Skip to main content

Advertisement

Log in

Modulation of connexin signaling by bacterial pathogens and their toxins

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Inherent to their pivotal tasks in the maintenance of cellular homeostasis, gap junctions, connexin hemichannels, and pannexin hemichannels are frequently involved in the dysregulation of this critical balance. The present paper specifically focuses on their roles in bacterial infection and disease. In particular, the reported biological outcome of clinically important bacteria including Escherichia coli, Shigella flexneri, Yersinia enterocolitica, Helicobacter pylori, Bordetella pertussis, Aggregatibacter actinomycetemcomitans, Pseudomonas aeruginosa, Citrobacter rodentium, Clostridium species, Streptococcus pneumoniae, and Staphylococcus aureus and their toxic products on connexin- and pannexin-related signaling in host cells is reviewed. Particular attention is paid to the underlying molecular mechanisms of these effects as well as to the actual biological relevance of these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ADP:

Adenosine diphosphate

A/E:

Attaching and effacing

ATP:

Adenosine triphosphate

CagA:

Cytotoxin-associated antigen A

cAMP:

Cyclic adenosine monophosphate

(CA-) MRSA:

(Community-associated) methicillin-resistant Staphylococcus aureus

CL:

Cytoplasmic loop

CNF1:

Cytotoxic necrotizing factor 1

CT:

Cytoplasmic carboxy tail

Cx:

Connexin

DAEC:

Diffusely adherent Escherichia coli

DNT:

Dermonecrotic toxin

EAEC:

Enteroaggregative Escherichia coli

EHEC:

Enterohemorrhagic Escherichia coli

EIEC:

Enteroinvasive Escherichia coli

EL:

Extracellular loop

EPEC:

Enteropathogenic Escherichia coli

ERK1/2:

Extracellular signal-regulated kinase 1/2

ETEC:

Enterotoxigenic Escherichia coli

GJIC:

Gap junctional intercellular communication

GTPase(s):

Guanosine triphosphate hydrolyzing enzyme(s)

HC:

Hemichannel

IFN:

Interferon

IL:

Interleukin

ITX:

Iota toxin

LJP:

Localized juvenile periodontitis

LPS(s):

Lipopolysaccharide(s)

MALT:

Mucosa-associated lymphoid tissue

MAPK:

Mitogen-activated protein kinase

MRSA:

Methicillin-resistant Staphylococcus aureus

NO:

Nitric oxide

NT:

Cytoplasmic amino tail

OMP(s):

Outer membrane protein(s)

Panx:

Pannexin

PKA:

Protein kinase A

PLC:

Phospholipase C

PTX:

Pertussin toxin

TLR:

Toll-like receptor

TM:

Membrane-spanning domain

ZO-1:

Zonula occludens 1

References

  1. Swamy M, Jamora C, Havran W, Hayday A (2010) Epithelial decision makers: in search of the ‘epimmunome’. Nature immunology 11(8):656–665

    Google Scholar 

  2. Vinken M, Papeleu P, Snykers S, De Rop E, Henkens T, Chipman JK, Rogiers V, Vanhaecke T (2006) Involvement of cell junctions in hepatocyte culture functionality. Crit Rev Toxicol 36(4):299–318

    Article  PubMed  CAS  Google Scholar 

  3. Decrock E, Vinken M, De Vuyst E, Krysko DV, D’Herde K, Vanhaecke T, Vandenabeele P, Rogiers V, Leybaert L (2009) Connexin-related signaling in cell death: to live or let die? Cell Death Differ 16(4):524–536

    Article  PubMed  CAS  Google Scholar 

  4. Vinken M, Decrock E, De Vuyst E, Ponsaerts R, D’hondt C, Bultynck G, Ceelen L, Vanhaecke T, Leybaert L, Rogiers V (2011) Connexins: sensors and regulators of cell cycling. Biochim Biophys Acta 1815:13–25

    Google Scholar 

  5. Dbouk HA, Mroue RM, El-Sabban ME, Talhouk RS (2009) Connexins: a myriad of functions extending beyond assembly of gap junction channels. Cell Commun Signal 7:4

    Article  PubMed  CAS  Google Scholar 

  6. Goodenough DA, Paul DL (2009) Gap junctions. Cold Spring Harbor Perspect Biol 1(1):a002576

    Article  Google Scholar 

  7. Rackauskas M, Neverauskas V, Skeberdis VA (2010) Diversity and properties of connexin gap junction channels. Medicina (Kaunas, Lithuania) 46(1):1–12

    Google Scholar 

  8. Vinken M, De Rop E, Decrock E, De Vuyst E, Leybaert L, Vanhaecke T, Rogiers V (2009) Epigenetic regulation of gap junctional intercellular communication: more than a way to keep cells quiet? Biochim Biophys Acta 1795(1):53–61

    PubMed  CAS  Google Scholar 

  9. Vinken M, Doktorova T, Decrock E, Leybaert L, Vanhaecke T, Rogiers V (2009) Gap junctional intercellular communication as a target for liver toxicity and carcinogenicity. Crit Rev Biochem Mol Biol 44(4):201–222

    Article  PubMed  CAS  Google Scholar 

  10. Laird DW (2010) The gap junction proteome and its relationship to disease. Trends in cell biology 20(2):92–101

    Google Scholar 

  11. D’Hondt C, Ponsaerts R, De Smedt H, Bultynck G, Himpens B (2009) Pannexins, distant relatives of the connexin family with specific cellular functions? Bioessays 31(9):953–974

    Article  PubMed  CAS  Google Scholar 

  12. Alexander DB, Goldberg GS (2003) Transfer of biologically important molecules between cells through gap junction channels. Curr Med Chem 10(19):2045–2058

    Article  PubMed  CAS  Google Scholar 

  13. Cottrell GT, Burt JM (2005) Functional consequences of heterogeneous gap junction channel formation and its influence in health and disease. Biochim Biophys Acta 1711(2):126–141

    PubMed  CAS  Google Scholar 

  14. Goldberg GS, Moreno AP, Lampe PD (2002) Gap junctions between cells expressing connexin 43 or 32 show inverse permselectivity to adenosine and ATP. J Biol Chem 277(39):36725–36730

    Article  PubMed  CAS  Google Scholar 

  15. Evans WH, De Vuyst E, Leybaert L (2006) The gap junction cellular internet: connexin hemichannels enter the signalling limelight. Biochem J 397(1):1–14

    PubMed  CAS  Google Scholar 

  16. Schalper KA, Palacios-Prado N, Orellana JA, Saez JC (2008) Currently used methods for identification and characterization of hemichannels. Cell Commun Adhesion 15(1):207–218

    Article  CAS  Google Scholar 

  17. D’Hondt C, Ponsaerts R, De Smedt H, Vinken M, De Vuyst E, De Bock M, Wang N, Rogiers V, Leybaert L, Himpens B, Bultynck G (2011) Pannexin channels in ATP release and beyond: an unexpected rendezvous at the endoplasmic reticulum. Cellular Signal 23(2):305–316

    Google Scholar 

  18. Scheckenbach LKE, Crespin S, Kwak BR, Chanson M (2011) Connexin channel-dependent signaling pathways in inflammation. J Vasc Res 48:91–103

    Article  PubMed  CAS  Google Scholar 

  19. Moreno AP, Lau AF (2007) Gap junction channel gating modulated through protein phosphorylation. Prog Biophys Mol Biol 94(1–2):107–119

    Article  PubMed  CAS  Google Scholar 

  20. Solan JL, Lampe PD (2009) connexin 43 phosphorylation: structural changes and biological effects. Biochem J 419(2):261–272

    Article  PubMed  CAS  Google Scholar 

  21. Sohl G, Willecke K (2004) Gap junctions and the connexin protein family. Cardiovasc Res 62(2):228–232

    Article  PubMed  CAS  Google Scholar 

  22. Oyamada M, Oyamada Y, Takamatsu T (2005) Regulation of connexin expression. Biochim Biophys Acta 1719(1–2):6–23

    PubMed  CAS  Google Scholar 

  23. Anderson C, Catoe H, Werner R (2006) MIR-206 regulates connexin 43 expression during skeletal muscle development. Nucleic Acids Res 34(20):5863–5871

    Article  PubMed  CAS  Google Scholar 

  24. Callis TE, Pandya K, Seok HY, Tang RH, Tatsuguchi M, Huang ZP, Chen JF, Deng Z, Gunn B, Shumate J, Willis MS, Selzman CH, Wang DZ (2009) MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Investig 119(9):2772–2786

    Article  PubMed  CAS  Google Scholar 

  25. Inose H, Ochi H, Kimura A, Fujita K, Xu R, Sato S, Iwasaki M, Sunamura S, Takeuchi Y, Fukumoto S, Saito K, Nakamura T, Siomi H, Ito H, Arai Y, Shinomiya K, Takeda S (2009) A microRNA regulatory mechanism of osteoblast differentiation. Proc Natl Acad Sci USA 106:20794–20799

    Google Scholar 

  26. Kim HK, Lee YS, Sivaprasad U, Malhotra A, Dutta A (2006) Muscle-specific microRNA miR-206 promotes muscle differentiation. J Cell Biol 174(5):677–687

    Article  PubMed  CAS  Google Scholar 

  27. Lu Y, Zhang Y, Shan H, Pan Z, Li X, Li B, Xu C, Zhang B, Zhang F, Dong D, Song W, Qiao G, Yang B (2009) MicroRNA-1 downregulation by propranolol in a rat model of myocardial infarction: a new mechanism for ischaemic cardioprotection. Cardiovasc Res 84(3):434–441

    Article  PubMed  CAS  Google Scholar 

  28. Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, Zhang Y, Xu C, Bai Y, Wang H, Chen G, Wang Z (2007) The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13(4):486–491

    Article  PubMed  CAS  Google Scholar 

  29. Kaper JB, Nataro JP, Mobley HL (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2(2):123–140

    Article  PubMed  CAS  Google Scholar 

  30. Rolhion N, Darfeuille-Michaud A (2007) Adherent-invasive Escherichia coli in inflammatory bowel disease. Inflamm Bowel Dis 13(10):1277–1283

    Article  PubMed  Google Scholar 

  31. Lee SJ, Kim SW, Cho YH, Yoon MS (2006) Anti-inflammatory effect of an Escherichia coli extract in a mouse model of lipopolysaccharide-induced cystitis. World J Urol 24(1):33–38

    Article  PubMed  Google Scholar 

  32. Dalpke AH, Heeg K (2003) Synergistic and antagonistic interactions between LPS and superantigens. J Endotoxin Res 9(1):51–54

    PubMed  CAS  Google Scholar 

  33. Haghikia A, Ladage K, Hinkerohe D, Vollmar P, Heupel K, Dermietzel R, Faustmann PM (2008) Implications of antiinflammatory properties of the anticonvulsant drug levetiracetam in astrocytes. J Neurosci Res 86(8):1781–1788

    Article  PubMed  CAS  Google Scholar 

  34. Hinkerohe D, Smikalla D, Schoebel A, Haghikia A, Zoidl G, Haase CG, Schlegel U, Faustmann PM (2010) Dexamethasone prevents LPS-induced microglial activation and astroglial impairment in an experimental bacterial meningitis co-culture model. Brain Res 1329:45–54

    Google Scholar 

  35. Fiorini C, Decrouy X, Defamie N, Segretain D, Pointis G (2006) Opposite regulation of connexin33 and connexin 43 by LPS and IL-1alpha in spermatogenesis. Am J Physiol 290(3):C733–C740

    CAS  Google Scholar 

  36. Simon AM, McWhorter AR, Chen H, Jackson CL, Ouellette Y (2004) Decreased intercellular communication and connexin expression in mouse aortic endothelium during lipopolysaccharide-induced inflammation. J Vasc Res 41(4):323–333

    Article  PubMed  CAS  Google Scholar 

  37. Gonzalez HE, Eugenin EA, Garces G, Solis N, Pizarro M, Accatino L, Saez JC (2002) Regulation of hepatic connexins in cholestasis: possible involvement of Kupffer cells and inflammatory mediators. Am J Physiol Gastrointest Liver Physiol 282(6):G991–G1001

    PubMed  CAS  Google Scholar 

  38. De Maio A, Gingalewski C, Theodorakis NG, Clemens MG (2000) Interruption of hepatic gap junctional communication in the rat during inflammation induced by bacterial lipopolysaccharide. Shock (Augusta, GA) 14(1):53–59

    Article  Google Scholar 

  39. Sharma R, Fischer MT, Bauer J, Felts PA, Smith KJ, Misu T, Fujihara K, Bradl M, Lassmann H (2010) Inflammation induced by innate immunity in the central nervous system leads to primary astrocyte dysfunction followed by demyelination. Acta Neuropathol 120(2):223–236

    Article  PubMed  CAS  Google Scholar 

  40. Oviedo-Orta E, Hoy T, Evans WH (2000) Intercellular communication in the immune system: differential expression of connexin 40 and 43, and perturbation of gap junction channel functions in peripheral blood and tonsil human lymphocyte subpopulations. Immunology 99(4):578–590

    Article  PubMed  CAS  Google Scholar 

  41. Eugenin EA, Branes MC, Berman JW, Saez JC (2003) TNF-alpha plus IFN-gamma induce connexin 43 expression and formation of gap junctions between human monocytes/macrophages that enhance physiological responses. J Immunol 170(3):1320–1328

    PubMed  CAS  Google Scholar 

  42. Eugenin EA, Eckardt D, Theis M, Willecke K, Bennett MV, Saez JC (2001) Microglia at brain stab wounds express connexin 43 and in vitro form functional gap junctions after treatment with interferon-gamma and tumor necrosis factor-alpha. Proc Natl Acad Sci USA 98(7):4190–4195

    Article  PubMed  CAS  Google Scholar 

  43. Liao CK, Wang SM, Chen YL, Wang HS, Wu JC (2010) Lipopolysaccharide-induced inhibition of connexin 43 gap junction communication in astrocytes is mediated by downregulation of caveolin-3. Intern J Biochem Cell Biol 42(5):762–770

    Google Scholar 

  44. Matsue H, Yao J, Matsue K, Nagasaka A, Sugiyama H, Aoki R, Kitamura M, Shimada S (2006) Gap junction-mediated intercellular communication between dendritic cells (DCs) is required for effective activation of DCs. J Immunol 176(1):181–190

    PubMed  CAS  Google Scholar 

  45. Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, Sonobe Y, Mizuno T, Suzumura A (2006) Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem 281(30):21362–21368

    Article  PubMed  CAS  Google Scholar 

  46. Jara PI, Boric MP, Saez JC (1995) Leukocytes express connexin 43 after activation with lipopolysaccharide and appear to form gap junctions with endothelial cells after ischemia-reperfusion. Proc Natl Acad Sci USA 92(15):7011–7015

    Article  PubMed  CAS  Google Scholar 

  47. Eugenin EA, Gonzalez HE, Sanchez HA, Branes MC, Saez JC (2007) Inflammatory conditions induce gap junctional communication between rat Kupffer cells both in vivo and in vitro. Cell Immunol 247(2):103–110

    Article  PubMed  CAS  Google Scholar 

  48. Fischer R, Reinehr R, Lu TP, Schonicke A, Warskulat U, Dienes HP, Haussinger D (2005) Intercellular communication via gap junctions in activated rat hepatic stellate cells. Gastroenterology 128(2):433–448

    Article  PubMed  CAS  Google Scholar 

  49. Gingalewski C, Wang K, Clemens MG, De Maio A (1996) Posttranscriptional regulation of connexin 32 expression in liver during acute inflammation. J Cell Physiol 166(2):461–467

    Article  PubMed  CAS  Google Scholar 

  50. Theodorakis NG, De Maio A (1999) Cx32 mRNA in rat liver: effects of inflammation on poly(A) tail distribution and mRNA degradation. Am J Physiol 276(5 Pt 2):R1249–R1257

    Google Scholar 

  51. Fernandez-Cobo M, Gingalewski C, De Maio A (1998) Expression of the connexin 43 gene is increased in the kidneys and the lungs of rats injected with bacterial lipopolysaccharide. Shock (Augusta, GA) 10(2):97–102

    Article  CAS  Google Scholar 

  52. Fernandez-Cobo M, Gingalewski C, Drujan D, De Maio A (1999) Downregulation of connexin 43 gene expression in rat heart during inflammation. The role of tumour necrosis factor. Cytokine 11(3):216–224

    Article  PubMed  CAS  Google Scholar 

  53. Bermudez-Fajardo A, Yliharsila M, Evans WH, Newby AC, Oviedo-Orta E (2007) CD4+ T lymphocyte subsets express connexin 43 and establish gap junction channel communication with macrophages in vitro. J Leukoc Biol 82(3):608–612

    Article  PubMed  CAS  Google Scholar 

  54. Anand RJ, Dai S, Rippel C, Leaphart C, Qureshi F, Gribar SC, Kohler JW, Li J, Stolz DB, Sodhi C, Hackam DJ (2008) Activated macrophages inhibit enterocyte gap junctions via the release of nitric oxide. Am J Physiol Gastrointest Liver Physiol 294(1):G109–G119

    PubMed  CAS  Google Scholar 

  55. Lidington D, Ouellette Y, Tyml K (2000) Endotoxin increases intercellular resistance in microvascular endothelial cells by a tyrosine kinase pathway. J Cell Physiol 185(1):117–125

    Article  PubMed  CAS  Google Scholar 

  56. Bolanos JP, Medina JM (1996) Induction of nitric oxide synthase inhibits gap junction permeability in cultured rat astrocytes. J Neurochem 66(5):2091–2099

    PubMed  CAS  Google Scholar 

  57. Fruscione F, Scarfì S, Ferraris C, Bruzzone S, Benvenuto F, Guida L, Uccelli A, Salis A, Usai C, Jacchetti E, Ilengo C, Scaglione S, Quarto R, Zocchi E, De Flora A (2011) Regulation of human mesenchymal stem cell functions by an autocrine loop involving NAD(+) release and P2Y11-mediated signaling. Stem Cells Dev (in press)

  58. De Vuyst E, Decrock E, De Bock M, Yamasaki H, Naus CC, Evans WH, Leybaert L (2007) Connexin hemichannels and gap junction channels are differentially influenced by lipopolysaccharide and basic fibroblast growth factor. Mol Biol Cell 18(1):34–46

    PubMed  Google Scholar 

  59. Retamal MA, Froger N, Palacios-Prado N, Ezan P, Saez PJ, Saez JC, Giaume C (2007) Cx43 hemichannels and gap junction channels in astrocytes are regulated oppositely by proinflammatory cytokines released from activated microglia. J Neurosci 27(50):13781–13792

    Article  PubMed  CAS  Google Scholar 

  60. Froger N, Orellana JA, Cohen-Salmon M, Ezan P, Amigou E, Saez JC, Giaume C (2009) Cannabinoids prevent the opposite regulation of astroglial connexin 43 hemichannels and gap junction channels induced by pro-inflammatory treatments. J Neurochem 111(6):1383–1397

    Article  PubMed  CAS  Google Scholar 

  61. Bolon ML, Peng T, Kidder GM, Tyml K (2008) Lipopolysaccharide plus hypoxia and reoxygenation synergistically reduce electrical coupling between microvascular endothelial cells by dephosphorylating connexin 40. J Cell Physiol 217(2):350–359

    Article  PubMed  CAS  Google Scholar 

  62. Okamoto T, Akiyama M, Takeda M, Akita N, Yoshida K, Hayashi T, Suzuki K (2011) Connexin32 protects against vascular inflammation by modulating inflammatory cytokine expression by endothelial cells. Exp Cell Res 317(3):348–355

    Article  PubMed  CAS  Google Scholar 

  63. Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J 25(21):5071–5082

    Article  PubMed  CAS  Google Scholar 

  64. Brough D, Pelegrin P, Rothwell NJ (2009) Pannexin-1-dependent caspase-1 activation and secretion of IL-1beta is regulated by zinc. Eur J Immunol 39(2):352–358

    Article  PubMed  CAS  Google Scholar 

  65. Pelegrin P, Barroso-Gutierrez C, Surprenant A (2008) P2X7 receptor differentially couples to distinct release pathways for IL-1beta in mouse macrophage. J Immunol 180(11):7147–7157

    PubMed  CAS  Google Scholar 

  66. Kanneganti TD, Lamkanfi M, Kim YG, Chen G, Park JH, Franchi L, Vandenabeele P, Nunez G (2007) Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity 26(4):433–443

    Article  PubMed  CAS  Google Scholar 

  67. Marina-Garcia N, Franchi L, Kim YG, Miller D, McDonald C, Boons GJ, Nunez G (2008) Pannexin-1-mediated intracellular delivery of muramyl dipeptide induces caspase-1 activation via cryopyrin/NLRP3 independently of Nod2. J Immunol 180(6):4050–4057

    PubMed  CAS  Google Scholar 

  68. Skals M, Jorgensen NR, Leipziger J, Praetorius HA (2009) Alpha-hemolysin from Escherichia coli uses endogenous amplification through P2X receptor activation to induce hemolysis. Proc Natl Acad Sci USA 106(10):4030–4035

    Article  PubMed  CAS  Google Scholar 

  69. Lamkanfi M, Malireddi RK, Kanneganti TD (2009) Fungal zymosan and mannan activate the cryopyrin inflammasome. J Biol Chem 284(31):20574–20581

    Article  PubMed  CAS  Google Scholar 

  70. Chen Y, Yao Y, Sumi Y, Li A, To UK, Elkhal A, Inoue Y, Woehrle T, Zhang Q, Hauser C, Junger WG (2010) Purinergic signaling: a fundamental mechanism in neutrophil activation. Sci Signal 3(125):ra45

    Google Scholar 

  71. Alebiosu CO, Raimi TH, Badru AI, Amore OO, Ogunkoya JO, Odusan O (2004) Reiter’s syndrome—a case report and review of literature. Afr Health Sci 4(2):136–138

    PubMed  CAS  Google Scholar 

  72. Jennison AV, Verma NK (2004) Shigella flexneri infection: pathogenesis and vaccine development. FEMS Microbiol Rev 28(1):43–58

    Article  PubMed  CAS  Google Scholar 

  73. Clair C, Combettes L, Pierre F, Sansonetti P, Tran Van Nhieu G (2008) Extracellular-loop peptide antibodies reveal a predominant hemichannel organization of connexins in polarized intestinal cells. Exp Cell Res 314(6):1250–1265

    Article  PubMed  CAS  Google Scholar 

  74. Tran Van Nhieu G, Clair C, Bruzzone R, Mesnil M, Sansonetti P, Combettes L (2003) Connexin-dependent inter-cellular communication increases invasion and dissemination of Shigella in epithelial cells. Nat Cell Biol 5(8):720–726

    Article  PubMed  CAS  Google Scholar 

  75. Man YK, Trolove C, Tattersall D, Thomas AC, Papakonstantinopoulou A, Patel D, Scott C, Chong J, Jagger DJ, O’Toole EA, Navsaria H, Curtis MA, Kelsell DP (2007) A deafness-associated mutant human connexin 26 improves the epithelial barrier in vitro. J Membr Biol 218(1–3):29–37

    Article  PubMed  CAS  Google Scholar 

  76. Kasper CA, Sorg I, Schmutz C, Tschon T, Wischnewski H, Kim ML, Arrieumerlou C (2010) Cell-cell propagation of NF-kappaB transcription factor and MAP kinase activation amplifies innate immunity against bacterial infection. Immunity 33(5):804–816. doi:10.1016/j.immuni.2010.10.015

    Article  PubMed  CAS  Google Scholar 

  77. Rosner BM, Stark K, Werber D (2010) Epidemiology of reported Yersinia enterocolitica infections in Germany, 2001–2008. BMC Public Health 10:337

  78. Hoelen DW, Tjan DH, Schouten MA, Dujardin BC, van Zanten AR (2007) Severe Yersinia enterocolitica sepsis after blood transfusion. Neth J Med 65(8):301–303

    PubMed  CAS  Google Scholar 

  79. Hamzaoui N, Kerneis S, Caliot E, Pringault E (2004) Expression and distribution of beta1 integrins in in vitro-induced M cells: implications for Yersinia adhesion to Peyer’s patch epithelium. Cell Microbiol 6(9):817–828

    Article  PubMed  CAS  Google Scholar 

  80. Bonazzi M, Cossart P (2006) Bacterial entry into cells: a role for the endocytic machinery. FEBS Lett 580(12):2962–2967

    Article  PubMed  CAS  Google Scholar 

  81. Pizarro-Cerda J, Cossart P (2006) Bacterial adhesion and entry into host cells. Cell 124(4):715–727

    Article  PubMed  CAS  Google Scholar 

  82. Viboud GI, Bliska JB (2005) Yersinia outer proteins: role in modulation of host cell signaling responses and pathogenesis. Annu Rev Microbiol 59:69–89

    Article  PubMed  CAS  Google Scholar 

  83. Alrutz MA, Isberg RR (1998) Involvement of focal adhesion kinase in invasin-mediated uptake. Proc Natl Acad Sci USA 95(23):13658–13663

    Article  PubMed  CAS  Google Scholar 

  84. Weidow CL, Black DS, Bliska JB, Bouton AH (2000) CAS/Crk signalling mediates uptake of Yersinia into human epithelial cells. Cell Microbiol 2(6):549–560

    Article  PubMed  CAS  Google Scholar 

  85. Wong KW, Isberg RR (2005) Emerging views on integrin signaling via Rac1 during invasin-promoted bacterial uptake. Curr Opin Microbiol 8(1):4–9

    Article  PubMed  CAS  Google Scholar 

  86. Velasquez Almonacid LA, Tafuri S, Dipineto L, Matteoli G, Fiorillo E, Della Morte R, Fioretti A, Menna LF, Staiano N (2009) Role of connexin-43 hemichannels in the pathogenesis of Yersinia enterocolitica. Vet J 182(3):452–457

    Article  PubMed  CAS  Google Scholar 

  87. Haesebrouck F, Pasmans F, Flahou B, Chiers K, Baele M, Meyns T, Decostere A, Ducatelle R (2009) Gastric helicobacters in domestic animals and nonhuman primates and their significance for human health. Clin Microbiol Rev 22(2):202–223 (Table of contents)

    Article  PubMed  CAS  Google Scholar 

  88. Ding SZ, Goldberg JB, Hatakeyama M (2010) Helicobacter pylori infection, oncogenic pathways and epigenetic mechanisms in gastric carcinogenesis. Futur Oncol (London, England) 6(5):851–862

    Google Scholar 

  89. Kelley JR, Duggan JM (2003) Gastric cancer epidemiology and risk factors. J Clin Epidemiol 56(1):1–9

    Article  PubMed  Google Scholar 

  90. Kusters JG, van Vliet AH, Kuipers EJ (2006) Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev 19(3):449–490

    Article  PubMed  CAS  Google Scholar 

  91. Pounder RE, Ng D (1995) The prevalence of Helicobacter pylori infection in different countries. Aliment Pharmacol Ther 2(9 Suppl):33–39

    Google Scholar 

  92. Lionetti E, Indrio F, Pavone L, Borrelli G, Cavallo L, Francavilla R (2010) Role of probiotics in pediatric patients with Helicobacter pylori infection: a comprehensive review of the literature. Helicobacter 15(2):79–87

  93. Hatakeyama M (2008) Linking epithelial polarity and carcinogenesis by multitasking Helicobacter pylori virulence factor CagA. Oncogene 27(55):7047–7054

    Article  PubMed  CAS  Google Scholar 

  94. Lu H, Yamaoka Y, Graham DY (2005) Helicobacter pylori virulence factors: facts and fantasies. Curr Opin Gastroenterol 21(6):653–659

    Article  PubMed  Google Scholar 

  95. Mimuro H, Suzuki T, Tanaka J, Asahi M, Haas R, Sasakawa C (2002) Grb2 is a key mediator of Helicobacter pylori CagA protein activities. Mol cell 10(4):745–755

    Article  PubMed  CAS  Google Scholar 

  96. Yokoyama K, Higashi H, Ishikawa S, Fujii Y, Kondo S, Kato H, Azuma T, Wada A, Hirayama T, Aburatani H, Hatakeyama M (2005) Functional antagonism between Helicobacter pylori CagA and vacuolating toxin VacA in control of the NFAT signaling pathway in gastric epithelial cells. Proc Natl Acad Sci USA 102(27):9661–9666

    Article  PubMed  CAS  Google Scholar 

  97. Tao R, Hu MF, Lou JT, Lei YL (2007) Effects of H. pylori infection on gap-junctional intercellular communication and proliferation of gastric epithelial cells in vitro. World J Gastroenterol 13(41):5497–5500

    PubMed  Google Scholar 

  98. Mine T, Endo C, Kushima R, Kushima W, Kobayashi I, Muraoka H, Taki R, Fujita T (2000) The effects of water extracts of CagA positive or negative Helicobacter pylori on proliferation, apoptosis and connexin formation in acetic acid-induced gastric ulcer of rats. Aliment Pharmacol Ther 1(14 Suppl):199–204

    Article  Google Scholar 

  99. Xu CX, Qi YM, Yang WB, Wang F, Zhou JD, Shen SR (2007) [Effect of CagA(+) Helicobacter pylori strain on the expression of connexin 43 and cell proliferation in BGC-823 cells]. Zhong nan da xue xue bao Yi xue ban = J Central South Univ 32 (2):288–294

  100. Jia Y, Xu CX, Yang WB (2008) [Expressions of connexin 32 and connexin 43 in patients with gastric precancerous lesion after eradication of Helicobacter pylori]. Zhong nan da xue xue bao Yi xue ban = J Central South Univ 33(7):628–633

    Google Scholar 

  101. Xu CX, Jia Y, Yang WB, Wang F, Shen SR (2008) Relationship between Helicobacter pylori infection and expression of connexin (Cx) 32 and Cx43 genes in gastric cancer and gastric precancerous lesions. Zhonghua yi xue za zhi 88(22):1523–1527

    PubMed  CAS  Google Scholar 

  102. Matsuzawa T, Kashimoto T, Katahira J, Horiguchi Y (2002) Identification of a receptor-binding domain of Bordetella dermonecrotic toxin. Infect Immun 70(7):3427–3432

    Article  PubMed  CAS  Google Scholar 

  103. Foreman-Wykert AK, Miller JF (2005) A new animal model of Bordetella pertussis infection and immunity. Trends Microbiol 13(12):559–560

    Article  PubMed  CAS  Google Scholar 

  104. Loscher CE, Donnelly S, Lynch MA, Mills KH (2000) Induction of inflammatory cytokines in the brain following respiratory infection with Bordetella pertussis. J Neuroimmunol 102(2):172–181

    Article  PubMed  CAS  Google Scholar 

  105. Paddock CD, Sanden GN, Cherry JD, Gal AA, Langston C, Tatti KM, Wu KH, Goldsmith CS, Greer PW, Montague JL, Eliason MT, Holman RC, Guarner J, Shieh WJ, Zaki SR (2008) Pathology and pathogenesis of fatal Bordetella pertussis infection in infants. Clin Infect Dis 47(3):328–338

    Article  PubMed  Google Scholar 

  106. Hewitt M, Canning BJ (2010) Coughing precipitated by Bordetella pertussis infection. Lung 188 Suppl 1:S73–S79

  107. Mattoo S, Cherry JD (2005) Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev 18(2):326–382

    Article  PubMed  CAS  Google Scholar 

  108. Lampe PD, Qiu Q, Meyer RA, TenBroek EM, Walseth TF, Starich TA, Grunenwald HL, Johnson RG (2001) Gap junction assembly: PTX-sensitive G proteins regulate the distribution of connexin 43 within cells. Am J Physiol 281(4):C1211–C1222

    CAS  Google Scholar 

  109. Norskov-Lauritsen N, Kilian M (2006) Reclassification of Actinobacillus actinomycetemcomitans, Haemophilus aphrophilus, Haemophilus paraphrophilus and Haemophilus segnis as Aggregatibacter actinomycetemcomitans gen. nov., comb. nov., Aggregatibacter aphrophilus comb. nov. and Aggregatibacter segnis comb. nov., and emended description of Aggregatibacter aphrophilus to include V factor-dependent and V factor-independent isolates. Intern J Syst Evol Microbiol 56(Pt 9):2135–2146

  110. Antony B, Thomas S, Chandrashekar SC, Kumar MS, Kumar V (2009) Osteomyelitis of the mandible due to Aggregatibacter (Actinobacillus) actinomycetemcomitans. Indian J Pathol Microbiol 52(1):115–116

    Article  PubMed  Google Scholar 

  111. Schreiner HC, Sinatra K, Kaplan JB, Furgang D, Kachlany SC, Planet PJ, Perez BA, Figurski DH, Fine DH (2003) Tight-adherence genes of Actinobacillus actinomycetemcomitans are required for virulence in a rat model. Proc Natl Acad Sci USA 100(12):7295–7300

    Article  PubMed  CAS  Google Scholar 

  112. Morimoto Y, Morimoto H, Murata T, Kobayashi S, Ohba T, Haneji T (1999) Extracts of Actinobacillus actinomycetemcomitans induce apoptotic cell death in human osteoblastic MG63 cells. J Dent Res 78(3):735–742

    PubMed  CAS  Google Scholar 

  113. Meyer DH, Fives-Taylor PM (1997) The role of Actinobacillus actinomycetemcomitans in the pathogenesis of periodontal disease. Trends Microbiol 5(6):224–228

    Article  PubMed  CAS  Google Scholar 

  114. Ceelen LM, Decostere A, Ducatelle R, Haesebrouck F (2006) Cytolethal distending toxin generates cell death by inducing a bottleneck in the cell cycle. Microbiol Res 161(2):109–120

    Article  PubMed  CAS  Google Scholar 

  115. Henderson B, Nair SP, Ward JM, Wilson M (2003) Molecular pathogenicity of the oral opportunistic pathogen Actinobacillus actinomycetemcomitans. Annu Rev Microbiol 57:29–55

    Article  PubMed  CAS  Google Scholar 

  116. Komatsuzawa H, Asakawa R, Kawai T, Ochiai K, Fujiwara T, Taubman MA, Ohara M, Kurihara H, Sugai M (2002) Identification of six major outer membrane proteins from Actinobacillus actinomycetemcomitans. Gene 288(1–2):195–201

    Article  PubMed  CAS  Google Scholar 

  117. Komatsuzawa H, Kawai T, Wilson ME, Taubman MA, Sugai M, Suginaka H (1999) Cloning of the gene encoding the Actinobacillus actinomycetemcomitans serotype b OmpA-like outer membrane protein. Infect Immun 67(2):942–945

    PubMed  CAS  Google Scholar 

  118. Uchida Y, Shiba H, Komatsuzawa H, Hirono C, Ashikaga A, Fujita T, Kawaguchi H, Sugai M, Shiba Y, Kurihara H (2005) Irsogladine maleate influences the response of gap junctional intercellular communication and IL-8 of human gingival epithelial cells following periodontopathogenic bacterial challenge. Biochem Biophys Res Commun 333(2):502–507

    Article  PubMed  CAS  Google Scholar 

  119. Kobayashi H, Kobayashi O, Kawai S (2009) Pathogenesis and clinical manifestations of chronic colonization by Pseudomonas aeruginosa and its biofilms in the airway tract. J Infect Chemother 15(3):125–142

    Article  PubMed  Google Scholar 

  120. Pier GB (2007) Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator of inflammation and target for effective immunity. Int J Med Microbiol 297(5):277–295

    Article  PubMed  CAS  Google Scholar 

  121. Hauser AR (2009) The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nature reviews 7(9):654–665

    PubMed  CAS  Google Scholar 

  122. Lyczak JB, Cannon CL, Pier GB (2002) Lung infections associated with cystic fibrosis. Clin Microbiol Rev 15(2):194–222

    Article  PubMed  CAS  Google Scholar 

  123. Engel J, Balachandran P (2009) Role of Pseudomonas aeruginosa type III effectors in disease. Curr Opin Microbiol 12(1):61–66

    Article  PubMed  CAS  Google Scholar 

  124. King JD, Kocincova D, Westman EL, Lam JS (2009) Review: lipopolysaccharide biosynthesis in Pseudomonas aeruginosa. Innate Immunity 15(5):261–312

    Article  PubMed  CAS  Google Scholar 

  125. Sarieddine MZ, Scheckenbach KE, Foglia B, Maass K, Garcia I, Kwak BR, Chanson M (2009) Connexin 43 modulates neutrophil recruitment to the lung. J Cell Mol Med 13(11–12):4560–4570

    Article  PubMed  CAS  Google Scholar 

  126. Rignault S, Haefliger JA, Waeber B, Liaudet L, Feihl F (2007) Acute inflammation decreases the expression of connexin 40 in mouse lung. Shock (Augusta, Ga) 28(1):78–85

    Article  CAS  Google Scholar 

  127. Yeh TH, Hsu WC, Chen YS, Hsu CJ, Lee SY (2005) Lipopolysaccharide decreases connexin 43 expression on nasal epithelial cells in vitro. Acta Otolaryngol 125(10):1091–1096

    Article  PubMed  CAS  Google Scholar 

  128. Borenshtein D, McBee ME, Schauer DB (2008) Utility of the Citrobacter rodentium infection model in laboratory mice. Curr Opin Gastroenterol 24(1):32–37

    Article  PubMed  Google Scholar 

  129. Mundy R, MacDonald TT, Dougan G, Frankel G, Wiles S (2005) Citrobacter rodentium of mice and man. Cell Microbiol 7(12):1697–1706

    Article  PubMed  CAS  Google Scholar 

  130. Guttman JA, Lin AE, Li Y, Bechberger J, Naus CC, Vogl AW, Finlay BB (2009) Gap junction hemichannels contribute to the generation of diarrhoea during infectious enteric disease. Gut 59(2):218–226

    Google Scholar 

  131. Hatheway CL (1990) Toxigenic clostridia. Clin Microbiol Rev 3(1):66–98

    PubMed  CAS  Google Scholar 

  132. Bohnel H, Gessler F (2005) Botulinum toxins—cause of botulism and systemic diseases? Vet Res Commun 29(4):313–345

    Article  PubMed  CAS  Google Scholar 

  133. Peck MW (2009) Biology and genomic analysis of Clostridium botulinum. Adv Microbial Physiol 55:183–265, 320

    Google Scholar 

  134. Blum AE, Joseph SM, Przybylski RJ, Dubyak GR (2008) Rho-family GTPases modulate Ca(2+) -dependent ATP release from astrocytes. Am J Physiol 295(1):C231–C241

    Article  CAS  Google Scholar 

  135. Garré JM, Retamal MA, Cassina P, Barbeito L, Bukauskas FF, Sáez JC, Bennett MV, Abudara V (2010) FGF-1 induces ATP release from spinal astrocytes in culture and opens pannexin and connexin hemichannels. Proc Nat Acad Sci USA 107(52):22659–22664

    Article  PubMed  Google Scholar 

  136. Derangeon M, Bourmeyster N, Plaisance I, Pinet-Charvet C, Chen Q, Duthe F, Popoff MR, Sarrouilhe D, Herve JC (2008) RhoA GTPase and F-actin dynamically regulate the permeability of Cx43-made channels in rat cardiac myocytes. J Biol Chem 283(45):30754–30765

    Article  PubMed  CAS  Google Scholar 

  137. Maddala R, Deng PF, Costello JM, Wawrousek EF, Zigler JS, Rao VP (2004) Impaired cytoskeletal organization and membrane integrity in lens fibers of a Rho GTPase functional knockout transgenic mouse. Lab Invest; A J Tech Methods Pathol 84(6):679–692

    Article  CAS  Google Scholar 

  138. Anderson SC, Stone C, Tkach L, SundarRaj N (2002) Rho and Rho-kinase (ROCK) signaling in adherens and gap junction assembly in corneal epithelium. Invest Ophthalmol Vis Sci 43(4):978–986

    PubMed  Google Scholar 

  139. Herholz C, Miserez R, Nicolet J, Frey J, Popoff M, Gibert M, Gerber H, Straub R (1999) Prevalence of beta2-toxigenic Clostridium perfringens in horses with intestinal disorders. J Clin Microbiol 37(2):358–361

    PubMed  CAS  Google Scholar 

  140. Songer JG (1996) Clostridial enteric diseases of domestic animals. Clin Microbiol Rev 9(2):216–234

    PubMed  CAS  Google Scholar 

  141. Songer JG (2010) Clostridia as agents of zoonotic disease. Vet Microbiol 140(3–4):399–404

    Google Scholar 

  142. Van Immerseel F, De Buck J, Pasmans F, Huyghebaert G, Haesebrouck F, Ducatelle R (2004) Clostridium perfringens in poultry: an emerging threat for animal and public health. Avian Pathol 33(6):537–549

    Article  PubMed  Google Scholar 

  143. Flores-Diaz M, Alape-Giron A (2003) Role of Clostridium perfringens phospholipase C in the pathogenesis of gas gangrene. Toxicon 42(8):979–986

    Article  PubMed  CAS  Google Scholar 

  144. Mauss S, Chaponnier C, Just I, Aktories K, Gabbiani G (1990) ADP-ribosylation of actin isoforms by Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin. Eur J Biochem/FEBS 194(1):237–241

    Article  CAS  Google Scholar 

  145. Goodenough DA, Revel JP (1971) The permeability of isolated and in situ mouse hepatic gap junctions studied with enzymatic tracers. J Cell Biol 50(1):81–91

    Article  PubMed  CAS  Google Scholar 

  146. Vaishnavi C (2010) Clinical spectrum & pathogenesis of Clostridium difficile associated diseases. Indian J Med Res 131:487–499

    Google Scholar 

  147. Ciesielski-Treska J, Ulrich G, Rihn B, Aunis D (1989) Mechanism of action of Clostridium difficile toxin B: role of external medium and cytoskeletal organization in intoxicated cells. Eur J Cell Biol 48(2):191–202

    PubMed  CAS  Google Scholar 

  148. Stubbs S, Rupnik M, Gibert M, Brazier J, Duerden B, Popoff M (2000) Production of actin-specific ADP-ribosyltransferase (binary toxin) by strains of Clostridium difficile. FEMS Microbiol Lett 186(2):307–312

    Article  PubMed  CAS  Google Scholar 

  149. Baraboutis IG, Papastamopoulos V, Skoutelis A (2007) Streptococcus pneumoniae septic arthritis complicating hip osteonecrosis in adults: case report and review of the literature. South Med J 100(7):712–716

    Article  PubMed  Google Scholar 

  150. Chong CP, Street PR (2008) Pneumonia in the elderly: a review of the epidemiology, pathogenesis, microbiology, and clinical features. South Med J 101(11):1141–1145 (quiz 1132, 1179)

    Article  PubMed  Google Scholar 

  151. Kwak EJ, McClure JA, McGeer A, Lee BC (2002) Exploring the pathogenesis of necrotizing fasciitis due to Streptococcus pneumoniae. Scand J Infect Dis 34(9):639–644

    Article  PubMed  Google Scholar 

  152. Moscoso M, Garcia E, Lopez R (2009) Pneumococcal biofilms. Int Microbiol 12(2):77–85

    PubMed  CAS  Google Scholar 

  153. Rueda AM, Serpa JA, Matloobi M, Mushtaq M, Musher DM (2010) The spectrum of invasive pneumococcal disease at an adult tertiary care hospital in the early 21st century. Medicine 89(5):331–336

    Google Scholar 

  154. Yamashiro E, Asato Y, Taira K, Awazawa R, Yamamoto Y, Hagiwara K, Tamaki H, Uezato H (2009) Necrotizing fasciitis caused by Streptococcus pneumoniae. J Dermatol 36(5):298–305

    Article  PubMed  Google Scholar 

  155. Murphy TF, Bakaletz LO, Smeesters PR (2009) Microbial interactions in the respiratory tract. Pediatr Infect Dis J 28(10 Suppl):S121–S126

    PubMed  Google Scholar 

  156. Pelton SI, Leibovitz E (2009) Recent advances in otitis media. Pediatr Infect Dis J 28(10 Suppl):S133–S137

    PubMed  Google Scholar 

  157. Ichimiya I, Suzuki M, Hirano T, Mogi G (1999) The influence of pneumococcal otitis media on the cochlear lateral wall. Hear Res 131(1–2):128–134

    Article  PubMed  CAS  Google Scholar 

  158. Wangemann P (2006) Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential. J Physiol 576(Pt 1):11–21

    Article  PubMed  CAS  Google Scholar 

  159. Durai R, Ng PC, Hoque H (2010) Methicillin-resistant Staphylococcus aureus: an update. AORN J 91(5):599–606 (quiz 607–599)

    Google Scholar 

  160. Graves SF, Kobayashi SD, DeLeo FR (2010) Community-associated methicillin-resistant Staphylococcus aureus immune evasion and virulence. J Mol Med (Berlin, Germany) 88(2):109–114

    Google Scholar 

  161. Vanderhaeghen W, Hermans K, Haesebrouck F, Butaye P (2010) Methicillin-resistant Staphylococcus aureus (MRSA) in food production animals. Epidemiol Infect 138(5):606–625

    Google Scholar 

  162. Dean N (1995) Methicillin-resistant Staphylococcus aureus in community-acquired and health care-associated pneumonia: incidence, diagnosis, and treatment options. Hosp Pract 38(1):7–15

    Google Scholar 

  163. Katz LH, Pitlik S, Porat E, Biderman P, Bishara J (2008) Pericarditis as a presenting sign of infective endocarditis: two case reports and review of the literature. Scand J Infect Dis 40(10):785–791

    Article  PubMed  Google Scholar 

  164. Larkin EA, Carman RJ, Krakauer T, Stiles BG (2009) Staphylococcus aureus: the toxic presence of a pathogen extraordinaire. Curr Med Chem 16(30):4003–4019

    Article  PubMed  CAS  Google Scholar 

  165. Le Loir Y, Baron F, Gautier M (2003) Staphylococcus aureus and food poisoning. Genet Mol Res 2(1):63–76

    PubMed  Google Scholar 

  166. Townsend GC, Scheld WM (1998) Infections of the central nervous system. Adv Intern Med 43:403–447

    PubMed  CAS  Google Scholar 

  167. Mele T, Madrenas J (2010) TLR2 signalling: at the crossroads of commensalism, invasive infections and toxic shock syndrome by Staphylococcus aureus. Intern J Biochem Cell Biol 42(7):1066–1071

    Google Scholar 

  168. Garg S, Md Syed M, Kielian T (2005) Staphylococcus aureus-derived peptidoglycan induces Cx43 expression and functional gap junction intercellular communication in microglia. J Neurochem 95(2):475–483

    Article  PubMed  CAS  Google Scholar 

  169. Esen N, Shuffield D, Syed MM, Kielian T (2007) Modulation of connexin expression and gap junction communication in astrocytes by the Gram-positive bacterium S. aureus. Glia 55(1):104–117

    Article  PubMed  Google Scholar 

  170. Karpuk N, Burkovetskaya M, Fritz T, Angle A, Kielian T (2011) Neuroinflammation leads to region-dependent alterations in astrocyte gap junction communication and hemichannel activity. J Neurosci 31(2):414–425

    Article  PubMed  CAS  Google Scholar 

  171. Robertson J, Lang S, Lambert PA, Martin PE (2010) Peptidoglycan derived from Staphylococcus epidermidis induces connexin 43 hemichannel activity with consequences on the innate immune response in endothelial cells. Biochem J 432(1):133–143

    Article  PubMed  CAS  Google Scholar 

  172. Walker DH (2007) Rickettsiae and rickettsial infections: the current state of knowledge. Clin Infect Dis 45(Suppl 1):S39–S44

    Article  PubMed  Google Scholar 

  173. Amagai M (2010) Autoimmune and infectious skin diseases that target desmogleins. Proc Jap Acad 86(5):524–537

    Google Scholar 

  174. O’Hara JR, Buret AG (2008) Mechanisms of intestinal tight junctional disruption during infection. Front Biosci 13:7008–7021

    PubMed  Google Scholar 

  175. Sears CL (2000) Molecular physiology and pathophysiology of tight junctions V. assault of the tight junction by enteric pathogens. Am J Physiol Gastrointest Liver Physiol 279(6):G1129–G1134

    PubMed  CAS  Google Scholar 

  176. Guttman JA, Finlay BB (2009) Tight junctions as targets of infectious agents. Biochim Biophys Acta 1788(4):832–841

    PubMed  CAS  Google Scholar 

  177. Hsiao HJ, Liu PA, Yeh HI, Wang CY (2010) Classical swine fever virus down-regulates endothelial connexin 43 gap junctions. Arch Virol 155(7):1107–1116

    Google Scholar 

  178. Koster-Patzlaff C, Hosseini SM, Reuss B (2009) Loss of connexin 36 in rat hippocampus and cerebellar cortex in persistent Borna disease virus infection. J Chem Neuroanat 37(2):118–127

    Article  PubMed  CAS  Google Scholar 

  179. Stanton RJ, McSharry BP, Rickards CR, Wang EC, Tomasec P, Wilkinson GW (2007) Cytomegalovirus destruction of focal adhesions revealed in a high-throughput Western blot analysis of cellular protein expression. J Virol 81(15):7860–7872

    Article  PubMed  CAS  Google Scholar 

  180. Waghabi MC, Coutinho-Silva R, Feige JJ, Higuchi Mde L, Becker D, Burnstock G, Araujo-Jorge TC (2009) Gap junction reduction in cardiomyocytes following transforming growth factor-beta treatment and Trypanosoma cruzi infection. Memorias do Instituto Oswaldo Cruz 104(8):1083–1090

    PubMed  CAS  Google Scholar 

  181. Campos de Carvalho AC, Roy C, Hertzberg EL, Tanowitz HB, Kessler JA, Weiss LM, Wittner M, Dermietzel R, Gao Y, Spray DC (1998) Gap junction disappearance in astrocytes and leptomeningeal cells as a consequence of protozoan infection. Brain Res 790(1–2):304–314

    Article  PubMed  CAS  Google Scholar 

  182. Saccheri F, Pozzi C, Avogadri F, Barozzi S, Faretta M, Fusi P, Rescigno M (2010) Bacteria-induced gap junctions in tumors favor antigen cross-presentation and antitumor immunity. Sci Transl Med 2(44):44ra57

    Google Scholar 

  183. Nataro JP, Kaper JB (1998) Diarrheagenic Escherichia coli. Clin Microbiol Rev 11(1):142–201

    PubMed  CAS  Google Scholar 

  184. Beutin L (1999) Escherichia coli as a pathogen in dogs and cats. Vet Res 30(2–3):285–298

    PubMed  CAS  Google Scholar 

  185. Tramuta C et al (2008) Phylogenetic background of attaching and effacing Escherichia coli isolates from animals. Vet Res Commun 32(6):433–437

    Article  PubMed  CAS  Google Scholar 

  186. Pawlowski SW et al (2009) Diagnosis and treatment of acute or persistent diarrhea. Gastroenterology 136(6):1874–1886

    Article  PubMed  CAS  Google Scholar 

  187. Vallance BA, Finlay BB (2000) Exploitation of host cells by enteropathogenic Escherichia coli. Proc Natl Acad Sci USA 97(16):8799–8806

    Article  PubMed  CAS  Google Scholar 

  188. Ran X et al (2008) Prevalence of Shiga toxin- and enterotoxin-producing Escherichia coli in patients and animals in Guizhou, China. Wei Sheng Wu Xue Bao 48(6):796–799

    PubMed  CAS  Google Scholar 

  189. Qadri F et al (2005) Enterotoxigenic Escherichia coli in developing countries: epidemiology, microbiology, clinical features, treatment, and prevention. Clin Microbiol Rev 18(3):465–483

    Article  PubMed  Google Scholar 

  190. Dobrenis K et al (2005) Human and mouse microglia express connexin 36, and functional gap junctions are formed between rodent microglia and neurons. J Neurosci Res 82(3):306–315

    Article  PubMed  CAS  Google Scholar 

  191. Hu J, Cotgreave IA (1997) Differential regulation of gap junctions by proinflammatory mediators in vitro. J Clin Investig 99(10):2312–2316

    Article  PubMed  CAS  Google Scholar 

  192. Alves LA et al. (1996) Are there functional gap junctions or junctional hemichannels in macrophages? Blood 88(1):328–324

Download references

Acknowledgments

This work was financially supported by grants of the Research Council of the Vrije Universiteit Brussel (OZR-VUB), the Industrial Research Funds (IOF), the Fund for Scientific Research Flanders (FWO-Vlaanderen) and the European Union (FP6 project carcinoGENOMICS and FP7/Colipa projects DETECTIVE and HeMiBio).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liesbeth Ceelen.

Additional information

Mathieu Vinken is a postdoctoral research fellow of the Fund for Scientific Research Flanders (FWO-Vlaanderen), Belgium.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ceelen, L., Haesebrouck, F., Vanhaecke, T. et al. Modulation of connexin signaling by bacterial pathogens and their toxins. Cell. Mol. Life Sci. 68, 3047–3064 (2011). https://doi.org/10.1007/s00018-011-0737-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0737-z

Keywords

Navigation