu and, modulating the metabolic intracellular signaling, to determine different qualitative and quantitative functional outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133:775–787

    Article  PubMed  CAS  Google Scholar 

  2. Zhou X, Bailey-Bucktrout SL, Jeker LT, Penaranda C, Martínez-Llordella M, Ashby M, Nakayama M, Rosenthal W, Bluestone JA (2009) Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol 10:1000–1007

    Article  PubMed  CAS  Google Scholar 

  3. Thornton AM, Shevach EM (1998) CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 188:287–296

    Article  PubMed  CAS  Google Scholar 

  4. Ng WF, Duggan PJ, Ponchel F, Matarese G, Lombardi G, Edwards AD, Isaacs JD, Lechler RI (2001) Human CD4(+)CD25(+) cells: a naturally occurring population of regulatory T cells. Blood 98:2736–2744

    Article  PubMed  CAS  Google Scholar 

  5. Mitroulis I, Skendros P, Ritis K (2010) Targeting IL-1beta in disease; the expanding role of NLRP3 inflammasome. Eur J Intern Med 21:157–163

    Article  PubMed  CAS  Google Scholar 

  6. Giugliano D, Ceriello A, Saccomanno F, Quatraro A, Paolisso G, D’Onofrio F (1985) Effects of salicylate, tolbutamide, and prostaglandin E2 on insulin responses to glucose in noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 61:160–166

    Article  PubMed  CAS  Google Scholar 

  7. Nath N, Khan M, Paintlia MK (2009) Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis. J Immunol 182:8005–8014

    Article  PubMed  CAS  Google Scholar 

  8. Yang X, Smith U (2007) Adipose tissue distribution and risk of metabolic disease: does thiazolidinedione-induced adipose tissue redistribution provide a clue to the answer? Diabetologia 50:1127–1139

    Article  PubMed  CAS  Google Scholar 

  9. Klotz L, Burgdorf S, Dani I, Saijo K, Flossdorf J, Hucke S, Alferink J, Nowak N, Beyer M, Mayer G, Langhans B, Klockgether T, Waisman A, Eberl G, Schultze J, Famulok M, Kolanus W, Glass C, Kurts C, Knolle PA (2009) The nuclear receptor PPAR gamma selectively inhibits Th17 differentiation in a T cell-intrinsic fashion and suppresses CNS autoimmunity. J Exp Med 206:2079–2089

    Article  PubMed  CAS  Google Scholar 

  10. Zhang X, Markovic-Plese S (2008) Statins’ immunomodulatory potential against Th17 cell-mediated autoimmune response. Immunol Res 41:165–174

    Article  PubMed  CAS  Google Scholar 

  11. Lord GM, Matarese G, Howard JK, Baker RJ, Bloom SR, Lechler RI (1998) Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 394:897–901

    Article  PubMed  CAS  Google Scholar 

  12. Matarese G, La Cava A (2004) The intricate interface between immune system and metabolism. Trends Immunol 25:193–200

    Article  PubMed  CAS  Google Scholar 

  13. Procaccini C, De Rosa V, Galgani M, Abanni L, Calì G, Porcellini A, Carbone F, Fontana S, Horvath TL, La Cava A, Matarese G (2010) An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness. Immunity 33:929–941

    Article  PubMed  CAS  Google Scholar 

  14. Procaccini C, Galgani M, De Rosa V, Matarese G (2012) Intracellular metabolic pathways control immune tolerance. Trends Immunol 33:1–7

    Article  PubMed  CAS  Google Scholar 

  15. De Rosa V, Procaccini C, Calì G, Pirozzi G, Fontana S, Zappacosta S, La Cava A, Matarese G (2007) A key role of leptin in the control of regulatory T cell proliferation. Immunity 26:241–255

    Article  PubMed  CAS  Google Scholar 

  16. Procaccini C, Jirillo E, Matarese G (2012) Leptin as a immunomodulator. Mol Aspects Med 33:35–45

    Article  PubMed  CAS  Google Scholar 

  17. Yang Q, Guan KL (2007) Expanding mTOR signaling. Cell Res 17:666–681

    Article  PubMed  CAS  Google Scholar 

  18. Hardie DG (2004) The AMP-activated protein kinase pathway–new players upstream and downstream. J Cell Sci 117:5479–5487

    Article  PubMed  CAS  Google Scholar 

  19. Ouyang W, Li MO (2011) Foxo: in command of T lymphocyte homeostasis and tolerance. Trends Immunol 1:26–33

    Article  CAS  Google Scholar 

  20. Jones RG, Thompson CB (2007) Revving the engine: signal transduction fuels T cell activation. Immunity 27:173–178

    Article  PubMed  CAS  Google Scholar 

  21. Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, Plas DR, Elstrom RL, June CH, Thompson CB (2002) The CD28 signaling pathway regulates glucose metabolism. Immunity 16:769–777

    Article  PubMed  CAS  Google Scholar 

  22. Wieman HL, Wofford JA, Rathmell JC (2007) Cytokine stimulation promotes glucose uptake via phosphatidylinositol 3 kinase/Akt regulation of Glut1 activity and trafficking. Mol Biol Cell 18:1437–1446

    Article  PubMed  CAS  Google Scholar 

  23. Jacobs SR, Herman CE, Maciver NJ, Wofford JA, Wieman HL, Hammen JJ, Rathmell JC (2008) Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J Immunol 180:4476–4486

    PubMed  CAS  Google Scholar 

  24. Greiner EF, Guppy M, Brand K (1994) Glucose is essential for proliferation and the glycolytic enzyme induction that provokes a transition to glycolytic energy production. J Biol Chem 269:31484–31490

    PubMed  CAS  Google Scholar 

  25. Coloff JL, Mason EF, Altman BJ, Gerriets VA, Liu T, Nichols AN, Zhao Y, Wofford JA, Jacobs SR, Ilkayeva O, Garrison SP, Zambetti GP, Rathmell JC (2011) Akt requires glucose metabolism to suppress puma expression and prevent apoptosis of leukemic T cells. J Biol Chem 286:5921–5933

    Article  PubMed  CAS  Google Scholar 

  26. Alves NL, Derks IA, Berk E, Spijker R, van Lier RA, Eldering E (2006) The Noxa/Mcl-1 axis regulates susceptibility to apoptosis under glucose limitation in dividing T cells. Immunity 24:703–716

    Article  PubMed  CAS  Google Scholar 

  27. Zheng Y, Delgoffe GM, Meyer CF, Chan W, Powell JD (2009) Anergic T cells are metabolically anergic. J Immunol 183:6095–6101

    Article  PubMed  CAS  Google Scholar 

  28. Frauwirth KA, Thompson CB (2004) Regulation of T lymphocyte metabolism. J Immunol 172:4661

    PubMed  CAS  Google Scholar 

  29. Rathmell JC, Elstrom RL, Cinalli RM, Thompson CB (2003) Activated Akt promotes increased resting T cell size, CD28-independent T cell growth, and development of autoimmunity and lymphoma. Eur J Immunol 33:2223–2232

    Article  PubMed  CAS  Google Scholar 

  30. Fox CJ, Hammerman PS, Thompson CB (2005) Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol 5:844–852

    Article  PubMed  CAS  Google Scholar 

  31. Bental M, Deutsch C (1993) Metabolic changes in activated T cells: an NMR study of human peripheral blood lymphocytes. Magn Reson Med 29:317–326

    Article  PubMed  CAS  Google Scholar 

  32. Peter C, Waldmann H, Cobbold SP (2010) mTOR signalling and metabolic regulation of T cell differentiation. Curr Opin Immunol 22:655–661

    Article  PubMed  CAS  Google Scholar 

  33. Powell JD, Delgoffe GM (2010) The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity 33:301–311

    Article  PubMed  CAS  Google Scholar 

  34. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12:21–35

    Article  PubMed  CAS  Google Scholar 

  35. Wolf AM, Wolf D, Rumpold H, Enrich B, Tilg H (2004) Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochem Biophys Res Commun 323:630–635

    Article  PubMed  CAS  Google Scholar 

  36. Wilk S, Scheibenbogen C, Bauer S, Jenke A, Rother M, Guerreiro M, Kudernatsch R, Goerner N, Poller W, Elligsen-Merkel D, Utku N, Magrane J, Volk HD, Skurk C (2011) Adiponectin is a negative regulator of antigen-activated T cells. Eur J Immunol 41:2323–2332

    Article  PubMed  CAS  Google Scholar 

  37. Tsang JY, Li D, Ho D, Peng J, Xu A, Lamb J, Chen Y, Tam PK (2011) Novel immunomodulatory effects of adiponectin on dendritic cell functions. Int Immunopharmacol 11:604–609

    Article  PubMed  CAS  Google Scholar 

  38. Faivre S, Kroemer G, Raymond E (2006) Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 5:671–688

    Article  PubMed  CAS  Google Scholar 

  39. Laplante M, Sabatini DM (2010) mTOR signaling at a glance. J Cell Sci 122:3589–3594

    Article  CAS  Google Scholar 

  40. Blouet C, Ono H, Schwartz GJ (2008) Mediobasal hypothalamic p70 S6 kinase 1 modulates the control of energy homeostasis. Cell Metab 8:459–467

    Article  PubMed  CAS  Google Scholar 

  41. Sengupta S, Peterson TR, Sabatini DM (2010) Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 40:310–322

    Article  PubMed  CAS  Google Scholar 

  42. Thomson AW, Turnquist HR, Raimondi G (2009) Immunoregulatory functions of mTOR inhibition. Nat Rev Immunol 9:324–337

    Article  PubMed  CAS  Google Scholar 

  43. Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163–175

    Article  PubMed  CAS  Google Scholar 

  44. Sarbassov D, Ali S, Kim D, Guertin D, Latek R, Erdjument-Bromage H, Tempst P, Sabatini D (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14:1296–1302

    Article  PubMed  CAS  Google Scholar 

  45. Holz MK, Blenis J (2005) Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase. J Biol Chem 280:26089–26093

    Article  PubMed  CAS  Google Scholar 

  46. Düvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S, Vander Heiden MG, MacKeigan JP, Finan PM, Clish CB, Murphy LO, Manning BD (2010) Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 39:171–183

    Article  PubMed  CAS  Google Scholar 

  47. Sarbassov D, Guertin D, Ali S, Sabatini D (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101

    Article  PubMed  CAS  Google Scholar 

  48. Sarbassov D, Ali S, Sengupta S, Sheen J, Hsu P, Bagley A, Markhard A, Sabatini D (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22:159–168

    Article  PubMed  CAS  Google Scholar 

  49. Pepper M, Jenkins MK (2011) Origins of CD4(+) effector and central memory T cells. Nat Immunol 12:467–471

    Article  PubMed  CAS  Google Scholar 

  50. Zhou L, Chong MM, Littman DR (2009) Plasticity of CD4+ T cell lineage differentiation. Immunity 30:646–655

    Article  PubMed  CAS  Google Scholar 

  51. Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B, Worley PF, Kozma SC, Powell JD (2009) The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30:832–844

    Article  PubMed  CAS  Google Scholar 

  52. Delgoffe GM, Pollizzi KN, Waickman AT, Heikamp E, Meyers DJ, Horton MR, Xiao B, Worley PF, Powell JD (2011) The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol 12:295–303

    Article  PubMed  CAS  Google Scholar 

  53. Finlay D, Cantrell D (2010) Phosphoinositide 3-kinase and the mammalian target of rapamycin pathways control T cell migration. Ann NY Acad Sci 1183:149–157

    Article  PubMed  CAS  Google Scholar 

  54. Sinclair LV, Finlay D, Feijoo C, Cornish GH, Gray A, Ager A, Okkenhaug K, Hagenbeek TJ, Spits H, Cantrell DA (2008) Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocyte trafficking. Nat Immunol 9:513–521

    Article  PubMed  CAS  Google Scholar 

  55. Li Q, Rao RR, Araki K, Pollizzi K, Odunsi K, Powell JD, Shrikant PA (2011) A central role for mTOR kinase in homeostatic proliferation induced CD8+ T cell memory and tumor immunity. Immunity 34:541–553

    Article  PubMed  CAS  Google Scholar 

  56. Turner AP, Shaffer VO, Araki K, Martens C, Turner PL, Gangappa S, Ford ML, Ahmed R, Kirk AD, Larsen CP (2011) Sirolimus enhances the magnitude and quality of viral-specific CD8 + Tcell responses to vaccinia virus vaccination in rhesus macaques. Am J Transplant 11:613–618

    Article  PubMed  CAS  Google Scholar 

  57. Wang Y, Wang XY, Subjeck JR, Shrikant PA, Kim HL (2011) Temsirolimus, an mTOR inhibitor, enhances anti tumour effects of heat shock protein cancer vaccines. Br J Cancer 104:643–652

    Article  PubMed  CAS  Google Scholar 

  58. Ferrer IR, Wagener ME, Robertson JM, Turner AP, Araki K, Ahmed R, Kirk AD, Larsen CP, Ford ML (2010) Cutting edge: rapamycin augments pathogen-specific but not graft-reactive CD8+ T cell responses. J Immunol 185:2004–2008

    Article  PubMed  CAS  Google Scholar 

  59. Rao RR, Li Q, Odunsi K, Shrikant PA (2010) The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity 32:67–78

    Article  PubMed  CAS  Google Scholar 

  60. Araki K, Turner AP, Shaffer VO, Gangappa S, Keller SA, Bachmann MF, Larsen CP, Ahmed R (2009) mTOR regulates memory CD8 T-cell differentiation. Nature 460:108–112

    Article  PubMed  CAS  Google Scholar 

  61. Pearce EL, Walsh MC, Cejas PJ, Harms GM, Shen H, Wang LS, Jones RG, Choi Y (2009) Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460:103–107

    Article  PubMed  CAS  Google Scholar 

  62. Weichhart T, Costantino G, Poglitsch M, Rosner M, Zeyda M, Stuhlmeier KM, Kolbe T, Stulnig TM, Hörl WH, Hengstschläger M, Müller M, Säemann MD (2008) The TSC-mTOR signalling pathway regulates the innate inflammatory response. Immunity 29:565–577

    Article  PubMed  CAS  Google Scholar 

  63. Ohtani M, Nagai S, Kondo S, Mizuno S, Nakamura K, Tanabe M, Takeuchi T, Matsuda S, Koyasu S (2008) Mammalian target of rapamycin and glycogen synthase kinase 3 differentially regulate lipopolysaccharideinduced interleukin-12 production in dendritic cells. Blood 112:635–643

    Article  PubMed  CAS  Google Scholar 

  64. Jagannath C, Lindsey DR, Dhandayuthapani S, Xu Y, Hunter RL Jr, Eissa NT (2009) Autophagy enhances the efficacy of BCG vaccine by increasing peptide presentation in mouse dendritic cells. Nat Med 15:267–276

    Article  PubMed  CAS  Google Scholar 

  65. Zhang S, Readinger JA, DuBois W, Janka-Junttila M, Robinson R, Pruitt M, Bliskovsky V, Wu JZ, Sakakibara K, Patel J, Parent CA, Tessarollo L, Schwartzberg PL, Mock BA (2011) Constitutive reductions in mTOR alter cell size, immune cell development, and antibody production. Blood 117:1228–1238

    Article  PubMed  CAS  Google Scholar 

  66. Lazorchak AS, Liu D, Facchinetti V, Di Lorenzo A, Sessa WC, Schatz DG, Su B (2010) Sin1-mTORC2 suppresses rag and il7r gene expression through Akt2 in B cells. Mol Cell 39:433–443

    Article  PubMed  CAS  Google Scholar 

  67. Benhamron S, Tirosh B (2011) Direct activation of mTOR in B lymphocytes confers impairment in B-cell maturation and loss of marginal zone B cells. Eur J Immunol 41:2390–2396

    Article  PubMed  CAS  Google Scholar 

  68. Piccirillo CA (2004) Shevach EM (2004) Naturally-occurring CD4+CD25+ immunoregulatory T cells: central players in the arena of peripheral tolerance. Semin Immunol 16:81–88

    Article  PubMed  CAS  Google Scholar 

  69. Shevach EM (2009) Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 30:636–645

    Article  PubMed  CAS  Google Scholar 

  70. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4:330–336

    Article  PubMed  CAS  Google Scholar 

  71. Gavin MA, Rasmussen JP, Fontenot JD, Vasta V, Manganiello VC, Beavo JA, Rudensky AY (2007) Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445:771–775

    Article  PubMed  CAS  Google Scholar 

  72. Bacchetta R, Passerini L, Gambineri E, Dai M, Allan SE, Perroni L, Dagna-Bricarelli F, Sartirana C, Matthes-Martin S, Lawitschka A, Azzari C, Ziegler SF, Levings MK, Roncarolo MG (2006) Defective regulatory and effector T cell functions in patients with FOXP3 mutations. J Clin Invest 116:1713–1722

    Article  PubMed  CAS  Google Scholar 

  73. Lopes JE, Torgerson TR, Schubert LA, Anover SD, Ocheltree EL, Ochs HD, Ziegler SF (2006) Analysis of FOXP3 reveals multiple domains required for its function as a transcriptional repressor. J Immunol 177:3133–3142

    PubMed  CAS  Google Scholar 

  74. Min WP, Zhou D, Ichim TE, Strejan GH, Xia X, Yang J, Huang X, Garcia B, White D, Dutartre P, Jevnikar AM, Zhong R (2003) Inhibitory feedback loop between tolerogenic dendritic cells and regulatory T cells in transplant tolerance. J Immunol 170:1304–1312

    PubMed  CAS  Google Scholar 

  75. Fehérvári Z, Sakaguchi S (2004) Control of Foxp3+CD25+CD4+ regulatory cell activation and function by dendritic cells. Int Immunol 16:1769–1780

    Article  PubMed  CAS  Google Scholar 

  76. Onishi Y, Fehervari Z, Yamaguchi T, Sakaguchi S (2008) Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci USA 105:10113–10118

    Article  PubMed  CAS  Google Scholar 

  77. Kohrt HE, Pillai AB, Lowsky R, Strober S (2010) NKT cells, Treg, and their interactions in bone marrow transplantation. Eur J Immunol 40:1862–1899

    Article  PubMed  CAS  Google Scholar 

  78. Saito S, Shiozaki A, Sasaki Y, Nakashima A, Shima T, Ito M (2007) Regulatory T cells and regulatory natural killer (NK) cells play important roles in feto-maternal tolerance. Semin Immunopathol 29:115–122

    Article  PubMed  CAS  Google Scholar 

  79. Iikuni N, Lourenço EV, Hahn BH, La Cava A (2009) Cutting edge: regulatory T cells directly suppress B cells in systemic lupus erythematosus. J Immunol 183:1518–1522

    Article  PubMed  CAS  Google Scholar 

  80. Cobbold SP, Nolan KF, Graca L, Castejon R, Le Moine A, Frewin M, Humm S, Adams E, Thompson S, Zelenika D, Paterson A, Yates S, Fairchild PJ, Waldmann H (2003) Regulatory T cells and dendritic cells in transplantation tolerance: molecular markers and mechanisms. Immunol Rev 196:109–124

    Article  PubMed  CAS  Google Scholar 

  81. Leber A, Teles A, Zenclussen AC (2010) Regulatory T cells and their role in pregnancy. Am J Reprod Immunol 63:445–459

    Article  PubMed  CAS  Google Scholar 

  82. Zenclussen AC (2006) Regulatory T cells in pregnancy. Springer Semin Immunopathol 28:31–39

    Article  PubMed  CAS  Google Scholar 

  83. Strickland DH, Holt PG (2011) T regulatory cells in childhood asthma. Trends Immunol 32:420–427

    Article  PubMed  CAS  Google Scholar 

  84. Palomares O, Yaman G, Azkur AK, Akkoc T, Akdis M, Akdis CA (2010) Role of Treg in immune regulation of allergic diseases. Eur J Immunol 40:1232–1240

    Article  PubMed  CAS  Google Scholar 

  85. Battaglia M, Stabilini A, Migliavacca B, Horejs-Hoeck J, Kaupper T, Roncarolo MG (2006) Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J Immunol 177:8338–8347

    PubMed  CAS  Google Scholar 

  86. Battaglia M, Stabilini A, Roncarolo MG (2005) Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood 105:4743–4748

    Article  PubMed  CAS  Google Scholar 

  87. Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R, Höpner S, Centonze D, Bernardi G, Dell’Acqua ML, Rossini PM, Battistini L, Rötzschke O, Falk K (2007) Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110:1225–1232

    Article  PubMed  CAS  Google Scholar 

  88. Lee K, Gudapati P, Dragovic S, Spencer C, Joyce S, Killeen N, Magnuson MA, Boothby M (2010) Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 32:743–753

    Article  PubMed  CAS  Google Scholar 

  89. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, Sullivan SA, Nichols AG, Rathmell JC (2011) Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol 186:3299–3303

    Article  PubMed  CAS  Google Scholar 

  90. Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, Chi H (2011) HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 208:1367–1376

    Article  PubMed  CAS  Google Scholar 

  91. Dang EV, Barbi J, Yang HY, Jinasena D, Yu H, Zheng Y, Bordman Z, Fu J, Kim Y, Yen HR, Luo W, Zeller K, Shimoda L, Topalian SL, Semenza GL, Dang CV, Pardoll DM, Pan F (2011) Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 146:772–784

    Article  PubMed  CAS  Google Scholar 

  92. Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M, Knight ZA, Cobb BS, Cantrell D, O’Connor E, Shokat KM, Fisher AG, Merkenschlager M (2008) T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci USA 105:7797–7802

    Article  PubMed  CAS  Google Scholar 

  93. Haxhinasto S, Mathis D, Benoist C (2008) The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J Exp Med 205:565–574

    Article  PubMed  CAS  Google Scholar 

  94. Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK, Sharpe AH (2009) PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 206:3015–3029

    Article  PubMed  CAS  Google Scholar 

  95. Liu G, Burns S, Huang G, Boyd K, Proia RL, Flavell RA, Chi H (2009) The receptor S1P1 overrides regulatory T cell-mediated immune suppression through Akt-mTOR. Nat Immunol 10:769–777

    Article  PubMed  CAS  Google Scholar 

  96. Strauss L, Whiteside TL, Knights A, Bergmann C, Knuth A, Zippelius A (2007) Selective survival of naturally occurring human CD4+CD25+Foxp3+ regulatory T cells cultured with rapamycin. J Immunol 178:320–329

    PubMed  CAS  Google Scholar 

  97. Zeiser R, Leveson-Gower DB, Zambricki EA, Kambham N, Beilhack A, Loh J, Hou JZ, Negrin RS (2008) Differential impact of mammalian target of rapamycin inhibition on CD4+CD25+Foxp3+ regulatory T cells compared with conventional CD4+ T cells. Blood 111:453–462

    Article  PubMed  CAS  Google Scholar 

  98. Burchill MA, Yang J, Vang KB, Farrar MA (2007) Interleukin-2 receptor signaling in regulatory T cell development and homeostasis. Immunol Lett 114:1–8

    Article  PubMed  CAS  Google Scholar 

  99. Yao Z, Kanno Y, Kerenyi M, Stephens G, Durant L, Watford WT, Laurence A, Robinson GW, Shevach EM, Moriggl R, Hennighausen L, Wu C, O’Shea JJ (2007) Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood 109:4368–4375

    Article  PubMed  CAS  Google Scholar 

  100. Basu S, Golovina T, Mikheeva T, June CH, Riley JL (2008) Cutting edge: foxp3-mediated induction of pim 2 allows human T regulatory cells to preferentially expand in rapamycin. J Immunol 180:5794–5798

    PubMed  CAS  Google Scholar 

  101. Valmori D, Tosello V, Souleimanian NE, Godefroy E, Scotto L, Wang Y, Ayyoub M (2006) Rapamycin-mediated enrichment of T cells with regulatory activity in stimulated CD4+ T cell cultures is not due to the selective expansion of naturally occurring regulatory T cells but to the induction of regulatory functions in conventional CD4+ T cells. J Immunol 177:944–949

    PubMed  CAS  Google Scholar 

  102. Taleb S, Tedgui A, Mallat Z (2008) Regulatory T-cell immunity and its relevance to atherosclerosis. J Intern Med 263:489–499

    Article  PubMed  CAS  Google Scholar 

  103. Taleb S, Herbin O, Ait-Oufella H, Verreth W, Gourdy P, Barateau V, Merval R, Esposito B, Clément K, Holvoet P, Tedgui A, Mallat Z (2007) Defective leptin/leptin receptor signaling improves regulatory T cell immune response and protects mice from atherosclerosis. Arterioscler Thromb Vasc Biol 27:2691–2698

    Article  PubMed  CAS  Google Scholar 

  104. Matarese G, Carrieri PB, La Cava A, Perna F, Sanna V, De Rosa V, Aufiero D, Fontana S, Zappacosta S (2005) Leptin increase in multiple sclerosis associates with reduced number of CD4+CD25+ regulatory T cells. Proc Natl Acad Sci USA 102:5150–5155

    Article  PubMed  CAS  Google Scholar 

  105. Bour-Jordan H, Bluestone JA (2009) How suppressor cells led to anergy, costimulation, and beyond. J Immunol 183:4147–4179

    Article  PubMed  CAS  Google Scholar 

  106. Vukmanovic-Stejic M, Zhang Y, Cook JE, Fletcher JM, McQuaid A, Masters JE, Rustin MH, Taams LS, Beverley PC, Macallan DC, Akbar AN (2006) Human CD4+CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J Clin Invest 116:2829–2830

    Article  CAS  Google Scholar 

  107. Sato K, Kondo M, Sakuta K, Hosoi A, Noji S, Sugiura M, Yoshida Y, Kakimi K (2009) Impact of culture medium on the expansion of T cells for immunotherapy. Cytotherapy 11:936–946

    Article  PubMed  CAS  Google Scholar 

  108. Symonds ME, Sebert SP, Hyatt MA, Budge H (2009) Nutritional programming of the metabolic syndrome. Nat Rev Endocrinol 5:604–610

    Article  PubMed  CAS  Google Scholar 

  109. Maury E, Brichard SM (2010) Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol 314:1–16

    Article  PubMed  CAS  Google Scholar 

  110. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 14:860–867

    Article  CAS  Google Scholar 

  111. Rasouli N, Kern PA (2008) Adipocytokines and the metabolic complications of obesity. J Clin Endocrinol Metab 93:S64–S73

    Article  PubMed  CAS  Google Scholar 

  112. MacLaren R, Cui W, Cianflone K (2008) Adipokines and the immune system: an adipocentric view. Adv Exp Med Biol 632:1–21 (review. PubMed PMID: 19025110)

    Article  PubMed  CAS  Google Scholar 

  113. Dixit VD (2008) Adipose-immune interactions during obesity and caloric restriction: reciprocal mechanisms regulating immunity and health span. J Leukoc Biol 84:882–892

    Article  PubMed  CAS  Google Scholar 

  114. Bilan PJ, Samokhvalov V, Koshkina A, Schertzer JD, Samaan MC, Klip A (2009) Direct and macrophage-mediated actions of fatty acids causing insulin resistance in muscle cells. Arch Physiol Biochem 115:176–190

    Article  PubMed  CAS  Google Scholar 

  115. Bourlier V, Bouloumie A (2009) Role of macrophage tissue infiltration in obesity and insulin resistance. Diabetes Metab 35:251–260

    Article  PubMed  CAS  Google Scholar 

  116. Lumeng CN, Maillard I, Saltiel AR (2009) T-ing up inflammation in fat. Nat Med 15:846–847

    Article  PubMed  CAS  Google Scholar 

  117. Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A, Lee J, Goldfine AB, Benoist C, Shoelson S, Mathis D (2009) Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 15:930–939

    Article  PubMed  CAS  Google Scholar 

  118. Winer S, Chan Y, Paltser G, Truong D, Tsui H, Bahrami J, Dorfman R, Wang Y, Zielenski J, Mastronardi F, Maezawa Y, Drucker DJ, Engleman E, Winer D, Dosch HM (2009) Normalization of obesity-associated insulin resistance through immunotherapy. Nat Med 15:921–929

    Article  PubMed  CAS  Google Scholar 

  119. Duan W, Guo Z, Jiang H, Ware M, Mattson MP (2003) Reversal of behavioral and metabolic abnormalities, and insulin resistance syndrome, by dietary restriction in mice deficient in brain-derived neurotrophic factor. Endocrinology 144:2446–2453

    Article  PubMed  CAS  Google Scholar 

  120. Maswood N, Young J, Tilmont E, Zhang Z, Gash DM, Gerhardt GA, Grondin R, Roth GS, Mattison J, Lane MA, Carson RE, Cohen RM, Mouton PR, Quigley C, Mattson MP, Ingram DK (2004) Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson’s disease. Proc Natl Acad Sci USA 101:18171–18176

    Article  PubMed  CAS  Google Scholar 

  121. Kubo C, Gajar A, Johnson BC, Good RA (1992) The effects of dietary restriction on immune function and development of autoimmune disease in BXSB mice. Proc Natl Acad Sci USA 89:3145–3149

    Article  PubMed  CAS  Google Scholar 

  122. Muthukumar A, Sun D, Zaman K, Barnes JL, Haile D, Fernandes G (2004) Age associated alterations in costimulatory and adhesion molecule expression in lupus-prone mice are attenuated by food restriction with n-6 and n-3 fatty acids. J Clin Immunol 24:471–480

    Article  PubMed  CAS  Google Scholar 

  123. Galgani M, Procaccini C, De Rosa V, Carbone F, Chieffi P, La Cava A, Matarese G (2010) Leptin modulates the survival of autoreactive CD4+ T cells through the nutrient/energy-sensing mammalian target of rapamycin signaling pathway. J Immunol 185:7474–7479

    Article  PubMed  CAS  Google Scholar 

  124. Munger KL, Chitnis T, Ascherio A (2009) Body size and risk of MS in two cohorts of US women. Neurology 73:1543–1550

    Article  PubMed  Google Scholar 

  125. Bruining GJ (2000) Association between infant growth before onset of juvenile type-1 diabetes and autoantibodies to IA-2. Netherlands Kolibrie study group of childhood diabetes. Lancet 356:655–656

    Article  PubMed  CAS  Google Scholar 

  126. Piccio L, Stark JL, Cross AH (2008) Chronic calorie restriction attenuates experimental autoimmune encephalomyelitis. J Leukoc Biol 8:940–948

    Article  CAS  Google Scholar 

  127. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395

    PubMed  CAS  Google Scholar 

  128. Härle P, Straub RH (2006) Leptin is a link between adipose tissue and inflammation. Ann NY Acad Sci 1069:454–462

    Article  PubMed  CAS  Google Scholar 

  129. Donia M, Mangano K, Amoroso A, Mazzarino MC, Imbesi R, Castrogiovanni P, Coco M, Meroni P, Nicoletti F (2009) Treatment with rapamycin ameliorates clinical and histological signs of protracted relapsing experimental allergic encephalomyelitis in Dark Agouti rats and induces expansion of peripheral CD4+CD25+Foxp3+ regulatory T cells. J Autoimmun 33:135–140

    Article  PubMed  CAS  Google Scholar 

  130. Esposito M, Ruffini F, Bellone M, Gagliani N, Battaglia M, Martino G, Furlan R (2010) Rapamycin inhibits relapsing experimental autoimmune encephalomyelitis by both effector and regulatory T cells modulation. J Neuroimmunol 220:52–63

    Article  PubMed  CAS  Google Scholar 

  131. Jiang GX, Cui YF, Zhong XY, Tai S, Liu W, Wang ZD, Shi YG (2009) Use of a cocktail regimen consisting of soluble galectin-1, rapamycin and histone deacetylase inhibitor may effectively prevent type 1 diabetes. Arch Med Res 40:424–426

    Article  PubMed  CAS  Google Scholar 

  132. Becker T, Loch G, Beyer M, Zinke I, Aschenbrenner AC, Carrera P, Inhester T, Schultze JL, Hoch M (2010) FOXO-dependent regulation of innate immune homeostasis. Nature 463:369–373

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

G.M. is supported by grants from the EU Ideas Programme, ERC-Starting Independent Grant “LeptinMS” n. 202579, Telethon-JDRF Grant n. GJT08004 and FIRB MERIT Grant n. RBNE08HWLZ. The authors wish to thank Dr. Fortunata Carbone for the artwork and critical reading of the manuscript. This work is dedicated to the memory of Eugenia Papa and Serafino Zappacosta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Matarese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Procaccini, C., Matarese, G. Regulatory T cells, mTOR kinase, and metabolic activity. Cell. Mol. Life Sci. 69, 3975–3987 (2012). https://doi.org/10.1007/s00018-012-1058-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1058-6

Keywords

Navigation