Skip to main content

Advertisement

Log in

Bioportide: an emergent concept of bioactive cell-penetrating peptides

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Cell-penetrating peptides (CPPs) have proven utility for the highly efficient intracellular delivery of bioactive cargoes that include peptides, proteins, and oligonucleotides. The many strategies developed to utilize CPPs solely as pharmacokinetic modifiers necessarily requires them to be relatively inert. Moreover, it is feasible to combine one or multiple CPPs with bioactive cargoes either by direct chemical conjugation or, more rarely, as non-covalent complexes. In terms of the message-address hypothesis, this combination of cargo (message) linked to a CPP (address) as a tandem construct conforms to the sychnological organization. More recently, we have introduced the term bioportide to describe monomeric CPPs that are intrinsically bioactive. Herein, we describe the design and biochemical properties of two rhegnylogically organized monometic CPPs that collectively modulate a variety of biological and pathophysiological phenomena. Thus, camptide, a cell-penetrant sequence located within the first intracellular loop of a human calcitonin receptor, regulates cAMP-dependent processes to modulate insulin secretion and viral infectivity. Nosangiotide, a bioportide derived from endothelial nitric oxide synthase, potently inhibits many aspects of the endothelial cell morphology and movement and displays potent anti-angiogenic activity in vivo. We conclude that, due to their capacity to translocate and target intracellular signaling events, bioportides represent an innovative generic class of bioactive agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Langel Ü (ed) (2011) Cell-penetrating peptides (Methods in molecular biology 683) Humana Press, New York

  2. Derossi D, Joliot AH, Chassaing G, Prochiantz A (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269:10444–10450

    PubMed  CAS  Google Scholar 

  3. Vives E, Brodin P, Lebleau B (1997) A truncated HIV-1 TAT protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272:16010–16017

    Article  PubMed  CAS  Google Scholar 

  4. Pooga M, Hällbrink M, Zorko M, Langel Ü (1998) Cell penetration by transportan. FASEB J 12:67–77

    PubMed  CAS  Google Scholar 

  5. Deshayes S, Konate K, Aldrian G, Heitz F, Divita G (2011) Interactions of amphipathic CPPs with model membranes. In: Langel Ü (ed) Cell-penetrating peptides (Methods in Molecular Biology 683). Humana Press, New York, pp 41–56

    Chapter  Google Scholar 

  6. Verdurmen WPR, Brock R (2011) Biological responses towards cationic peptides and drug carriers. Trends Pharamcol Sci 32:116–124

    Article  CAS  Google Scholar 

  7. Jones S, Martel C, Belzacq-Casagrande A, Brenner C, Howl J (2008) Mitoparan and target-selective chimeric analogues: membrane translocation and intracellular redistribution induces mitochondrial apoptosis. Biochim Biophys Acta 1783:849–863

    Article  PubMed  CAS  Google Scholar 

  8. Jones S, Holm T, Mäger I, Langel Ü, Howl J (2010) Characterisation of bioactive cell-penetrating peptides from cytochrome c: protein mimicry and the development of a novel apoptogenic agent. Chem Biol 17:735–744

    Article  PubMed  CAS  Google Scholar 

  9. Portoghese P (1989) Bivalent ligands and the message-address concept in the design of selective opioid receptor antagonists. Trends Pharmacol Sci 10:230–235

    Article  PubMed  CAS  Google Scholar 

  10. Howl J, Jones S (2008) Proteomimetic cell-penetrating peptides. Int J Pept Res Ther 14:359–366

    Article  CAS  Google Scholar 

  11. Baker RD, Howl J, Nicholl ID (2007) A sychnological cell-penetrating peptide mimic of p21WAF1/CIP1 is pro-apoptogenic. Peptides 28:731–740

    Article  PubMed  CAS  Google Scholar 

  12. Hällbrink M, Kilk K, Elmquist A, Lundberg P, Lindgren M, Jiang Y, Pooga M, Soomets U, Langel Ü (2005) Prediction of cell-penetrating peptides. Int J Pept Res Ther 11:249–259

    Article  Google Scholar 

  13. Hansen M, Kilk K, Langel Ü (2007) Predicting cell-penetrating peptides. Adv Drug Deliver Rev 60:572–579

    Article  Google Scholar 

  14. Östlund P, Kilk K, Lindgren M, Hällbrink M, Jiang Y, Budhina M, Cerne K, Bavec A, Östenson C-G, Zorko M, Langel Ü (2005) Cell-penetrating mimics of agonist-activated G-protein coupled receptors. Int J Pept Res Ther 11:237–247

    Article  Google Scholar 

  15. Moore EE, Kuestener RE, Stroop SD, Grant FJ, Matthewes SL, Brady CL, Sexton PM, Findlay DM (1995) Functionally different isoforms of the human calcitonin receptor result from alternative splicing of the gene transcript. Mol Endocrinol 9:959–968

    Article  PubMed  CAS  Google Scholar 

  16. Aoyagi M, Arvai AS, Tainer JA, Getzoff ED (2003) Structural basis for endothelial nitric oxide synthase binding to calmodulin. EMBO J 22:766–775

    Article  PubMed  CAS  Google Scholar 

  17. Ponten P, Macintyre EH (1968) Long term culture of normal and neoplastic human glia. Acta Pathol Microbiol Scand 74:465–486

    Article  PubMed  CAS  Google Scholar 

  18. Brown J, Reading SJ, Jones S, Fitchett CJ, Howl J, Martin A, Longland C, Michelangeli F, Dubrova YE, Brown C (2000) Critical evaluation of ECV304 as a human endothelial cell model determined by genetic analysis and functional responses: a comparison with the human bladder cancer derived epithelial cell line T24/83. Lab Invest 80:37–45

    Article  PubMed  CAS  Google Scholar 

  19. Blight KJ, McKeating JA, Rice CM (2002) Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J Virol 76:13001–13014

    Article  PubMed  CAS  Google Scholar 

  20. Lindenbach BD, Evans MJ, Syder AJ, Wolk B, Tellinghuisen TL, Liu CC, Maruyama T, Hynes RO, Burton DR, McKeating JA, Rice CM (2005) Complete replication of hepatitis C virus in cell culture. Science 309:623–626

    Article  PubMed  CAS  Google Scholar 

  21. Evans MJ, von Hahn T, Tscherne DM, Syder AJ, Panis M, Wolk B, Hatziioannou T, McKeating JA, Bieniasz PD, Rice CM (2007) Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446:801–805

    Article  PubMed  CAS  Google Scholar 

  22. Östenson C-G, Efendic S (2007) Islet gene expression and function in type 2 diabetes; studies in the Goto-Kakizaki rat and humans. Diabetes Obes Metab 9:180–186

    Article  PubMed  Google Scholar 

  23. Howl J, Mondszein RM, Wheatley M (1998) Characterization of G protein-coupled receptors expressed by ECV304 human endothelial cells. Endothelium 6:23–32

    Article  PubMed  CAS  Google Scholar 

  24. Holton P (1948) A modification of the method of Dale and Lindlow for standardization of posterior pituitary extract. Br J Pharmacol 3:328–334

    CAS  Google Scholar 

  25. Munsick R (1960) Effect of magnesium ion on the response of the rat uterus to neurohypophysial hormones and analogues. Endocrinology 66:451–457

    Article  CAS  Google Scholar 

  26. Slaninová J (1987) Fundamental biological evaluation. In: Lebl M, Jost K, Brtnik F (eds) Handbook of neurohypophyseal hormone analogs, vol I. CRC Press, Boca Raton, pp 83–107

    Google Scholar 

  27. Dekanski J (1952) The quantitative assay of vasopressin. Br J Pharmacol 7:567–572

    CAS  Google Scholar 

  28. Farquhar MJ, Harris HJ, Jones S, Nielsen SU, Brimacombe CL, Molina S, Toms GL, Maurel P, Howl J, van Ijzendoorn SVD, Balfe P, McKeating A (2008) Protein kinase A dependent step(s) in hepatitis c virus entry and infectivity. J Virol 82:8797–8811

    Article  PubMed  CAS  Google Scholar 

  29. West DC, Thompson WD, Sells PG, Burbridge MF (2001) Angiogenesis assays using the chick chorioallantoic membrane. In: Murray JC (ed) Methods in molecular medicine—angiogenesis: reviews and protocols. Humana Press, New York, pp 107–130

    Google Scholar 

  30. Li Y, Gama V, Yoshida T, Gomez JA, Ishikawa K, Sasaguri H, Cohen HY, Sinclair DA, Mizusawa H, Matsuyama S (2007) Bax-inhibiting peptide protects cells from polyglutamine toxicity caused by Ku70 acetylation. Cell Death Differ 14:2058–2067

    Article  PubMed  CAS  Google Scholar 

  31. Löfgren K, Wahlström A, Lundberg P, Langel Ü, Gräslund A, Bedecs K (2008) Antiprion properties of prion protein-derived cell-penetrating peptides. FASEB J 22:2177–2184

    Article  PubMed  Google Scholar 

  32. Hirose M, Takatori M, Kuroda Y, Abe M, Murata E, Isada T, Ueda K, Shigemi K, Shibazaki M, Shimizu F, Hirata M, Fukazawa K, Sakaguchi M, Kegeyama K, Tanaka Y (2008) Effect of synthetic cell-penetrating peptides on TrkA activity in PC12 cells. J Pharamcol Sci 106:107–113

    Article  CAS  Google Scholar 

  33. Choi J-M, Ahn M-H, Chae W-J, Jung Y-G, Park J-C, Park J-W, Park T-K, Lee J-H, Seo B-F, Kim K-D, Kim E-S, Lee D-H, Lee S-K, Lee S-K (2006) Intranasal delivery of the cytoplasmic domain of CTLA-4 using a novel protein transduction domain prevents allergic inflammation. Nat Med 12:574–579

    Article  PubMed  CAS  Google Scholar 

  34. McCusker CT, Wang Y, Shan J, Kinyanjui MW, Villeneuve A, Michael H, Fixman ED (2007) Inhibition of experimental allergic airways disease by local application of a cell-penetrating dominant-negative STAT-6 peptide. J Immunol 179:2556–2564

    PubMed  CAS  Google Scholar 

  35. Makino E, Sakaguchi N, Iwatsuki K, Huh N-H (2004) Introduction of an N-terminal peptide of S100C/A11 into human cells induces apoptotic cell death. J Mol Med 82:612–620

    Article  PubMed  CAS  Google Scholar 

  36. Keleman BR, Hsiao K, Goueli SA (2002) Selective in vivo inhibition of mitogen-activated protein kinase activation using cell-permeable peptides. J Biol Chem 277:8741–8748

    Article  Google Scholar 

  37. Jones S, Farquhar M, Martin A, Howl J (2005) Intracellular translocation of the decapeptide carboxyl terminal of Gi3α induces the dual phosphorylation of p42/p44 MAP kinases. Biochim Biophys Acta 1745:207–214

    Article  PubMed  CAS  Google Scholar 

  38. Fonseca SB, Pereira MP, Kelley SO (2009) Recent advances in the use of cell-penetrating peptides for medical and biological applications. Adv Drug Deliv Rev 61:953–964

    Article  PubMed  CAS  Google Scholar 

  39. Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y (2001) Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276:5836–5840

    Article  PubMed  CAS  Google Scholar 

  40. Vanhee P, van der Sloot AM, Verschueren E, Serrano L, Rousseau F, Schymkowitz J (2011) Computational design of peptide ligands. Trends Biotechnol 29:231–239

    Article  PubMed  CAS  Google Scholar 

  41. Verdurmen WPR, Brock R (2011) Biological responses towards cationic peptides and drug carriers. Trends Pharmacol Sci 32:116–124

    Article  PubMed  CAS  Google Scholar 

  42. Brugnano J, Ward BC, Panitch A (2010) Cell-penetrating peptides can exert biological activity: a review. BioMol Concepts 1:109–116

    Article  Google Scholar 

  43. Saar K, Lindgren M, Hansen M, Eiríksdóttir E, Jiang Y, Rosenthal-Aizman K, Sassian M, Langel Ü (2005) Cell-penetrating peptides: a comparative membrane toxicity study. Anal Biochem 345:55–65

    Article  PubMed  CAS  Google Scholar 

  44. Ward B, Seal BL, Brophy CM, Panitch A (2009) Design of a bioactive cell-penetrating peptide: when a transduction domain does more than transducer. J Pept Sci 15:668–674

    Article  PubMed  CAS  Google Scholar 

  45. Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ, Chernomordik LV, Lebleu B (2003) Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem 278:585–590

    Article  PubMed  CAS  Google Scholar 

  46. Ter-Avetisyan G, Tünnemann G, Nowak D, Nitschke M, Herrmann A, Drab M, Cardoso MC (2009) Cell entry of arginine-rich peptides is independent of endocytosis. J Biol Chem 284:3370–3378

    Article  PubMed  CAS  Google Scholar 

  47. Räägel H, Säälik P, Hansen M, Langel Ü, Pooga M (2009) CPP–protein constructs induce a population of non-acidic vesicles during trafficking through endo-lysosomal pathway. J Control Release 139:10–117

    Article  Google Scholar 

  48. Fry DC, Vasilev LT (2005) Targeting protein–protein interactions for cancer therapy. J Mol Med 83:955–963

    Article  PubMed  CAS  Google Scholar 

  49. D’Andrea LD, Del Gatto A, Pedone C, Benedetti E (2006) Peptide-based molecules in angiogenesis. Chem Biol Drug Des 67:115–126

    Article  PubMed  Google Scholar 

  50. Low W, Mortlock A, Petrovska L, Dottorini T, Dougan G, Crisanti A (2007) Functional cell permeable motifs within medically relevant proteins. J Biotechnol 129:55–564

    Article  Google Scholar 

  51. Moore EE, Kuestener RE, Stroop SD, Grant FJ, Matthewes SL, Brady CL, Sexton PM, Findlay DM (1995) Functionally different isoforms of the human calcitonin receptor result from alternative splicing of the gene transcript. Mol Endocrinol 9:959–968

    Article  PubMed  CAS  Google Scholar 

  52. Nussenzveig DR, Thaw CN, Gershengorn MC (1994) Inhibition of inositol phosphate second messenger formation by intracellular loop one of a human calcitonin receptor. J Biol Chem 269:28123–28129

    PubMed  CAS  Google Scholar 

  53. Rivinoja A, Laakkonen P (2011) Identification of homing peptides using the in vivo phage display technology. In: Langel Ü (ed) Cell-penetrating peptides. Methods and Protocols. Humana Press, New York, pp 401–415

    Chapter  Google Scholar 

  54. Aina OH, Liu R, Sutcliffe JL, Marik J, Pan C-X, Lam KS (2007) From combinatorial chemistry to cancer-targeting peptides. Mol Pharm 5:631–651

    Article  Google Scholar 

  55. Jiang T, Olson ES, Nguyen QT, Roy M, Jennings PA, Tsien RY (2004) Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc Natl Acad Sci USA 101:17867–17872

    Article  PubMed  CAS  Google Scholar 

  56. Chorev M, Goodman M (1995) Recent developments in retro peptides and proteins—an ongoing topochemical exploration. Trends Biotechnol 13:438–445

    Article  PubMed  CAS  Google Scholar 

  57. Howl J, Jones S (2009) Transport molecules using reverse sequence HIV-Tat polypeptides: not just any old Tat? Expert Opin Ther Pat 19:1329–1333

    Article  PubMed  CAS  Google Scholar 

  58. Holm T, Räägel H, El Andaloussi S, Hein M, Mäe M, Pooga M, Langel Ü (2011) Retro-inversion of certain cell-penetrating peptides causes severe cellular toxicity. Biochim Biophys Acta 1808:1544–1551

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Howl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howl, J., Matou-Nasri, S., West, D.C. et al. Bioportide: an emergent concept of bioactive cell-penetrating peptides. Cell. Mol. Life Sci. 69, 2951–2966 (2012). https://doi.org/10.1007/s00018-012-0979-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-0979-4

Keywords

Navigation