Skip to main content

Advertisement

Log in

Role of host-defence peptides in eye diseases

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The eye and its associated tissues including the lacrimal system and lids have evolved several defence mechanisms to prevent microbial invasion. Included among this armory are several host-defence peptides. These multifunctional molecules are being studied not only for their endogenous antimicrobial properties but also for their potential therapeutic effects. Here the current knowledge of host-defence peptide expression in the eye will be summarised. The role of these peptides in eye disease will be discussed with the primary focus being on infectious keratitis, inflammatory conditions including dry eye and wound healing. Finally the potential of using host-defence peptides and their mimetics/derivatives for the treatment and prevention of eye diseases is addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

HDP:

Host-defence peptide

hBD:

Human β-defensin

mBD:

Mouse β-defensin

HNP:

Human neutrophil peptide

LL-37:

Human cathelicidin

CRAMP:

Cathelin-related antimicrobial peptide

LPS:

Lipopolysaccharide

References

  1. Hale JD, Hancock RE (2007) Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti Infect Ther 5:951–959

    Article  PubMed  CAS  Google Scholar 

  2. Radek K, Gallo R (2007) Antimicrobial peptides: natural effectors of the innate immune system. Semin Immunopathol 29:27–43

    Article  PubMed  CAS  Google Scholar 

  3. McDermott AM (2009) Antimicrobial peptides. In: Howl J, Jones S (eds) Bioactive peptides. CRC Press, Boca Raton

    Google Scholar 

  4. Nijnik A, Hancock RE (2009) The roles of cathelicidin LL-37 in immune defences and novel clinical applications. Curr Opin Hematol 16:41–47

    Article  PubMed  CAS  Google Scholar 

  5. Steinstraesser L, Kraneburg U, Jacobsen F, Al-Benna S (2011) Host defense peptides and their antimicrobial-immunomodulatory duality. Immunobiology 216(3):322–333

    Google Scholar 

  6. Hattenbach LO, Gumbel H, Kippenberger S (1998) Identification of beta-defensins in human conjunctiva. Antimicrob Agents Chemother 42:3332

    PubMed  CAS  Google Scholar 

  7. Haynes RJ, Tighe PJ, Dua HS (1999) Antimicrobial defensin peptides of the human ocular surface. Br J Ophthalmol 83:737–741

    Article  PubMed  CAS  Google Scholar 

  8. McNamara NA, Van R, Tuchin OS, Fleiszig SMJ (1999) Ocular surface epithelia express mRNA for human beta defensin-2. Exp Eye Res 69:483–490

    Article  PubMed  CAS  Google Scholar 

  9. Lehmann OJ, Hussain IR, Watt PJ (2000) Investigation of β-defensin gene expression in the ocular anterior segment by semiquantitative RT-PCR. Br J Ophthalmol 84:523–526

    Article  PubMed  CAS  Google Scholar 

  10. McDermott AM, Redfern RL, Zhang B, Pei Y, Huang L, Proske RJ (2003) Defensin expression by the cornea: multiple signaling pathways mediate IL-1 beta stimulation of hBD-2 expression by corneal epithelial cells. Invest Ophthalmol Vis Sci 44:1859–1865

    Article  PubMed  Google Scholar 

  11. Narayanan S, Miller WL, McDermott AM (2003) Expression of human beta-defensins in conjunctival epithelium: relevance to dry eye disease. Invest Ophthalmol Vis Sci 44:3795–3801

    Article  PubMed  Google Scholar 

  12. Kumar A, Zhang J, Yu FS (2004) Innate immune response of corneal epithelial cells to Staphylococcus aureus infections: role of peptidoglycan in stimulating proinflammatory cytokine secretion. Invest Ophthalmol Vis Sci 45:3513–3522

    Article  PubMed  Google Scholar 

  13. Shin JS, Kim CW, Kwon YS, Kim JC (2004) Human beta-defensin 2 is induced by interleukin-1 beta in the corneal epithelial cells. Exp Mol Med 36:204–210

    PubMed  CAS  Google Scholar 

  14. Kumar A, Zhang J, Yu FS (2006) Toll-like receptor 2-mediated expression of beta-defensin-2 in human corneal epithelial cells. Microbes Infect 8:380–389

    Article  PubMed  CAS  Google Scholar 

  15. Kumar A, Yin J, Zhang J, Yu F-SX (2007) Modulation of corneal epithelial innate immune response to Pseudomonas infection by flagellin pretreatment. Invest Ophthalmol Vis Sci 48:4664–4670

    Article  PubMed  Google Scholar 

  16. Li Q, Kumar A, Gui JF, Yu FS (2008) Staphylococcus aureus lipoproteins trigger human corneal epithelial innate response through toll-like receptor-2. Microb Pathog 44:426–434

    Article  PubMed  CAS  Google Scholar 

  17. Garreis F, Schlorf T, Worlitzsch D, Steven P, Bräuer L, Jäger K, Paulsen FP (2010) Roles of human beta-defensins in innate immune defense at the ocular surface: arming and alarming corneal and conjunctival epithelial cells. Histochem Cell Biol 134:59–73

    Article  PubMed  CAS  Google Scholar 

  18. McIntosh RS, Cade JE, Al-Abed M, Shanmuganathan V, Gupta R, Bhan A, Tighe PJ, Dua HS (2005) The spectrum of antimicrobial peptide expression at the ocular surface. Invest Ophthalmol Vis Sci 46:1379–1385

    Article  PubMed  Google Scholar 

  19. Huang LC, Jean D, Proske RJ, Reins RY, McDermott AM (2007) Ocular surface expression and in vitro activity of antimicrobial peptides. Curr Eye Res 32:595–609

    Article  PubMed  CAS  Google Scholar 

  20. Abedin A, Mohammed I, Hopkinson A, Dua HS (2008) A novel antimicrobial peptide on the ocular surface shows decreased expression in inflammation and infection. Invest Ophthalmol Vis Sci 49:28–33

    Article  PubMed  Google Scholar 

  21. Mohammed I, Suleman H, Otri A, Kulkarni BB, Chen P, Hopkinson A, Dua HS (2010) Localization and gene expression of human β-defensin 9 at the human ocular surface epithelium. Invest Ophthalmol Vis Sci 51:4677–4682

    Article  PubMed  Google Scholar 

  22. Gottsch JD, Li Q, Ashraf MF, O’Brien TP, Stark WJ, Liu SH (1998) Defensin gene expression in the cornea. Curr Eye Res 17:1082–1086

    Article  PubMed  CAS  Google Scholar 

  23. Haynes RJ, Tighe PJ, Dua HS (1998) Innate defence of the eye by antimicrobial defensin peptides. Lancet 352:451–452

    Article  PubMed  CAS  Google Scholar 

  24. Gordon YJ Huang LC, Romanowski EG, Yates KA, Proske RJ, McDermott AM (2005) Human cathelicidin (LL-37), a multifunctional peptide, is expressed by ocular surface epithelia and has potent antibacterial and antiviral activity. Curr Eye Res 30:1–10

    Article  Google Scholar 

  25. Huang LC, Petkova TD, Reins RY, Proske RJ, McDermott AM (2006) Multifunctional roles of human cathelicidin (LL-37) at the ocular surface. Invest Ophthalmol Vis Sci 47:2369–2380

    Article  PubMed  Google Scholar 

  26. Sorensen O, Arnljots K, Cowland JB, Bainton DF, Borregaard N (1997) The human antibacterial cathelicidin, hCAP18, is synthesized in myelocytes and metamyelocytes and localized to specific granules in neutrophils. Blood 90:2796–2803

    PubMed  CAS  Google Scholar 

  27. Steele PS, Jumblatt MM (2004) Defense proteins of the ocular surface. Invest Ophthalmol Vis Sci 45: e-abstract 3792

  28. Cole AM, Ganz T, Liese AM, Burdick MD, Liu L, Strieter RM (2001) Cutting edge: IFN-inducible ELR-CXC chemokines display defensin-like antimicrobial activity. J Immunol 167:623–627

    PubMed  CAS  Google Scholar 

  29. Yang D, Chen Q, Hoover DM, Staley P, Tucker KD, Lubkowski J, Oppenheim JJ (2003) Many chemokines including CCL20/MIP-3alpha display antimicrobial activity. J Leukoc Biol 74:448–455

    Article  PubMed  CAS  Google Scholar 

  30. Spandau UH, Toksoy A, Verhaart S, Gillitzer R, Kruse FE (2003) High expression of chemokines Gro-alpha (CXCL-1), IL-8 (CXCL-8), and MCP-1 (CCL-2) in inflamed human corneas in vivo. Arch Ophthalmol 121:825–831

    Article  PubMed  CAS  Google Scholar 

  31. Garreis F, Gottschalt M, Glaser R, Harder J, Worlitzsch D, Paulsen FP (2009) Expression and regulation of antimicrobial peptide psoriasin (S100A7) in the lacrimal apparatus. Invest Ophthalmol Vis Sci 50: e-abstract 5515

    Google Scholar 

  32. Mohammed I, Yeung A, Abedin A, Hopkinson A, Dua HA (2010) Signalling pathways involved in ribonuclease-7 expression. Cell Mol Life Sci. doi:10.1007/s00018-010-0540-2

  33. Huang LC, Reins RY, Gallo RL, McDermott AM (2007) Cathelicidin-deficient (Cnlp−/−) mice show increased susceptibility to Pseudomonas aeruginosa keratitis. Invest Ophthalmol Vis Sci 48:4498–4508

    Article  PubMed  Google Scholar 

  34. Narayanan S, Corrales RM, Farley W, McDermott AM, Pflugfelder SC (2008) Interleukin-1 receptor-1-deficient mice show attenuated production of ocular surface inflammatory cytokines in experimental dry eye. Cornea 27:811–817

    Article  PubMed  Google Scholar 

  35. Wu M, McClellan SA, Barrett RP, Hazlett LD (2009) Beta-defensin-2 promotes resistance against infection with P. aeruginosa. J Immunol 182:1609–1616

    PubMed  CAS  Google Scholar 

  36. Wu M, McClellan SA, Barrett RP, Zhang Y, Hazlett LD (2009) Beta-defensin-2 and 3 together promote resistance to Pseudomonas aeruginosa keratitis. J Immunol 183:8054–8060

    Article  PubMed  CAS  Google Scholar 

  37. Hinrichsen K, Podschun R, Schubert S, Schroder JM, Harder J, Proksch E (2008) Mouse beta-defensin-14, an antimicrobial ortholog of human beta-defensin-3. Antimicrob Agents Chemother 52:1876–1879

    Article  PubMed  CAS  Google Scholar 

  38. Tsubota K (2010) Tear film overview. In: Dartt DA (ed) Encyclopedia of the eye. Elsevier, Amsterdam

    Google Scholar 

  39. McDermott AM (2010) Defense mechanisms of tears and ocular surface. In: Dartt DA (ed) Encyclopedia of the eye. Elsevier, Amsterdam

    Google Scholar 

  40. Tan KO, Sack RA, Holden BA, Swarbrick HA (1993) Temporal sequence of changes in tear film composition during sleep. Curr Eye Res 12:1001–1007

    Article  PubMed  CAS  Google Scholar 

  41. Zhou L, Huang LQ, Beuerman RW, Grigg ME, Li SF, Chew FT, Ang L, Stern ME, Tan D (2004) Proteomic analysis of human tears: defensin expression after ocular surface surgery. J Proteome Res 3:410–416

    Article  PubMed  CAS  Google Scholar 

  42. Steele PS, Jumblatt MM, Smith NB, Pierce WM (2002) Detection of Histatin 5 in normal human Schirmer strip samples by mass spectroscopy. Invest Ophthalmol Vis Sci 43: e-abstract 98

    Google Scholar 

  43. You Y, Fitzgerald A, Cozzi PJ, Zhao Z, Graham P, Russell PJ, Walsh BJ, Willcox M, Zhong L, Wasinger V, Li Y (2010) Post-translation modification of proteins in tears. Electrophoresis 31:1853–1861

    Article  PubMed  CAS  Google Scholar 

  44. Haynes RJ, McElveen JE, Dua HS, Tighe PJ, Liversidge J (2000) Expression of human beta-defensins in intraocular tissues. Invest Ophthalmol Vis Sci 41:3026–3031

    PubMed  CAS  Google Scholar 

  45. Paulsen FP, Pufe T, Schaudig U, Held-Feindt J, Lehmann J, Schroder JM, Tillmann BN (2001) Detection of natural peptide antibiotics in human nasolacrimal ducts. Invest Ophthalmol Vis Sci 42:2157–2163

    PubMed  CAS  Google Scholar 

  46. Stoeckelhuber M, Messmer EM, Schubert C, Stoeckelhuber BM, Koehler C, Welsch U, Bals R (2008) Immunolocalization of defensins and cathelicidin in human glands of Moll. Ann Anat 190:230–237

    Article  PubMed  Google Scholar 

  47. Stoeckelhuber M, Stoeckelhuber BM, Welsch U (2004) Apocrine glands in the eyelids of primates contribute to the ocular host defense. Cells Tissues Organs 176:187–194

    Article  PubMed  Google Scholar 

  48. Yasui T, Tsukise A, Nara T, Kuwahara Y, Meyer W (2006) Morphological, histochemical and immunohistochemical characterization of secretory production of the ciliary glands in the porcine eyelid. Eur J Histochem 50:99–108

    PubMed  CAS  Google Scholar 

  49. McDermott AM (2009) The role of antimicrobial peptides at the ocular surface. Ophthalmic Res 41:60–75

    Article  PubMed  CAS  Google Scholar 

  50. Pachigolla G, Blomquist P, Cavanagh HD (2007) Microbial keratitis pathogens and antibiotic susceptibilities: a 5-year review of cases at an urban county hospital in north Texas. Eye Contact Lens 33:45–49

    Article  PubMed  Google Scholar 

  51. Green M, Apel A, Stapleton F (2008) Risk factors and causative organisms in microbial keratitis. Cornea 27:22–27

    Article  PubMed  Google Scholar 

  52. Oren A, Ganz T, Liu L, Meerloo T (2003) In human epidermis, β-defensin 2 is packaged in lamellar bodies. Exp Mol Pathol 74:180–182

    Article  PubMed  CAS  Google Scholar 

  53. Braff MH, Di Nardo A, Gallo RL (2005) Keratinocytes store the antimicrobial peptide cathelicidin in lamellar bodies. J Invest Dermatol 124:394–400

    Article  PubMed  CAS  Google Scholar 

  54. Huang LC, Redfern RL, Narayanan S, Reins RY, McDermott AM (2007) In vitro activity of human beta-defensin 2 against Pseudomonas aeruginosa in the presence of tear fluid. Antimicrob Agents Chemother 51:3853–3860

    Article  PubMed  CAS  Google Scholar 

  55. Singh PK, Tack BF, McCray PB Jr, Welsh MJ (2000) Synergistic and additive killing by antimicrobial factors found in human airway surface liquid. Am J Physiol Lung Cell Mol Physiol 279:L799–L805

    PubMed  CAS  Google Scholar 

  56. Nagaoka I, Hirota S, Yomogida S, Ohwada A, Hirata M (2000) Synergistic actions of antibacterial neutrophil defensins and cathelicidins. Inflamm Res 49:73–79

    Article  PubMed  CAS  Google Scholar 

  57. Chen X, Niyonsaba F, Ushio H, Okuda D, Nagaoka I, Ikeda S, Okumura K, Ogawa H (2005) Synergistic effect of antibacterial agents human beta-defensins, cathelicidin LL-37 and lysozyme against Staphylococcus aureus and Escherichia coli. J Dermatol Sci 40:123–132

    Article  PubMed  CAS  Google Scholar 

  58. Kumar A, Hazlett LD, Yu FS (2008) Flagellin suppresses the inflammatory response and enhances bacterial clearance in a murine model of Pseudomonas aeruginosa keratitis. Infect Immun 76:89–96

    Article  PubMed  CAS  Google Scholar 

  59. Augustin DK, Heimer SR, Tan C, Li WY, Le Due JM, Evans DJ, Fleiszig SM (2011) Role of defensins in corneal epithelial barrier function against P. aeruginosa traversal. Infect Immun 9(2):595–605

  60. Liesegang TJ, Melton LJ, Daly PJ, Ilstrup DM (1989) Epidemiology of ocular herpes simplex. Incidence in Rochester, Minn, 1950 through 1982. Arch Ophthalmol 107:1155–1159

    PubMed  CAS  Google Scholar 

  61. Daher KA, Selsted ME, Lehrer RI (1986) Direct inactivation of viruses by human granulocyte defensins. J Virol 60:1068–1074

    PubMed  CAS  Google Scholar 

  62. Bastian A, Schafer H (2001) Human alpha-defensin 1 (HNP-1) inhibits adenoviral infection in vitro. Regul Pept 101:157–161

    Article  PubMed  CAS  Google Scholar 

  63. Liesegang TJ, Forster RK (1980) Spectrum of microbial keratitis in south Florida. Am J Ophthalmol 90:38–47

    PubMed  CAS  Google Scholar 

  64. Ritterband DC, Seedor JA, Shah MK, Koplin RS, McCormick SA (2006) Fungal keratitis at the New York Eye and Ear Infirmary. Cornea 25:264–267

    Article  PubMed  Google Scholar 

  65. Sirikul T, Prabriputaloong T, Smathivat A, Chuck RS, Vongthongsri A (2008) Predisposing factors and etiologic diagnosis of ulcerative keratitis. Cornea 27:283–287

    Article  PubMed  Google Scholar 

  66. Gopinathan U, Sharma S, Garg P, Rao GN (2009) Review of epidemiological features, microbiological diagnosis and treatment outcome of microbial keratitis: experience of over a decade. Indian J Ophthalmol 57:273–279

    Article  PubMed  Google Scholar 

  67. Tanure MA, Cohen EJ, Sudesh S, Rapuano CJ, Laibson PR (2000) Spectrum of fungal keratitis at Wills Eye Hospital, Philadelphia, Pennsylvania. Cornea 19:307–312

    Article  PubMed  CAS  Google Scholar 

  68. Thew MR, Todd B (2008) Fungal keratitis in far north Queensland, Australia. Clin Exp Ophthalmol 36:721–724

    Article  Google Scholar 

  69. Xie L, Zhai H, Zhao J, Sun S, Shi W, Dong X (2008) Antifungal susceptibility for common pathogens of fungal keratitis in Shandong Provice, China. Am J Ophthalmol 146:260–265

    Article  PubMed  CAS  Google Scholar 

  70. Perez-Balbuena AL, Vanzzini-Rosano V, Valadez-Virgen J, Campos-Möller X (2009) Fusarium keratitis in Mexico. Cornea 28:626–630

    Article  PubMed  Google Scholar 

  71. Furlanetto RL, Andreo EG, Finotti IG, Arcieri ES, Ferreira MA, Rocha FJ (2010) Epidemiology and etiologic diagnosis of infectious keratitis in Uberlandia, Brazil. Eur J Ophthalmol 20:498–503

    PubMed  Google Scholar 

  72. Lehrer RI, Ganz T, Szklarek D, Selsted ME (1998) Modulation of the in vitro candidacidal activity of human neutrophil defensins by target cell metabolism and divalent cations. J Clin Invest 81:1829–1835

    Article  Google Scholar 

  73. Wilde CG, Griffith JE, Marra MN, Snable JL, Scott RW (1989) Purification and characterization of human neutrophil peptide 4, a novel member of the defensin family. J Biol Chem 264:11200–11203

    PubMed  CAS  Google Scholar 

  74. Raj PA, Antonyraj KJ, Karunakaran T (2000) Large-scale synthesis and functional elements for the antimicrobial activity of defensins. Biochem J 347:633–641

    Article  PubMed  CAS  Google Scholar 

  75. Harder J, Bartels J, Christophers E, Schroder JM (2001) Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 276:5707–5713

    Article  PubMed  CAS  Google Scholar 

  76. Hoover DM, Wu Z, Tucker K, Lu W, Lubkowski J (2003) Antimicrobial characterization of human beta-defensin 3 derivatives. Antimicrob Agents Chemother 47:2804–2809

    Article  PubMed  CAS  Google Scholar 

  77. López-García B, Lee PH, Yamasaki K, Gallo RL (2005) Anti-fungal activity of cathelicidins and their potential role in Candida albicans skin infection. J Invest Dermatol 125:108–115

    Article  PubMed  Google Scholar 

  78. den Hertog AL, van Marle J, van Veen HA, Van’t Hof W, Bolscher JG, Veerman EC, Nieuw Amerongen AV (2005) Candidacidal effects of two antimicrobial peptides: histatin 5 causes small membrane defects, but LL-37 causes massive disruption of the cell membrane. Biochem J 388:689–695

    Article  CAS  Google Scholar 

  79. Feng Z, Jiang B, Chandra J, Ghannoum M, Nelson S, Weinberg A (2005) Human beta-defensins: differential activity against candidal species and regulation by Candida albicans. J Dent Res 84:445–450

    Article  PubMed  CAS  Google Scholar 

  80. Kiehne K, Brunke G, Meyer D, Harder J, Herzig KH (2005) Oesophageal defensin expression during Candida infection and reflux disease. Scand J Gastroenterol 40:501–507

    Article  PubMed  CAS  Google Scholar 

  81. Ooi EH, Wormald P-J, Carney AS, James CL, Tan LW (2007) Fungal allergens induce cathelicidin LL-37 expression in chronic rhinosinusitis patients in a nasal explant model. Am J Rhinol 21:367–372

    Article  PubMed  Google Scholar 

  82. Krishnakumari V, Rangaraj N, Nagaraj R (2009) Antifungal activities of human beta-defensins HBD-1 to HBD-3 and their C-terminal analogs Phd1 to Phd3. Antimicrob Agents Chemother 53:256–260

    Article  PubMed  CAS  Google Scholar 

  83. Alekseeva L, Huat D, Femenia F, Mouyna I, Abdelouahab M, Cagna A, Guerrier D, Tichanné-Seltzer V, Baeza-Squiban A, Chermette R, Latgé JP, Berkova N (2009) Inducible expression of beta defensins by human respiratory epithelial cells exposed to Aspergillus fumigatus organisms. BMC Microbiol 9:33

    Article  PubMed  CAS  Google Scholar 

  84. Steubesand N, Kiehne K, Brunke G, Pahl R, Reiss K, Herzig KH, Schubert S, Schreiber S, Fölsch UR, Rosenstiel P, Arlt A (2009) The expression of the beta-defensins hBD-2 and hBD-3 is differentially regulated by NFkB and MAPK/AP-1 pathways in an in vitro model of Candida esophagitis. BMC Immunol 10:36

    Article  PubMed  CAS  Google Scholar 

  85. Bahri R, Saidane-Mosbahi D, Rouabhia M (2010) Candida famata modulates toll-like receptor, beta-defensin, and proinflammatory cytokine expression by normal human epithelial cells. J Cell Physiol 222:209–218

    Article  PubMed  CAS  Google Scholar 

  86. Bahri R, Curt S, Saidane-Mosbahi D, Rouabhia M (2010) Normal human gingival epithelial cells sense C. parapsilosis by toll-like receptors and modulate its pathogenesis through antimicrobial peptides and proinflammatory cytokines. Mediators Inflamm. doi:10.1155/2010/940383

  87. Yuan X, Hua X, Wilhelmus KR (2010) The corneal expression of antimicrobial peptides during experimental fungal keratitis. Curr Eye Res 35:872–879

    Article  PubMed  CAS  Google Scholar 

  88. Gao N, Kumar A, Guo H, Wu X, Wheater M, Yu F-S (2011) Topical flagellin mediated innate defence against Candida albicans keratitis. Invest Ophthalmol Vis Sci (in press)

  89. Tu EY, Joslin CE (2010) Recent outbreaks of atypical contact lens-related keratitis: what have we learned? Am J Ophthalmol 150:602–608

    Article  PubMed  Google Scholar 

  90. Schuster FL, Jacobs LS (1992) Effects of magainins on ameba and cyst stages of Acanthamoeba polyphaga. Antimicrob Agents Chemother 36:1263–1271

    PubMed  CAS  Google Scholar 

  91. Otri AM, Mohammed I, Abedin A, Cao Z, Hopkinson A, Panjwani N, Dua HS (2010) Antimicrobial peptides expression by ocular surface cells in response to Acanthamoeba castellanii: an in vitro study. Br J Ophthalmol 94:1523–1527

    Article  PubMed  CAS  Google Scholar 

  92. Maltseva IA, Fleiszig SM, Evans DJ, Kerr S, Sidhu SS, McNamara NA, Basbaum C (2007) Exposure of human corneal epithelial cells to contact lenses in vitro suppresses the upregulation of human beta-defensin-2 in response to antigens of Pseudomonas aeruginosa. Exp Eye Res 85:142–153

    Article  PubMed  CAS  Google Scholar 

  93. Linzmeier RM, Ganz T (2005) Human defensin gene copy number polymorphisms: comprehensive analysis of independent variation in alpha- and beta-defensin regions at 8p22–p23. Genomics 86:423–430

    Article  PubMed  CAS  Google Scholar 

  94. Hollox EJ (2008) Copy number variation of beta-defensins and relevance to disease. Cytogenet Genome Res 123:148–155

    Article  PubMed  CAS  Google Scholar 

  95. Milanese M, Segat L, Arraes LC, Garzino-Demo A, Crovella S (2009) Copy number variation of defensin genes and HIV infection in Brazilian children. J Acquir Immune Defic Syndr 50:331–333

    Article  PubMed  CAS  Google Scholar 

  96. Carter J, Churchill AJ, Gorman C, Haynes R (2007) A case of bilateral endophthalmitis and carriage of beta-defensin 1 44CC genotype. Br J Ophthalmol 91:1249–1250

    Article  PubMed  Google Scholar 

  97. Carter JG, West SK, Painter S, Haynes RJ, Churchill AJ (2010) β-Defensin 1 haplotype associated with postoperative endophthalmitis. Acta Ophthalmol 88:786–790

    Google Scholar 

  98. Brewitt H, Sistani F (2001) Dry eye disease: the scale of the problem. Surv Ophthalmol 45(s2):S199

    Article  PubMed  Google Scholar 

  99. Gilbard JP, Farris RL, Santamaria J III (1978) Osmolarity of tear microvolumes in keratoconjunctivitis sicca. Arch Ophthalmol 96:677–681

    PubMed  CAS  Google Scholar 

  100. Farris RL (1994) Tear osmolarity—a new gold standard? Adv Exp Med Biol 350:495–503

    PubMed  CAS  Google Scholar 

  101. Afonso AA, Obrin L, Monroy DC, Selzer M, Lokeshwar B, Pflugfelder SC (1999) Tear fluid gelatinase B activity correlates with IL-alpha concentrations and fluorescein clearance in ocular rosacea. Invest Ophthalmol Vis Sci 40:2506–2512

    PubMed  CAS  Google Scholar 

  102. Pflugfelder SC, Jones D, Ji Z, Afonso A, Monroy D (1999) Altered cytokine balance in tear fluid and conjunctiva of patients with Sjogrens syndrome keratoconjunctivitis sicca. Curr Eye Res 19:201–211

    Article  PubMed  CAS  Google Scholar 

  103. Solomon A, Dursun D, Liu Z, Xie Y, Macri A, Pflugfelder SC (2001) Pro- and anti-inflammatory forms of interleukin-1 in the tear fluid and conjunctiva of patients with dry-eye disease. Invest Ophthalmol Vis Sci 42:2283–2292

    PubMed  CAS  Google Scholar 

  104. Bron AJ, Tiffany JM, Yokoi N, Gouveia SM (2002) Using osmolarity to diagnose dry eye: a compartmental hypothesis and review of our assumptions. Adv Exp Med Biol 506:1087–1095

    PubMed  Google Scholar 

  105. Kawasaki S, Kawamoto S, Yokoi N, Connon C, Minesaki Y, Kinoshita S, Okubo K (2003) Up-regulated gene expression in the conjunctival epithelium of patients with Sjogren’s syndrome. Exp Eye Res 77:17–26

    Article  PubMed  CAS  Google Scholar 

  106. Narayanan S, Manning J, Proske R, McDermott AM (2006) Effect of hyperosmolality on beta-defensin gene expression by human corneal epithelial cells. Cornea 25:1063–1068

    Article  PubMed  Google Scholar 

  107. Vivino FB, Minerva P, Huang CH, Orlin SE (2001) Corneal melt as the initial presentation of primary Sjogren’s syndrome. J Rheumatol 28:379–382

    PubMed  CAS  Google Scholar 

  108. Stern ME, Gao J, Schwalb TA, Ngo M, Tieu D, Chan CC, Reis BL, Whitcup SM, Thompson D, Smith JA (2002) Conjunctival T-cell subpopulations in Sjorgren’s and no-Sjogren’s patients with dry eye. Invest Ophthalmol Vis Sci 43:2609–2614

    PubMed  Google Scholar 

  109. Hida RY, Ohashi Y, Takano Y, Dogru M, Goto E, Fujishima H, Saito I, Saito K, Fukase Y, Tsubota K (2005) Elevated levels of human α-defensin in tears of patients with allergic conjunctival disease complicated by corneal lesions: detection by SELDI protein chip systems and quantification. Curr Eye Res 30:723–730

    Article  PubMed  Google Scholar 

  110. Ikeda A, Nakanishi Y, Sakimoto T, Shoji J, Sawa M, Nemoto N (2006) Expression of β defensins in ocular surface tissue of experimentally developed allergic conjunctivitis mouse model. Jpn J Ophthalmol 50:106

    Google Scholar 

  111. Larrick JW, Morgan JG, Palings I, Hirata M, Yen MH (1991) Complementary DNA sequence of rabbit CAP18—a unique lipopolysaccharide binding protein. Biochem Biophys Res Commun 179:170–175

    Article  PubMed  CAS  Google Scholar 

  112. Larrick J, Hirata M, Balint R, Lee J, Zhong J, Wright SC (1995) Human CAP 18: a novel antimicrobial lipopolysaccharide-binding protein. Infect Immun 63:1291–1297

    PubMed  CAS  Google Scholar 

  113. Ohgami K, Ilieva IB, Shiratori K, Isogai E, Yoshida K, Kotake S, Nishida T, Mizuki N, Ohno S (2003) Effect of human cationic antimicrobial peptide protein 18 peptide on endotoxin-induced uveitis in rats. Invest Ophthalmol Vis Sci 44:4412–4418

    Article  PubMed  Google Scholar 

  114. Jager K, Garreis F, Posa A, Dunse M, Paulsen FP (2010) Functional relationship between cationic amino acid transporters and beta-defensins: implications for dry skin diseases and the dry eye. Ann Anat 192:65–69

    Article  PubMed  CAS  Google Scholar 

  115. Jager K, Bonisch U, Risch M, Worlitzsch D, Paulsen F (2009) Detection and regulation of cationic amino acid transporters in healthy and diseased ocular surface. Invest Ophthalmol Vis Sci 50:1112–1121

    Article  PubMed  Google Scholar 

  116. Befus AD, Mowat C, Gilchrist M, Hu J, Solomon S, Bateman A (1999) Neutrophil defensins induce histamine secretion from mast cells: mechanisms of action. J Immunol 163:947–953

    PubMed  CAS  Google Scholar 

  117. Niyonsaba F, Someya A, Hirata M, Ogawa H, Nagaoka I (2001) Evaluation of the effects of peptide antibiotics human beta-defensins-1/-2 and LL-37 on histamine release and prostaglandin D(2) production from mast cells. Eur J Immunol 31:1066–1075

    Article  PubMed  CAS  Google Scholar 

  118. van Wetering S, Mannesse-Lazeroms SPG, van Sterkenburg MA, Daha MR, Dijkman JH, Hiemstra PS (1997) Effect of defensins on interleukin-8 synthesis in airway epithelial cells. Am J Physiol 272:L888–L896

    PubMed  Google Scholar 

  119. van Wetering S, Mannesse-Lazeroms SPG, van Sterkenburg MA, Hiemstra PS (2002) Neutrophil defensins stimulate the release of cytokines by airway epithelial cells: modulation by dexamethasone. Inflamm Res 51:8–15

    Article  PubMed  Google Scholar 

  120. Tjabringa GS, Aarbiou J, Ninaber DK, Drijfhout JW, Sorensen OE, Borregaard N, Rabe KF, Hiemstra PS (2003) The antimicrobial peptide LL-37 activates innate immunity at the airway epithelial surface by transactivation of the epidermal growth factor receptor. J Immunol 171:6690–6696

    PubMed  CAS  Google Scholar 

  121. Niyonsaba F, Ushio H, Nagaoka I, Okumura K, Ogawa H (2005) The human beta-defensins (-1, -2, -3, -4) and cathelicidin LL-37 induce IL-18 secretion through p38 and ERK MAPK activation in primary human keratinocytes. J Immunol 175:1776–1784

    PubMed  CAS  Google Scholar 

  122. Garcia JR, Jaumann F, Schulz S, Krause A, Rodriguez-Jimenez J, Forssmann U, Adermann K, Kluver E, Vogelmeier C, Becker D, Hedrich R, Forssmann WG, Bals R (2001) Identification of a novel, multifunctional beta-defensin (human beta-defensin 3) with specific antimicrobial activity. Its interaction with plasma membranes of Xenopus oocytes and the induction of macrophage chemoattraction. Cell Tissue Res 306:257–264

    Article  PubMed  CAS  Google Scholar 

  123. Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, Anderson M, Schroder JM, Wang JM, Howard OM, Oppenheim JJ (1999) Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286:525–528

    Article  PubMed  CAS  Google Scholar 

  124. Yang De, Chen Q, Schmidt AP, Andersin GM, Wang JM, Wooters J, Oppenheim JJ, Chertov O (2000) LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL-1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes and T cells. J Exp Med 192:1069–1074

    Article  PubMed  CAS  Google Scholar 

  125. Kurpakus-Wheater M, Kernacki KA, Hazlett LD (2001) Maintaining corneal integrity. How the “window” stays clear. Prog Histochem Cytochem 36:185–259

    PubMed  CAS  Google Scholar 

  126. McDermott AM, Redfern RL, Zhang B (2001) Human β-defensin 2 is up-regulated during re-epithelialization of the cornea. Curr Eye Res 22:64–67

    Article  PubMed  CAS  Google Scholar 

  127. Yin J, Yu FS (2010) LL-37 promotes high glucose-attenuated epithelial wound healing via EGFR transactivation in organ cultured corneas. Invest Ophthalmol Vis Sci 51:1891–1897

    Article  PubMed  Google Scholar 

  128. Li J, Raghunath M, Tan D, Lareu RR, Chen ZC, Beuerman RW (2006) Defensins HNP1 and HBD2 stimulation of wound-associated responses in human conjunctival fibroblasts. Invest Ophthalmol Vis Sci 47:3811–3819

    Article  PubMed  Google Scholar 

  129. Li J, Zhu HY, Beuerman RW (2009) Stimulation of specific cytokines in human conjunctival epithelial cells by defensins HNP1, HBD-2 and HBD-3. Invest Ophthalmol Vis Sci 50:644–653

    Article  PubMed  Google Scholar 

  130. Koczulla R, von Degenfeld G, Kupatt C, Krotz F, Zahler S, Gloe T, Issbrucker K, Unterberger P, Zaiou M, Lebherz C, Karl A, Raake P, Pfosser A, Boekstegers P, Welsch U, Heimstra PS, Vogelmeier C, Gallo RL, Clauss M, Bals R (2003) An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest 111:1665–1672

    PubMed  CAS  Google Scholar 

  131. Chavakis T, Cines DB, Rhee JS, Liang OD, Schubert U, Hammes HP, Higazi AA, Nawroth PP, Preissner KT, Bdeir K (2004) Regulation of neovascularisation by human neutrophil peptides (alpha-defensins): a link between inflammation and angiogenesis. FASEB J 18:1306–1308

    PubMed  CAS  Google Scholar 

  132. Economopoulou M, Bdeir K, Cines DB, Fogt F, Bdeir Y, Lubkowski J, Lu W, Preissner KT, Hammes HP, Chavakis T (2005) Inhibition of pathologic retinal neovascularisation by alpha-defensins. Blood 106:3831–3838

    Article  PubMed  CAS  Google Scholar 

  133. Hanckock RE, Sahl HG (2006) Antimicrobial and host-defence peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557

    Article  CAS  Google Scholar 

  134. Nos-Barbera S, Portoles M, Morilla A, Ubach J, Andreu D, Paterson CA (1997) Effect of hybrid peptides of cecropin A and melittin in an experimental model of bacterial keratitis. Cornea 16:101–106

    Article  PubMed  CAS  Google Scholar 

  135. Brandt CR, Akkarawongsa R, Altmann S, Jose G, Kolb AW, Waring AJ, Lehrer RI (2007) Evaluation of a theta-defensin in a murine model of herpes simplex virus type 1 keratitis. Invest Ophthalmol Vis Sci 48:5118–5124

    Article  PubMed  Google Scholar 

  136. Mannis M (2002) The use of antimicrobial peptides in ophthalmology: an experimental study in corneal preservation and the management of bacterial keratitis. Trans Am Ophthalmol Soc 100:243–271

    PubMed  Google Scholar 

  137. McDermott AM, Rich D, Cullor J, Mannis MJ, Smith W, Reid T, Murphy CJ (2006) The in vitro activity of selected defensins against an isolate of Pseudomonas in the presence of human tears. Br J Ophthalmol 90:609–611

    Article  PubMed  CAS  Google Scholar 

  138. Huang LC, Jean D, McDermott AM (2005) Effect of preservative free artificial tears on the antimicrobial activity of human beta-defensin-2 and cathelicidin LL-37 in vitro. Eye Contact Lens 31:34–38

    Article  PubMed  Google Scholar 

  139. Liu S, Zhou L, Li J, Suresh A, Verma C, Foo YH, Yap EP, Tan DT, Beuerman RW (2008) Linear analogues of human beta-defensin 3: concepts for design of antimicrobial peptides with reduced toxicity to mammalian cells. ChemBioChem 9:964–973

    Article  PubMed  CAS  Google Scholar 

  140. Zhou L, Liu SP, Chen LY, Li J, Ong LB, Guo L, Wohland T, Tang CC, Lakshminarayanan R, Mavinahalli J, Verma C, Beuerman RW (2011) The structural parameters for antimicrobial activity, human epithelial cell cytotoxicity and killing mechanism of synthetic monomer and dimer analogues derived from hBD-3 C-terminal region. Amino Acids 40:123–133

    Article  PubMed  CAS  Google Scholar 

  141. Liu SP, Zhou L, Lakshminarayanan R, Beuerman RW (2010) Multivalent antimicrobial peptides as therapeutics: design principles and structural diversities. Int J Pept Res Ther 16:199–213

    Article  PubMed  CAS  Google Scholar 

  142. Qin G, Cai C, McDermott AM (2008) Influence of local concentration on the antimicrobial efficacy of the cathelicidin LL-37. Invest Ophthalmol Vis Sci 49: e-abstract 4790

    Google Scholar 

  143. McDermott AM, Santos CM, Kolar SS, Kumar A, Cai C (2010) Antimicrobial activity of a cathelicidin derivative covalently attached to fluorous surfaces. Invest Ophthalmol Vis Sci 51: e-abstract 3433

    Google Scholar 

  144. Kumar A, Kolar SS, Zao M, McDermott AM, Cai C (2011) Localization of antimicrobial peptides on polymerized liposomes leading to their enhanced efficacy against Pseudomonas aeruginosa. Mol BioSyst 7:711–713

    Google Scholar 

  145. Schwab IR, Dries D, Cullor J, Smith W, Mannis M, Reid T, Murphy CJ (1992) Corneal storage medium preservation with defensins. Cornea 11:370–375

    Article  PubMed  CAS  Google Scholar 

  146. Reid TW, Steward K, Johnson M, McCartney DL, Mannis MJ, Murphy CJ (1998) Studies on the effect of the bovine neutrophil antibiotic dodeca-peptide (BNP-1) on the viability of human corneal endothelial cells stored in optisol. Invest Ophthalmol Vis Sci 39: ARVO Abstract 358

  147. McAnulty JF, Reid TW, Waller KR, Murphy CJ (2002) Successful six-day kidney preservation using trophic factor supplemented media and simple cold storage. Am J Transplant 2:712–718

    Article  PubMed  CAS  Google Scholar 

  148. Sousa LB, Mannis MJ, Schwab IR, Cullor J, Hosotani H, Smith W, Jaynes J (1996) The use of synthetic cecropin (D5C) in disinfecting contact lens solutions. CLAO J 22:114–117

    PubMed  CAS  Google Scholar 

  149. Mathews SM, Spallholz JE, Grimson MJ, Dubielzig RR, Gray T, Reid TW (2006) Prevention of bacterial colonization of contact lenses with covalently attached selenium and effects on the rabbit cornea. Cornea 25:806–814

    Article  PubMed  Google Scholar 

  150. Zhu H, Kumar A, Ozkan J, Bandara R, Ding A, Perera I, Steinberg P, Kumar N, Lao W, Griesser SS, Britcher L, Griesser HJ, Willcox MD (2008) Fimbrolide-coated antimicrobial lenses: their in vitro and in vivo effects. Optom Vis Sci 85:292–300

    Article  PubMed  Google Scholar 

  151. Willcox MD, Hume EB, Aliwarga Y, Kumar N, Cole N (2008) A novel cationic-peptide coating for the prevention of microbial colonization on contact lenses. J Appl Microbiol 105:1817–1825

    Article  PubMed  CAS  Google Scholar 

  152. Cole N, Human EB, Vijay AK, Sankaridurg P, Kumar N, Willcox MD (2010) In vivo performance of melamine as an antimicrobial coating for contact lenses in models of CLARE and CLPU. Invest Ophthalmol Vis Sci 51:390–395

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Kimberly Thompson of the University of Houston, College of Optometry Audio Visual Services for drawing Fig. 1. The authors’ research on HDPs in the eye is supported by grants from the National Eye Institute (EY13175, EY7551) and collaborative grants with Dr. C. Cai awarded by the National Science Foundation (DMR-0706627) and National Eye Institute (EY18303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison M. McDermott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolar, S.S., McDermott, A.M. Role of host-defence peptides in eye diseases. Cell. Mol. Life Sci. 68, 2201–2213 (2011). https://doi.org/10.1007/s00018-011-0713-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0713-7

Keywords

Navigation