Skip to main content
Log in

Functions of the poly(ADP-ribose) polymerase superfamily in plants

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Poly(ADP-ribosyl)ation is the covalent attachment of ADP-ribose subunits from NAD+ to target proteins and was first described in plants in the 1970s. This post-translational modification is mediated by poly(ADP-ribose) polymerases (PARPs) and removed by poly(ADP-ribose) glycohydrolases (PARGs). PARPs have important functions in many biological processes including DNA repair, epigenetic regulation and transcription. However, these roles are not always associated with enzymatic activity. The PARP superfamily has been well studied in animals, but remains under-investigated in plants. Although plants lack the variety of PARP superfamily members found in mammals, they do encode three different types of PARP superfamily proteins, including a group of PARP-like proteins, the SRO family, that are plant specific. In plants, members of the PARP family and/or poly(ADP-ribosyl)ation have been linked to DNA repair, mitosis, innate immunity and stress responses. In addition, members of the SRO family have been shown to be necessary for normal sporophytic development. In this review, we summarize the current state of plant research into poly(ADP-ribosyl)ation and the PARP superfamily in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adams-Phillips L, Briggs AG, Bent AF (2010) Disruption of poly(ADP-ribosyl)ation mechanisms alters responses of Arabidopsis to biotic stress. Plant Physiol 152:267–280

    Article  PubMed  CAS  Google Scholar 

  2. Adams-Phillips L, Wan J, Tan X, Dunning FM, Meyers BC, Michelmore RW, Bent AF (2008) Discovery of ADP-ribosylation and other plant defense pathway elements through expression profiling of four different Arabidopsis-Pseudomonas R-avr interactions. Mol Plant Microbe Interact 21:646–657

    Article  PubMed  CAS  Google Scholar 

  3. Aguiar RC, Yakushijin Y, Kharbanda S, Salgia R, Fletcher JA, Shipp MA (2000) BAL is a novel risk-related gene in diffuse large B-cell lymphomas that enhances cellular migration. Blood 96:4328–4334

    PubMed  CAS  Google Scholar 

  4. Ahlfors R, Brosche M, Kollist H, Kangasjarvi J (2008) Nitric oxide modulates ozone-induced cell death, hormone biosynthesis and gene expression in Arabidopsis thaliana. Plant J 58:1–12

    Google Scholar 

  5. Ahlfors R, Lang S, Overmyer K, Jaspers P, Brosche M, Tauriainen A, Kollist H, Tuominen H, Belles-Boix E, Piippo M, Inze D, Palva ET, Kangasjarvi J (2004) Arabidopsis RADICAL-INDUCED CELL DEATH1 belongs to the WWE protein-protein interaction domain protein family and modulates abscisic acid, ethylene, and methyl jasmonate responses. Plant Cell 16:1925–1937

    Article  PubMed  CAS  Google Scholar 

  6. Ahlfors R, Macioszek V, Rudd J, Brosche M, Schlichting R, Scheel D, Kangasjarvi J (2004) Stress hormone-independent activation and nuclear translocation of mitogen-activated protein kinases in Arabidopsis thaliana during ozone exposure. Plant J 40:512–522

    Article  PubMed  CAS  Google Scholar 

  7. Althaus FR, Hofferer L, Kleczkowska HE, Malanga M, Naegeli H, Panzeter PL, Realini CA (1994) Histone shuttling by poly ADP-ribosylation. Mol Cell Biochem 138:53–59

    Article  PubMed  CAS  Google Scholar 

  8. Ame JC, Rolli V, Schreiber V, Niedergang C, Apiou F, Decker P, Muller S, Hoger T, Menissier-de Murcia J, de Murcia G (1999) PARP-2, A novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase. J Biol Chem 274:17860–17868

    Article  PubMed  CAS  Google Scholar 

  9. Ame JC, Spenlehauer C, de Murcia G (2004) The PARP superfamily. Bioessays 26:882–893

    Article  PubMed  CAS  Google Scholar 

  10. Amor Y, Babiychuk E, Inze D, Levine A (1998) The involvement of poly(ADP-ribose) polymerase in the oxidative stress responses in plants. FEBS Lett 440:1–7

    Article  PubMed  CAS  Google Scholar 

  11. Aravind L (2001) The WWE domain: a common interaction module in protein ubiquitination and ADP ribosylation. Trends Biochem Sci 26:273–275

    Article  PubMed  CAS  Google Scholar 

  12. Ascencio-Ibanez JT, Sozzani R, Lee TJ, Chu TM, Wolfinger RD, Cella R, Hanley-Bowdoin L (2008) Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol 148:436–454

    Article  PubMed  CAS  Google Scholar 

  13. Babiychuk E, Cottrill PB, Storozhenko S, Fuangthong M, Chen Y, O’Farrell MK, Van Montagu M, Inze D, Kushnir S (1998) Higher plants possess two structurally different poly(ADP-ribose) polymerases. Plant J 15:635–645

    Article  PubMed  CAS  Google Scholar 

  14. Babiychuk E, Van Montagu M, Kushnir S (2001) N-terminal domains of plant poly(ADP-ribose) polymerases define their association with mitotic chromosomes. Plant J 28:245–255

    Article  PubMed  CAS  Google Scholar 

  15. Bartsch M, Gobbato E, Bednarek P, Debey S, Schultze JL, Bautor J, Parker JE (2006) Salicylic acid-independent ENHANCED DISEASE SUSCEPTIBILITY1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the Nudix hydrolase NUDT7. Plant Cell 18:1038–1051

    Article  PubMed  CAS  Google Scholar 

  16. Becerra C, Puigdomenech P, Vicient CM (2006) Computational and experimental analysis identifies Arabidopsis genes specifically expressed during early seed development. BMC Genomics 7:38

    Article  PubMed  CAS  Google Scholar 

  17. Belles-Boix E, Babiychuk E, Van Montagu M, Inze D, Kushnir S (2000) CEO1, a new protein from Arabidopsis thaliana, protects yeast against oxidative damage. FEBS Lett 482:19–24

    Article  PubMed  CAS  Google Scholar 

  18. Bessman MJ, Frick DN, O’Handley SF (1996) The MutT proteins or “Nudix” hydrolases, a family of versatile, widely distributed, “housecleaning” enzymes. J Biol Chem 271:25059–25062

    Article  PubMed  CAS  Google Scholar 

  19. Boehler C, Gauthier LR, Mortusewicz O, Biard DS, Saliou JM, Bresson A, Sanglier-Cianferani S, Smith S, Schreiber V, Boussin F, Dantzer F (2011) Poly(ADP-ribose) polymerase 3 (PARP3), a newcomer in cellular response to DNA damage and mitotic progression. Proc Natl Acad Sci USA 108:2783–2788

    Article  PubMed  CAS  Google Scholar 

  20. Bonicalzi ME, Haince JF, Droit A, Poirier GG (2005) Regulation of poly(ADP-ribose) metabolism by poly(ADP-ribose) glycohydrolase: where and when? Cell Mol Life Sci 62:739–750

    Article  PubMed  CAS  Google Scholar 

  21. Bork P, Hofmann K, Bucher P, Neuwald AF, Altschul SF, Koonin EV (1997) A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins. FASEB J 11:68–76

    PubMed  CAS  Google Scholar 

  22. Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291

    Article  PubMed  CAS  Google Scholar 

  23. Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438

    Article  PubMed  CAS  Google Scholar 

  24. Briggs AG, Bent AF (2011) Poly(ADP-ribosyl)ation in plants. Trends Plant Sci 16:372–380

    Article  PubMed  CAS  Google Scholar 

  25. Casciola-Rosen L, Nicholson DW, Chong T, Rowan KR, Thornberry NA, Miller DK, Rosen A (1996) Apopain/CPP32 cleaves proteins that are essential for cellular repair: a fundamental principle of apoptotic death. J Exp Med 183:1957–1964

    Article  PubMed  CAS  Google Scholar 

  26. Chambon P, Weil JD, Doly J, Strosser MT, Mandel P (1966) On the formation of a novel adenylic compound by enzymatic extracts of liver nuclei. Biochem Biophys Res Commun 25:638–643

    Article  CAS  Google Scholar 

  27. Chambon P, Weill JD, Mandel P (1963) Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochem Biophys Res Commun 11:39–43

    Article  PubMed  CAS  Google Scholar 

  28. Chang P, Coughlin M, Mitchison TJ (2005) Tankyrase-1 polymerization of poly(ADP-ribose) is required for spindle structure and function. Nat Cell Biol 7:1133–1139

    Article  PubMed  CAS  Google Scholar 

  29. Chang P, Jacobson MK, Mitchison TJ (2004) Poly(ADP-ribose) is required for spindle assembly and structure. Nature 432:645–649

    Article  PubMed  CAS  Google Scholar 

  30. Chen IP, Haehnel U, Altschmied L, Schubert I, Puchta H (2003) The transcriptional response of Arabidopsis to genotoxic stress—a high-density colony array study (HDCA). Plant J 35:771–786

    Article  PubMed  CAS  Google Scholar 

  31. Chou HY, Chou HT, Lee SC (2006) CDK-dependent activation of poly(ADP-ribose) polymerase member 10 (PARP10). J Biol Chem 281:15201–15207

    Article  PubMed  CAS  Google Scholar 

  32. Citarelli M, Teotia S, Lamb RS (2010) Evolutionary history of the poly(ADP-ribose) polymerase gene family in eukaryotes. BMC Evol Biol 10:308

    Article  PubMed  CAS  Google Scholar 

  33. Clarke A, Desikan R, Hurst RD, Hancock JT, Neill SJ (2000) NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant J 24:667–677

    Article  PubMed  CAS  Google Scholar 

  34. Coggill P, Finn RD, Bateman A (2008) Identifying protein domains with the Pfam database. Curr Protoc Bioinformatics Chapter 2: Unit 2 5

  35. Cook WJ, Jeffrey LC, Sullivan ML, Vierstra RD (1992) Three-dimensional structure of a ubiquitin-conjugating enzyme (E2). J Biol Chem 267:15116–15121

    PubMed  CAS  Google Scholar 

  36. Culligan KM, Robertson CE, Foreman J, Doerner P, Britt AB (2006) ATR and ATM play both distinct and additive roles in response to ionizing radiation. Plant J 48:947–961

    Article  PubMed  CAS  Google Scholar 

  37. D’Amours D, Desnoyers S, D’Silva I, Poirier GG (1999) Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 342:249–268

    Article  PubMed  Google Scholar 

  38. De Block M, Verduyn C, De Brouwer D, Cornelissen M (2005) Poly(ADP-ribose) polymerase in plants affects energy homeostasis, cell death and stress tolerance. Plant J 41:95–106

    Article  PubMed  CAS  Google Scholar 

  39. de Murcia JM, Niedergang C, Trucco C, Ricoul M, Dutrillaux B, Mark M, Oliver FJ, Masson M, Dierich A, LeMeur M, Walztinger C, Chambon P, de Murcia G (1997) Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci USA 94:7303–7307

    Article  PubMed  Google Scholar 

  40. de Murcia JM, Ricoul M, Tartier L, Niedergang C, Huber A, Dantzer F, Schreiber V, Ame J-C, Dierich A, LeMeur M, Sabatier L, Chambon P, de Murcia G (2003) Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse. EMBO J 22:2255–2263

    Article  PubMed  Google Scholar 

  41. Deuschle K, Funck D, Forlani G, Stransky H, Biehl A, Leister D, van der Graaff E, Kunze R, Frommer WB (2004) The role of [Delta]1-pyrroline-5-carboxylate dehydrogenase in proline degradation. Plant Cell 16:3413–3425

    Article  PubMed  CAS  Google Scholar 

  42. Doly J, Petek F (1966) Etude de la structure d’un compose “poly(ADP-ribose)” synthetise par des extraits nucleaires de foie de poulet. CR Hebd Scanc Acad Sci Ser D Sci Nat 263:1341–1344

    CAS  Google Scholar 

  43. Doucet-Chabeaud G, Godon C, Brutesco C, de Murcia G, Kazmaier M (2001) Ionising radiation induces the expression of PARP-1 and PARP-2 genes in Arabidopsis. Mol Genet Genomics 265:954–963

    Article  PubMed  CAS  Google Scholar 

  44. Durkacz BW, Omidiji O, Gray DA, Shall S (1980) (ADP-ribose)n participates in DNA excision repair. Nature 283:593–596

    Article  PubMed  CAS  Google Scholar 

  45. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed  CAS  Google Scholar 

  46. Fernandez Villamil SH, Baltanas R, Alonso GD, Vilchez Larrea SC, Torres HN, Flawia MM (2008) TcPARP: a DNA damage-dependent poly(ADP-ribose) polymerase from Trypanosoma cruzi. Int J Parasitol 38:277–287

    Article  PubMed  CAS  Google Scholar 

  47. Ferraris DV (2010) Evolution of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. From concept to clinic. J Med Chem 53:4561–4584

    Article  PubMed  CAS  Google Scholar 

  48. Foyer CH, Pellny TK, Locato V, De Gara L (2008) Analysis of redox relationships in the plant cell cycle: determinations of ascorbate, glutathione and poly (ADPribose)polymerase (PARP) in plant cell cultures. Methods Mol Biol 476:199–215

    PubMed  CAS  Google Scholar 

  49. Fujibe T, Saji H, Arakawa K, Yabe N, Takeuchi Y, Yamamoto KT (2004) A methyl viologen-resistant mutant of Arabidopsis, which is allelic to ozone-sensitive rcd1, is tolerant to supplemental ultraviolet-B irradiation. Plant Physiol 134:275–285

    Article  PubMed  CAS  Google Scholar 

  50. Fujimura S, Hasegawa S, Shimizu Y, Sugimura T (1967) Polymerization of the adenosine 5’-diphosphate-ribose moiety of nicotinamide-adenine dinucleotide by nuclear enzyme. I. Enzymatic reactions. Biochim Biophys Acta 145:247–259

    PubMed  CAS  Google Scholar 

  51. Ge X, Li GJ, Wang SB, Zhu H, Zhu T, Wang X, Xia Y (2007) AtNUDT7, a negative regulator of basal immunity in Arabidopsis, modulates two distinct defense response pathways and is involved in maintaining redox homeostasis. Plant Physiol 145:204–215

    Article  PubMed  CAS  Google Scholar 

  52. Ge X, Xia Y (2008) The role of AtNUDT7, a Nudix hydrolase, in the plant defense response. Plant Signal Behav 3:119–120

    Article  PubMed  Google Scholar 

  53. Golderer G, Grobner P (1991) ADP-ribosylation of core histones and their acetylated subspecies. Biochem J 277:607–610

    PubMed  CAS  Google Scholar 

  54. Greiss S, Gartner A (2009) Sirtuin/Sir2 phylogeny, evolutionary considerations and structural conservation. Mol Cells 28:407–415

    Article  PubMed  CAS  Google Scholar 

  55. Grozinger CM, Chao ED, Blackwell HE, Moazed D, Schreiber SL (2001) Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J Biol Chem 276:38837–38843

    Article  PubMed  CAS  Google Scholar 

  56. Halim VA, Vess A, Scheel D, Rosahl S (2006) The role of salicylic acid and jasmonic acid in pathogen defence. Plant Biol (Stuttg) 8:307–313

    Article  CAS  Google Scholar 

  57. Hanai S, Kanai M, Ohashi S, Okamoto K, Yamada M, Takahashi H, Miwa M (2004) Loss of poly(ADP-ribose) glycohydrolase causes progressive neurodegeneration in Drosophila melanogaster. Proc Natl Acad Sci USA 101:82–86

    Article  PubMed  CAS  Google Scholar 

  58. Hassa PO, Haenni SS, Elser M, Hottiger MO (2006) Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev 70:789–829

    Article  PubMed  CAS  Google Scholar 

  59. Hassa PO, Hottiger MO (2002) The functional role of poly(ADP-ribose)polymerase 1 as novel coactivator of NF-kappaB in inflammatory disorders. Cell Mol Life Sci 59:1534–1553

    Article  PubMed  CAS  Google Scholar 

  60. Hassa PO, Hottiger MO (2008) The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front Biosci 13:3046–3082

    Article  PubMed  CAS  Google Scholar 

  61. Heitz F, Harter P, Ewald-Riegler N, Papsdorf M, Kommoss S, du Bois A (2010) Poly(ADP-ribosyl)ation polymerases: mechanism and new target of anticancer therapy. Expert Rev Anticancer Ther 10:1125–1136

    Article  PubMed  CAS  Google Scholar 

  62. Hellmann H, Funck D, Rentsch D, Frommer WB (2000) Hypersensitivity of an Arabidopsis sugar signaling mutant toward exogenous proline application. Plant Physiol 123:779–789

    Article  PubMed  CAS  Google Scholar 

  63. Hsiao SJ, Smith S (2009) Sister telomeres rendered dysfunctional by persistent cohesion are fused by NHEJ. J Cell Biol 184:515–526

    Article  PubMed  CAS  Google Scholar 

  64. Ishikawa K, Yoshimura K, Harada K, Fukusaki E, Ogawa T, Tamoi M, Shigeoka S (2010) AtNUDX6, an ADP-ribose/NADH pyrophosphohydrolase in Arabidopsis, positively regulates NPR1-dependent salicylic acid signaling. Plant Physiol 152:2000–2012

    Article  PubMed  CAS  Google Scholar 

  65. Ishikawa K, Yoshimura K, Ogawa T, Shigeoka S (2010) Distinct regulation of Arabidopsis ADP-ribose/NADH pyrophosphohydrolases, AtNUDX6 and 7, in biotic and abiotic stress responses. Plant Signal Behav 5:839–841

    Article  PubMed  CAS  Google Scholar 

  66. Ishizuka S, Martin K, Booth C, Potten CS, de Murcia G, Burkle A, Kirkwood TB (2003) Poly(ADP-ribose) polymerase-1 is a survival factor for radiation-exposed intestinal epithelial stem cells in vivo. Nucleic Acids Res 31:6198–6205

    Article  PubMed  CAS  Google Scholar 

  67. Iyer S, Caplan A (1998) Products of proline catabolism can induce osmotically regulated genes in rice. Plant Physiol 116:203–211

    Article  CAS  Google Scholar 

  68. Jagtap P, Szabo C (2005) Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drug Discov 4:421–440

    Article  PubMed  CAS  Google Scholar 

  69. Jambunathan N, Mahalingam R (2006) Analysis of Arabidopsis growth factor gene 1 (GFG1) encoding a nudix hydrolase during oxidative signaling. Planta 224:1–11

    Article  PubMed  CAS  Google Scholar 

  70. Jambunathan N, Penaganti A, Tang Y, Mahalingam R (2010) Modulation of redox homeostasis under suboptimal conditions by Arabidopsis nudix hydrolase 7. BMC Plant Biol 10:173

    Article  PubMed  CAS  Google Scholar 

  71. Jammes F, Song C, Shin D, Munemasa S, Takeda K, Gu D, Cho D, Lee S, Giordo R, Sritubtim S, Leonhardt N, Ellis BE, Murata Y, Kwak JM (2009) MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc Natl Acad Sci USA 106:20520–20525

    Article  PubMed  CAS  Google Scholar 

  72. Jaspers P, Blomster T, Brosche M, Salojarvi J, Ahlfors R, Vainonen JP, Reddy RA, Immink R, Angenent G, Turck F, Overmyer K, Kangasjarvi J (2009) Unequally redundant RCD1 and SRO1 mediate stress and developmental responses and interact with transcription factors. Plant J:268–279

    Google Scholar 

  73. Jaspers P, Brosche M, Overmyer K, Kangasjarvi J (2010) The transcription factor interacting protein RCD1 contains a novel conserved domain. Plant Signal Behav 5:78–80

    Article  PubMed  CAS  Google Scholar 

  74. Jaspers P, Overmyer K, Wrzaczek M, Vainonen JP, Blomster T, Salojarvi J, Reddy RA, Kangasjarvi J (2010) The RST and PARP-like domain containing SRO protein family: analysis of protein structure, function and conservation in land plants. BMC Genomics 11:170

    Article  PubMed  CAS  Google Scholar 

  75. Kangasjarvi S, Lepisto A, Hannikainen K, Piippo M, Luomala EM, Aro EM, Rintamaki E (2008) Diverse roles for chloroplast stromal and thylakoid-bound ascorbate peroxidases in plant stress responses. Biochem J 412:275–285

    Article  PubMed  CAS  Google Scholar 

  76. Kelley LA, Sternberg MJ (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4:363–371

    Article  PubMed  CAS  Google Scholar 

  77. Khandelwal A, Elvitigala T, Ghosh B, Quatrano RS (2008) Arabidopsis transcriptome reveals control circuits regulating redox homeostasis and the role of an AP2 transcription factor. Plant Physiol 148:2050–2058

    Article  PubMed  CAS  Google Scholar 

  78. Kim MY, Zhang T, Kraus WL (2005) Poly(ADP-ribosyl)ation by PARP-1: ‘PAR-laying’ NAD+ into a nuclear signal. Genes Dev 19:1951–1967

    Article  PubMed  CAS  Google Scholar 

  79. Kleine H, Poreba E, Lesniewicz K, Hassa PO, Hottiger MO, Litchfield DW, Shilton BH, Luscher B (2008) Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation. Mol Cell 32:57–69

    Article  PubMed  CAS  Google Scholar 

  80. Koh DW, Lawler AM, Poitras MF, Sasaki M, Wattler S, Nehls MC, Stoger T, Poirier GG, Dawson VL, Dawson TM (2004) Failure to degrade poly(ADP-ribose) causes increased sensitivity to cytotoxicity and early embryonic lethality. Proc Natl Acad Sci USA 101:17699–17704

    Article  PubMed  CAS  Google Scholar 

  81. Kothe GO, Kitamura M, Masutani M, Selker EU, Inoue H (2010) PARP is involved in replicative aging in Neurospora crassa. Fungal Genet Biol 47:297–309

    Article  PubMed  CAS  Google Scholar 

  82. Kotova E, Jarnik M, Tulin AV (2010) Uncoupling of the transactivation and transrepression functions of PARP1 protein. Proc Natl Acad Sci USA 107:6406–6411

    Article  PubMed  CAS  Google Scholar 

  83. Kraus WL (2008) Transcriptional control by PARP-1: chromatin modulation, enhancer-binding, coregulation, and insulation. Curr Opin Cell Biol 20:294–302

    Article  PubMed  CAS  Google Scholar 

  84. Kurepa J, Walker JM, Smalle J, Gosink MM, Davis SJ, Durham TL, Sung DY, Vierstra RD (2003) The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis. Accumulation of SUMO1 and -2 conjugates is increased by stress. J Biol Chem 278:6862–6872

    Article  PubMed  CAS  Google Scholar 

  85. Lepiniec L, Babiychuk E, Kushnir S, Van Montagu M, Inze D (1995) Characterization of an Arabidopsis thaliana cDNA homologue to animal poly(ADP-ribose) polymerase. FEBS Lett 364:103–108

    Article  PubMed  CAS  Google Scholar 

  86. Li G, Nasar V, Yang Y, Li W, Liu B, Sun L, Li D, Song F (2011) Arabidopsis poly(ADP-ribose) glycohydrolase 1 is required for drought, osmotic and oxidative stress responses. Plant Sci 180:283–291

    Article  PubMed  CAS  Google Scholar 

  87. Loseva O, Jemth AS, Bryant HE, Schuler H, Lehtio L, Karlberg T, Helleday T (2010) Poly(ADP-ribose) polymerase-3 (PARP-3) is a mono-ADP ribosylase that activates PARP-1 in absence of DNA. J Biol Chem 285:8054–8060

    Article  PubMed  CAS  Google Scholar 

  88. Ma Q, Baldwin KT, Renzelli AJ, McDaniel A, Dong L (2001) TCDD-inducible poly(ADP-ribose) polymerase: a novel response to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin. Biochem Biophys Res Commun 289:499–506

    Article  PubMed  CAS  Google Scholar 

  89. Mahajan PB, Zuo Z (1998) Purification and cDNA cloning of maize Poly(ADP)-ribose polymerase. Plant Physiol 118:895–905

    Article  PubMed  CAS  Google Scholar 

  90. Marsischky GT, Wilson BA, Collier RJ (1995) Role of glutamic acid 988 of human poly-ADP-ribose polymerase in polymer formation. Evidence for active site similarities to the ADP-ribosylating toxins. J Biol Chem 270:3247–3254

    Article  PubMed  CAS  Google Scholar 

  91. Messner S, Altmeyer M, Zhao H, Pozivil A, Roschitzki B, Gehrig P, Rutishauser D, Huang D, Caflisch A, Hottiger MO (2010) PARP1 ADP-ribosylates lysine residues of the core histone tails. Nucleic Acids Res 38:6350–6362

    Article  PubMed  CAS  Google Scholar 

  92. Muthuswamy S, Meier I (2011) Genetic and environmental changes in SUMO homeostasis lead to nuclear mRNA retention in plants. Planta 233:201–208

    Article  PubMed  CAS  Google Scholar 

  93. Nawy T, Lee JY, Colinas J, Wang JY, Thongrod SC, Malamy JE, Birnbaum K, Benfey PN (2005) Transcriptional profile of the Arabidopsis root quiescent center. Plant Cell 17:1908–1925

    Article  PubMed  CAS  Google Scholar 

  94. Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA et al (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376:37–43

    Article  PubMed  CAS  Google Scholar 

  95. Nishizuka Y, Ueda K, Nakazawa K, Hayaishi O (1967) Studies on the polymer of adenosine diphosphate ribose. I. Enzymic formation from nicotinamide adenine dinuclotide in mammalian nuclei. J Biol Chem 242:3164–3171

    PubMed  CAS  Google Scholar 

  96. Nosseri C, Coppola S, Ghibelli L (1994) Possible involvement of poly(ADP-ribosyl) polymerase in triggering stress-induced apoptosis. Exp Cell Res 212:367–373

    Article  PubMed  CAS  Google Scholar 

  97. Nusinow DA, Hernandez-Munoz I, Fazzio TG, Shah GM, Kraus WL, Panning B (2007) Poly(ADP-ribose) polymerase 1 is inhibited by a histone H2A variant, MacroH2A, and contributes to silencing of the inactive X chromosome. J Biol Chem 282:12851–12859

    Article  PubMed  CAS  Google Scholar 

  98. Ogawa T, Ishikawa K, Harada K, Fukusaki E, Yoshimura K, Shigeoka S (2009) Overexpression of an ADP-ribose pyrophosphatase, AtNUDX2, confers enhanced tolerance to oxidative stress in Arabidopsis plants. Plant J 57:289–301

    Article  PubMed  CAS  Google Scholar 

  99. Ogawa T, Ueda Y, Yoshimura K, Shigeoka S (2005) Comprehensive analysis of cytosolic Nudix hydrolases in Arabidopsis thaliana. J Biol Chem 280:25277–25283

    Article  PubMed  CAS  Google Scholar 

  100. Okubo S, Hara F, Tsuchida Y, Shimotakahara S, Suzuki S, Hatanaka H, Yokoyama S, Tanaka H, Yasuda H, Shindo H (2004) NMR structure of the N-terminal domain of SUMO ligase PIAS1 and its interaction with tumor suppressor p53 and A/T-rich DNA oligomers. J Biol Chem 279:31455–31461

    Article  PubMed  CAS  Google Scholar 

  101. Oliver AW, Ame JC, Roe SM, Good V, de Murcia G, Pearl LH (2004) Crystal structure of the catalytic fragment of murine poly(ADP-ribose) polymerase-2. Nucleic Acids Res 32:456–464

    Article  PubMed  CAS  Google Scholar 

  102. Ouararhni K, Hadj-Slimane R, Ait-Si-Ali S, Robin P, Mietton F, Harel-Bellan A, Dimitrov S, Hamiche A (2006) The histone variant mH2A1.1 interferes with transcription by down-regulating PARP-1 enzymatic activity. Genes Dev 20:3324–3336

    Article  PubMed  CAS  Google Scholar 

  103. Overmyer K, Brosche M, Pellinen R, Kuittinen T, Tuominen H, Ahlfors R, Keinanen M, Saarma M, Scheel D, Kangasjarvi J (2005) Ozone-induced programmed cell death in the Arabidopsis radical-induced cell death1 mutant. Plant Physiol 137:1092–1104

    Article  PubMed  CAS  Google Scholar 

  104. Overmyer K, Tuominen H, Kettunen R, Betz C, Langebartels C, Sandermann H Jr, Kangasjarvi J (2000) Ozone-sensitive arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. Plant Cell 12:1849–1862

    Article  PubMed  CAS  Google Scholar 

  105. Panda S, Poirier GG, Kay SA (2002) tej defines a role for poly(ADP-ribosyl)ation in establishing period length of the Arabidopsis circadian oscillator. Dev Cell 3:51–61

    Article  PubMed  CAS  Google Scholar 

  106. Pandey R, Muller A, Napoli CA, Selinger DA, Pikaard CS, Richards EJ, Bender J, Mount DW, Jorgensen RA (2002) Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res 30:5036–5055

    Article  PubMed  CAS  Google Scholar 

  107. Pellny TK, Locato V, Vivancos PD, Markovic J, De Gara L, Pallardo FV, Foyer CH (2009) Pyridine nucleotide cycling and control of intracellular redox state in relation to poly (ADP-ribose) polymerase activity and nuclear localization of glutathione during exponential growth of Arabidopsis cells in culture. Mol Plant 2:442–456

    Article  PubMed  CAS  Google Scholar 

  108. Phillips RHSW (1985) Characteristics of the inhibition of induced tracheary element differentiation by 3-aminobenzamide and related compounds. J Exp Bot 36:119–128

    Article  CAS  Google Scholar 

  109. Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MA (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12:98–105

    Article  PubMed  CAS  Google Scholar 

  110. Puchta H, Swoboda P, Gal S, Blot M, Hohn B (1995) Somatic intrachromosomal homologous recombination events in populations of plant siblings. Plant Mol Biol 28:281–292

    Article  PubMed  CAS  Google Scholar 

  111. Rajawat J, Mir H, Begum R (2011) Differential role of Poly(ADP-ribose) polymerase in D. discoideum growth and development. BMC Dev Biol 11:14

    Article  PubMed  CAS  Google Scholar 

  112. Rajawat J, Vohra I, Mir HA, Gohel D, Begum R (2007) Effect of oxidative stress and involvement of poly(ADP-ribose) polymerase (PARP) in Dictyostelium discoideum development. FEBS J 274:5611–5618

    Article  PubMed  CAS  Google Scholar 

  113. Ramirez-Parra E, Gutierrez C (2007) E2F regulates FASCIATA1, a chromatin assembly gene whose loss switches on the endocycle and activates gene expression by changing the epigenetic status. Plant Physiol 144:105–120

    Article  PubMed  CAS  Google Scholar 

  114. Reeder RH, Ueda K, Honjo T, Nishizuka Y, Hayaishi O (1967) Studies on the polymer of adenosine diphosphate ribose. II. Characterization of the polymer. J Biol Chem 242:3172–3179

    PubMed  CAS  Google Scholar 

  115. Rodriguez MC, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 61:621–649

    Article  PubMed  CAS  Google Scholar 

  116. Rolli V, O’Farrell M, Menissier-de Murcia J, de Murcia G (1997) Random mutagenesis of the poly(ADP-ribose) polymerase catalytic domain reveals amino acids involved in polymer branching. Biochemistry 36:12147–12154

    Article  PubMed  CAS  Google Scholar 

  117. Rose PW, Beran B, Bi C, Bluhm WF, Dimitropoulos D, Goodsell DS, Prlic A, Quesada M, Quinn GB, Westbrook JD, Young J, Yukich B, Zardecki C, Berman HM, Bourne PE (2011) The RCSB Protein Data Bank: redesigned web site and web services. Nucleic Acids Res 39:D392–D401

    Article  PubMed  Google Scholar 

  118. Rouleau M, McDonald D, Gagne P, Ouellet ME, Droit A, Hunter JM, Dutertre S, Prigent C, Hendzel MJ, Poirier GG (2007) PARP-3 associates with polycomb group bodies and with components of the DNA damage repair machinery. J Cell Biochem 100:385–401

    Article  PubMed  CAS  Google Scholar 

  119. Rouleau M, Saxena V, Rodrigue A, Paquet ER, Gagnon A, Hendzel MJ, Masson JY, Ekker M, Poirier GG (2011) A key role for poly(ADP-ribose) polymerase 3 in ectodermal specification and neural crest development. PLoS One 6:e15834

    Article  PubMed  CAS  Google Scholar 

  120. Ruf A, Mennissier de Murcia J, de Murcia G, Schulz GE (1996) Structure of the catalytic fragment of poly(AD-ribose) polymerase from chicken. Proc Natl Acad Sci USA 93:7481–7485

    Article  PubMed  CAS  Google Scholar 

  121. Rulten SL, Fisher AE, Robert I, Zuma MC, Rouleau M, Ju L, Poirier G, Reina-San-Martin B, Caldecott KW (2011) PARP-3 and APLF function together to accelerate nonhomologous end-joining. Mol Cell 41:33–45

    Article  PubMed  CAS  Google Scholar 

  122. Ryu H, Azuma Y (2010) Rod/Zw10 complex is required for PIASy-dependent centromeric SUMOylation. J Biol Chem 285:32576–32585

    Article  PubMed  CAS  Google Scholar 

  123. Sanchez JP, Duque P, Chua NH (2004) ABA activates ADPR cyclase and cADPR induces a subset of ABA-responsive genes in Arabidopsis. Plant J 38:381–395

    Article  PubMed  CAS  Google Scholar 

  124. Schreiber V, Ame JC, Dolle P, Schultz I, Rinaldi B, Fraulob V, Menissier-de Murcia J, de Murcia G (2002) Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. J Biol Chem 277:23028–23036

    Article  PubMed  CAS  Google Scholar 

  125. Schreiber V, Dantzer F, Ame JC, de Murcia G (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7:517–528

    Article  PubMed  CAS  Google Scholar 

  126. Semighini CP, Savoldi M, Goldman GH, Harris SD (2006) Functional characterization of the putative Aspergillus nidulans poly(ADP-ribose) polymerase homolog PrpA. Genetics 173:87–98

    Article  PubMed  CAS  Google Scholar 

  127. Simonin F, Hofferer L, Panzeter PL, Muller S, de Murcia G, Althaus FR (1993) The carboxyl-terminal domain of human poly(ADP-ribose) polymerase. Overproduction in Escherichia coli, large scale purification, and characterization. J Biol Chem 268:13454–13461

    PubMed  CAS  Google Scholar 

  128. Staub E, Fiziev P, Rosenthal A, Hinzmann B (2004) Insights into the evolution of the nucleolus by an analysis of its protein domain repertoire. Bioessays 26:567–581

    Article  PubMed  CAS  Google Scholar 

  129. Straus MR, Rietz S, Loren Ver, van Themaat E, Bartsch M, Parker JE (2010) Salicylic acid antagonism of EDS1-driven cell death is important for immune and oxidative stress responses in Arabidopsis. Plant J 62:628–640

    Article  PubMed  CAS  Google Scholar 

  130. Szabo C, Dawson VL (1998) Role of poly(ADP-ribose) synthetase in inflammation and ischaemia-reperfusion. Trends Pharmacol Sci 19:287–298

    Article  PubMed  CAS  Google Scholar 

  131. Teotia S, Lamb RS (2009) The paralogous genes RADICAL-INDUCED CELL DEATH1 and SIMILAR TO RCD ONE1 have partially redundant functions during Arabidopsis development. Plant Physiol 151:180–198

    Article  PubMed  CAS  Google Scholar 

  132. Teotia S, Lamb RS (2011) RCD1 and SRO1 are necessary to maintain meristematic fate in Arabidopsis thaliana. J Exp Bot 62:1271–1284

    Article  PubMed  CAS  Google Scholar 

  133. Teotia S, Muthuswamy S, Lamb RS (2010) RADICAL-INDUCED CELL DEATH1 and SIMILAR TO RCD ONE1 and the Stress-Induced Morphogenetic Response. Plant Signal Behav 5:143–145

    Article  PubMed  CAS  Google Scholar 

  134. Tewari M, Quan LT, O’Rourke K, Desnoyers S, Zeng Z, Beidler DR, Poirier GG, Salvesen GS, Dixit VM (1995) Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81:801–809

    Article  PubMed  CAS  Google Scholar 

  135. Tian R, Zhang GY, Yan CH, Dai YR (2000) Involvement of poly(ADP-ribose) polymerase and activation of caspase-3-like protease in heat shock-induced apoptosis in tobacco suspension cells. FEBS Lett 474:11–15

    Article  PubMed  CAS  Google Scholar 

  136. Till S, Diamantara K, Ladurner AG (2008) PARP: a transferase by any other name. Nat Struct Mol Biol 15:1243–1244

    Article  PubMed  CAS  Google Scholar 

  137. Trucco C, Oliver FJ, de Murcia G, Menissier-de Murcia J (1998) DNA repair defect in poly(ADP-ribose) polymerase-deficient cell lines. Nucleic Acids Res 26:2644–2649

    Article  PubMed  CAS  Google Scholar 

  138. Tulin A, Spradling A (2003) Chromatin loosening by poly(ADP)-ribose polymerase (PARP) at Drosophila puff loci. Science 299:560–562

    Article  PubMed  CAS  Google Scholar 

  139. Tulin A, Stewart D, Spradling AC (2002) The Drosophila heterochromatic gene encoding poly(ADP-ribose) polymerase (PARP) is required to modulate chromatin structure during development. Genes Dev 16:2108–2119

    Article  PubMed  CAS  Google Scholar 

  140. Ueda K, Omachi A, Kawaichi M, Hayaishi O (1975) Natural occurrence of poly(ADP-ribosyl) histones in rat liver. Proc Natl Acad Sci USA 72:205–209

    Article  PubMed  CAS  Google Scholar 

  141. Urbanek P, Paces J, Kralova J, Dvorak M, Paces V (2002) Cloning and expression of PARP-3 (Adprt3) and U3-55 k, two genes closely linked on mouse chromosome 9. Folia Biol (Praha) 48:182–191

    CAS  Google Scholar 

  142. Vanderauwera S, De Block M, Van de Steene N, van de Cotte B, Metzlaff M, Van Breusegem F (2007) Silencing of poly(ADP-ribose) polymerase in plants alters abiotic stress signal transduction. Proc Natl Acad Sci USA 104:15150–15155

    Article  PubMed  CAS  Google Scholar 

  143. Wacker DA, Ruhl DD, Balagamwala EH, Hope KM, Zhang T, Kraus WL (2007) The DNA binding and catalytic domains of poly(ADP-ribose) polymerase 1 cooperate in the regulation of chromatin structure and transcription. Mol Cell Biol 27:7475–7485

    Article  PubMed  CAS  Google Scholar 

  144. Wang C, Gao F, Wu J, Dai J, Wei C, Li Y (2010) Arabidopsis putative deacetylase AtSRT2 regulates basal defense by suppressing PAD4, EDS5 and SID2 expression. Plant Cell Physiol 51:1291–1299

    Article  PubMed  CAS  Google Scholar 

  145. Whitby AJ, Stone PR, Whish WJ (1979) Effect of polyamines and Mg++ on poly(ADP-ribose) synthesis and ADP-ribosylation of histones in wheat. Biochem Biophys Res Commun 90:1295–1304

    Article  PubMed  CAS  Google Scholar 

  146. Willmitzer L (1979) Demonstration of in vitro covalent modification of chromosomal proteins by poly(ADP) ribosylation in plant nuclei. FEBS Lett 108:13–16

    Article  PubMed  CAS  Google Scholar 

  147. Wu Y, Kuzma J, Marechal E, Graeff R, Lee HC, Foster R, Chua NH (1997) Abscisic acid signaling through cyclic ADP-ribose in plants. Science 278:2126–2130

    Article  PubMed  CAS  Google Scholar 

  148. Yu M, Schreek S, Cerni C, Schamberger C, Lesniewicz K, Poreba E, Vervoorts J, Walsemann G, Grotzinger J, Kremmer E, Mehraein Y, Mertsching J, Kraft R, Austen M, Luscher-Firzlaff J, Luscher B (2005) PARP-10, a novel Myc-interacting protein with poly(ADP-ribose) polymerase activity, inhibits transformation. Oncogene 24:1982–1993

    Article  PubMed  CAS  Google Scholar 

  149. Zhu P, Martinvalet D, Chowdhury D, Zhang D, Schlesinger A, Lieberman J (2009) The cytotoxic T lymphocyte protease granzyme A cleaves and inactivates poly(adenosine 5’-diphosphate-ribose) polymerase-1. Blood 114:1205–1216

    Article  PubMed  CAS  Google Scholar 

  150. Zhu Y, Weng M, Yang Y, Zhang C, Li Z, Shen WH, Dong A (2011) Arabidopsis homologues of the histone chaperone ASF1 are crucial for chromatin replication and cell proliferation in plant development. Plant J:443–455

    Google Scholar 

  151. Zimmermann P, Hennig L, Gruissem W (2005) Gene-expression analysis and network discovery using Genevestigator. Trends Plant Sci 10:407–409

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Patrice Hamel, Dr. David Mackey and Dr. Iris Meier (Ohio State University), members of the Lamb laboratory and an anonymous reviewer for helpful advice on the manuscript. We apologize to colleagues whose work we could not include due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca S. Lamb.

Additional information

A recent review on this subject covering similar but not identical data was published during review of this manuscript [24].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamb, R.S., Citarelli, M. & Teotia, S. Functions of the poly(ADP-ribose) polymerase superfamily in plants. Cell. Mol. Life Sci. 69, 175–189 (2012). https://doi.org/10.1007/s00018-011-0793-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0793-4

Keywords

Navigation