Skip to main content

Advertisement

Log in

Lipid complexes with cationic peptides and OAKs; their role in antimicrobial action and in the delivery of antimicrobial agents

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Antimicrobial agents are toxic to bacteria by a variety of mechanisms. One mechanism that is very dependent on the lipid composition of the bacterial membrane is the clustering of anionic lipid by cationic antimicrobial agents. Certain species of oligo-acyl-lysine (OAK) antimicrobial agents are particularly effective in clustering anionic lipids in mixtures mimicking the composition of bacterial membranes. The clustering of anionic lipids by certain cationic antimicrobial agents contributes to the anti-bacterial action of these agents. Bacterial membrane lipids are a determining factor, resulting in some species of bacteria being more susceptible than others. In addition, lipids can be used to increase the effectiveness of antimicrobial agents when administered in vivo. Therefore, we review some of the structures in which lipid mixtures can assemble, to more effectively be utilized as antimicrobial delivery systems. We describe in more detail the complexes formed between mixtures of lipids mimicking bacterial membranes and an OAK and their usefulness in synergizing with antibiotics to overcome bacterial multidrug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette

DMPC:

Dimyristoyl phosphatidylcholine

DMPG:

Dimyristoyl phosphatidylglycerol

DMPE:

Dimyristoyl phosphatidylethanolamine

DOPE:

Dioleoyl phosphatidylethanolamine

DOPS:

Dioleoyl phosphatidylserine

EM:

Electron microscopy

MDR:

Multidrug resistant

MIC:

Minimum inhibitory concentration

MLVs:

Multilamellar vesicles

OAK:

Oligo-acyl-lysine

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PEG-PE:

Polyethylene glycol linked covalently to the amino group of PE

POPE:

1-palmitoyl-2-oleoyl phosphatidylethanolamine

PS:

Phosphatidylserine

RND:

Resistance-nodulation-division

TMCL:

Tetramyristoyl cardiolipin

TOCL:

Tetraoleoyl cardiolipin

References

  1. Wang G (2010) Antimicrobial peptides: discovery, design and novel therapeutic strategies. 1–230

  2. Epand RM, Epand RF (2010) Biophysical analysis of membrane-targeting antimicrobial peptides: membrane properties and the design of peptides specifically targeting Gram-negative bacteria. In: Wang G (ed) Antimicrobial peptides: discovery, design and novel therapeutic strategies, pp 116–127

  3. Epand RM and Epand RF (2010) Bacterial membrane lipids in the action of antimicrobial agents. J Peptide Sci 17:298–305

    Google Scholar 

  4. Epand RM, Vogel HJ (1999) Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta 1462:11–28

    Article  PubMed  CAS  Google Scholar 

  5. Chen FY, Lee MT, Huang HW (2002) Sigmoidal concentration dependence of antimicrobial peptide activities: a case study on alamethicin. Biophys J 82:908–914

    Article  PubMed  CAS  Google Scholar 

  6. Matsuzaki K (1998) Magainins as paradigm for the mode of action of pore forming polypeptides. Biochim Biophys Acta 1376:391–400

    PubMed  CAS  Google Scholar 

  7. Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Biopolymers 66:236–248

    Article  PubMed  CAS  Google Scholar 

  8. Yang L, Gordon VD, Mishra A, Som A, Purdy KR, Davis MA, Tew GN, Wong GCL (2007) Synthetic antimicrobial oligomers induce a composition-dependent topological transition in membranes. J Am Chem Soc 129:12141–12147

    Article  PubMed  CAS  Google Scholar 

  9. Epand RF, Sarig H, Mor A, Epand RM (2009) Cell-wall interactions and the selective bacteriostatic activity of a miniature oligo-acyl-lysyl. Biophys J 97:2250–2257

    Article  PubMed  CAS  Google Scholar 

  10. Marchand C, Krajewski K, Lee HF, Antony S, Johnson AA, Amin R, Roller P, Kvaratskhelia M, Pommier Y (2006) Covalent binding of the natural antimicrobial peptide indolicidin to DNA abasic sites. Nucleic Acids Res 34:5157–5165

    Article  PubMed  CAS  Google Scholar 

  11. Breukink E, Wiedemann I, van Kraaij C, Kuipers OP, Sahl HG, de Kruijff B (1999) Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286:2361–2364

    Article  PubMed  CAS  Google Scholar 

  12. Almeida PF, Pokorny A (2009) Mechanisms of antimicrobial, cytolytic, and cell-penetrating peptides: from kinetics to thermodynamics. Biochemistry 48:8083–8093

    Article  PubMed  CAS  Google Scholar 

  13. Hornung V, Latz E (2010) Intracellular DNA recognition. Nat Rev Immunol 10:123–130

    Article  PubMed  CAS  Google Scholar 

  14. Joshi S, Bisht GS, Rawat DS, Kumar A, Kumar R, Maiti S, Pasha S (2010) Interaction studies of novel cell selective antimicrobial peptides with model membranes and E. coli ATCC 11775. Biochim Biophys Acta 1798:1864–1875

    Article  PubMed  CAS  Google Scholar 

  15. Shin S, Kim JK, Lee JY, Jung KW, Hwang JS, Lee J, Lee DG, Kim I, Shin SY, Kim Y (2009) Design of potent 9-mer antimicrobial peptide analogs of protaetiamycine and investigation of mechanism of antimicrobial action. J Pept Sci 15:559–568

    Article  PubMed  CAS  Google Scholar 

  16. Matsuzaki K (2009) Control of cell selectivity of antimicrobial peptides. Biochim Biophys Acta 1788:1687–1692

    Article  PubMed  CAS  Google Scholar 

  17. Epand RM, Epand RF, Arnusch CJ, Papahadjopoulos-Sternberg B, Wang G, Shai Y (2010) Lipid clustering by three homologous arginine-rich antimicrobial peptides is insensitive to amino acid arrangement and induced secondary structure. Biochim Biophys Acta-Biomembranes 1798:1272–1280

    Article  CAS  Google Scholar 

  18. Epand RF, Maloy L, Ramamoorthy A, Epand RM (2010) Amphipathic helical cationic antimicrobial peptides promote rapid formation of crystalline states in the presence of phosphatidylglycerol: lipid clustering in anionic membranes. Biophys J 98:2564–2573

    Article  PubMed  CAS  Google Scholar 

  19. Epand RM, Rotem S, Mor A, Berno B, Epand RF (2008) Bacterial membranes as predictors of antimicrobial potency. J Am Chem Soc 130:14346–14352

    Article  PubMed  CAS  Google Scholar 

  20. Epand RF, Sarig H, Ohana D, Papahadjopoulos-Sternberg B, Mor A, Epand RM (2011) Physical properties affecting cochleate formation and morphology using antimicrobial oligo-acyl-lysyl peptide mimetics and mixtures mimicking the composition of bacterial membranes in the absence of divalent cations. J Phys Chem B 115:2287–2293

    Google Scholar 

  21. Peschel A, Jack RW, Otto M, Collins LV, Staubitz P, Nicholson G, Kalbacher H, Nieuwenhuizen WF, Jung G, Tarkowski A, van Kessel KP, van Strijp JA (2001) Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J Exp Med 193:1067–1076

    Article  PubMed  CAS  Google Scholar 

  22. Camargo IL, Neoh HM, Cui L, Hiramatsu K (2008) Serial daptomycin selection generates daptomycin-nonsusceptible Staphylococcus aureus strains with a heterogeneous vancomycin-intermediate phenotype. Antimicrob Agents Chemother 52:4289–4299

    Article  PubMed  CAS  Google Scholar 

  23. Mishra NN, Yang SJ, Sawa A, Rubio A, Nast CC, Yeaman MR, Bayer AS (2009) Analysis of cell membrane characteristics of in vitro-selected daptomycin-resistant strains of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 53:2312–2318

    Article  PubMed  CAS  Google Scholar 

  24. Ernst CM, Staubitz P, Mishra NN, Yang SJ, Hornig G, Kalbacher H, Bayer AS, Kraus D, Peschel A (2009) The bacterial defensin resistance protein MprF consists of separable domains for lipid lysinylation and antimicrobial peptide repulsion. PLoS Pathog 5:e1000660

    Article  PubMed  Google Scholar 

  25. Lehrer RI, Barton A, Ganz T (1988) Concurrent assessment of inner and outer membrane permeabilization and bacteriolysis in E. coli by multiple-wavelength spectrophotometry. J Immunol Methods 108:153–158

    Article  PubMed  CAS  Google Scholar 

  26. Gould D (2009) Effective strategies for prevention and control of Gram-negative infections. Nurs Stand 23:42–46

    PubMed  Google Scholar 

  27. Maragakis LL (2010) Recognition and prevention of multidrug-resistant Gram-negative bacteria in the intensive care unit. Crit Care Med 38:S345–S351

    Article  PubMed  CAS  Google Scholar 

  28. Singh S (2010) Nanomedicine-nanoscale drugs and delivery systems. J Nanosci Nanotechnol 10:7906–7918

    Article  PubMed  CAS  Google Scholar 

  29. Waterhouse DN, Madden TD, Cullis PR, Bally MB, Mayer LD, Webb MS (2005) Preparation, characterization, and biological analysis of liposomal formulations of vincristine. Methods Enzymol 391:40–57

    Article  PubMed  CAS  Google Scholar 

  30. Parr MJ, Ansell SM, Choi LS, Cullis PR (1994) Factors influencing the retention and chemical stability of poly(ethylene glycol)-lipid conjugates incorporated into large unilamellar vesicles. Biochim Biophys Acta 1195:21–30

    Article  PubMed  CAS  Google Scholar 

  31. Woodle MC, Lasic DD (1992) Sterically stabilized liposomes. Biochim Biophys Acta 1113:171–199

    PubMed  CAS  Google Scholar 

  32. Paliwal SR, Paliwal R, Mishra N, Mehta A, Vyas SP (2010) A novel cancer targeting approach based on estrone anchored stealth liposome for site-specific breast cancer therapy. Curr Cancer Drug Targets 10:343–353

    Article  PubMed  CAS  Google Scholar 

  33. Parr MJ, Masin D, Cullis PR, Bally MB (1997) Accumulation of liposomal lipid and encapsulated doxorubicin in murine Lewis lung carcinoma: the lack of beneficial effects by coating liposomes with poly(ethylene glycol). J Pharmacol Exp Ther 280:1319–1327

    PubMed  CAS  Google Scholar 

  34. Koziara JM, Lockman PR, Allen DD, Mumper RJ (2006) The blood-brain barrier and brain drug delivery. J Nanosci Nanotechnol 6:2712–2735

    Article  PubMed  CAS  Google Scholar 

  35. Verkleij AJ, de Kruijff B, Ververgaert PH, Tocanne JF, van Deenen LL (1974) The influence of pH, Ca2+ and protein on the thermotropic behaviour of the negatively charged phospholipid, phosphatidylglycerol. Biochim Biophys Acta 339:432–437

    Article  PubMed  CAS  Google Scholar 

  36. Tocanne JF, Ververgaert PH, Verkleij AJ, van Deenen LL (1974) A monolayer and freeze-etching study of charged phospholipids. I. Effects of ions and pH on the ionic properties of phosphatidylglycerol and lysylphosphatidylglycerol. Chem Phys Lipids 12:201–219

    Article  PubMed  CAS  Google Scholar 

  37. Ververgaert PH, de KB, Verkleij AJ, Tocanne JF, Van Deened LL (1975) Calorimetric and freeze-etch study of the influence of Mg2+ on the thermotropic behaviour of phosphatidylglycerol. Chem Phys Lipids 14:97–101

    Article  PubMed  CAS  Google Scholar 

  38. Papahadjopoulos D, Poste G, Schaeffer BE, Vail WJ (1974) Membrane fusion and molecular segregation in phospholipid vesicles. Biochim Biophys Acta 352:10–28

    Article  PubMed  CAS  Google Scholar 

  39. Papahadjopoulos D, Vail WJ, Jacobson K, Poste G (1975) Cochleate lipid cylinders: formation by fusion of unilamellar lipid vesicles. Biochim Biophys Acta 394:483–491

    Article  PubMed  CAS  Google Scholar 

  40. Evans CC, Zasadzinski J (2003) Encapsulating vesicles and colloids from cochleate cylinders. Langmuir 19:3109–3113

    Article  CAS  Google Scholar 

  41. Walker SA, Kennedy MT, Zasadzinski JA (1997) Encapsulation of bilayer vesicles by self-assembly. Nature 387:61–64

    Article  PubMed  CAS  Google Scholar 

  42. Boyer C, Zasadzinski JA (2007) Multiple lipid compartments slow vesicle contents release in lipases and serum. ACS Nano 1:176–182

    Article  PubMed  CAS  Google Scholar 

  43. Zarif L (2002) Elongated supramolecular assemblies in drug delivery. J Control Release 81:7–23

    Article  PubMed  CAS  Google Scholar 

  44. Rao R, Squillante E III, Kim KH (2007) Lipid-based cochleates: a promising formulation platform for oral and parenteral delivery of therapeutic agents. Crit Rev Ther Drug Carrier Syst 24:41–61

    PubMed  CAS  Google Scholar 

  45. Livne L, Epand RF, Papahadjopoulos-Sternberg B, Epand RM, Mor A (2010) OAK-based cochleates as a novel approach to overcome multidrug resistance in bacteria. FASEB J 24:5092–5101

    Article  PubMed  CAS  Google Scholar 

  46. Flach CR, Mendelsohn R (1993) A new infrared spectroscopic marker for cochleate phases in phosphatidylserine-containing model membranes. Biophys J 64:1113–1121

    Article  PubMed  CAS  Google Scholar 

  47. Sternberg B (1996) Liposomes as a model for membrane structure and structural transformations: a liposome album. In: Lasic DD, Barenholz Y (eds) Handbook of nonmedical applications of liposomes, vol IV. From gene delivery and diagnosis to ecology. CRC Press, Boca Raton, pp .271–297

  48. Sternberg B (1998) Ultrastructural morphology of cationic liposome-DNA complexes for gene therapy. 395–427

  49. Papahadjopoulos-Sternberg B (2005) Comparison of freeze-fracture- with cryo-electron microscopy on molecular assemblies suitable for drug and gene delivery. Microsc Microanal 11:1048–1049

    Article  Google Scholar 

  50. Day EP, Ho JT, Kunze RK Jr, Sun ST (1977) Dynamic light scattering study of calcium-induced fusion in phospholipid vesicles. Biochim Biophys Acta 470:503–508

    Article  PubMed  CAS  Google Scholar 

  51. Syed UM, Woo AF, Plakogiannis F, Jin T, Zhu H (2008) Cochleates bridged by drug molecules. Int J Pharm 363:118–125

    Article  PubMed  CAS  Google Scholar 

  52. Ramani K, Balasubramanian SV (2003) Fluorescence properties of Laurdan in cochleate phases. Biochim Biophys Acta 1618:67–78

    Article  PubMed  CAS  Google Scholar 

  53. Mannino RJ, Canki M, Feketeova E, Scolpino AJ, Wang Z, Zhang F, Kheiri MT, Gould-Fogerite S (1998) Targeting immune response induction with cochleate and liposome-based vaccines. Adv Drug Deliv Rev 32:273–287

    Article  PubMed  Google Scholar 

  54. Zarif L, Graybill JR, Perlin D, Najvar L, Bocanegra R, Mannino RJ (2000) Antifungal activity of amphotericin B cochleates against Candida albicans infection in a mouse model. Antimicrob Agents Chemother 44:1463–1469

    Article  PubMed  CAS  Google Scholar 

  55. Santangelo R, Paderu P, Delmas G, Chen ZW, Mannino R, Zarif L, Perlin DS (2000) Efficacy of oral cochleate-amphotericin B in a mouse model of systemic candidiasis. Antimicrob Agents Chemother 44:2356–2360

    Article  PubMed  CAS  Google Scholar 

  56. Perez O, Bracho G, Lastre M, Mora N, Del CJ, Gil D, Zayas C, Acevedo R, Gonzalez D, Lopez JA, Taboada C, Turtle C, Solis RL (2004) Novel adjuvant based on a proteoliposome-derived cochleate structure containing native lipopolysaccharide as a pathogen-associated molecular pattern. Immunol Cell Biol 82:603–610

    Article  PubMed  CAS  Google Scholar 

  57. Campo JD, Zayas C, Romeu B, Acevedo R, Gonzalez E, Bracho G, Cuello M, Cabrera O, Balboa J, Lastre M (2009) Mucosal immunization using proteoliposome and cochleate structures from Neisseria meningitidis serogroup B induce mucosal and systemic responses. Methods 49:301–308

    Article  PubMed  Google Scholar 

  58. Perez O, Bracho G, Lastre M, Zayas C, Gonzalez D, Gil D, del CJ, Acevedo R, Taboada C, Rodriguez T, Fajardo ME, Sierra G, Campa C, Mora N, Barbera R, Solis RL (2006) Proteliposome-derived cochleate as an immunomodulator for nasal vaccine. Vaccine 24(Suppl 2):S2–S3

    Google Scholar 

  59. Gil D, Bracho G, Zayas C, del Campo J, Acevedo R, Toledo A, Lastre M, Perez O (2006) Strategy for determination of an efficient cochleate particle size. Vaccine 24:S92–S93

    Article  Google Scholar 

  60. del Campo J, Lindqvist M, Cuello M, Backstrom M, Cabrerra O, Persson J, Perez O, Harandi AM (2010) Intranasal immunization with a proteoliposome-derived cochleate containing recombinant gD protein confers protective immunity against genital herpes in mice. Vaccine 28:1193–1200

    Article  PubMed  CAS  Google Scholar 

  61. Acevedo R, Callico A, del CJ, Gonzalez E, Cedre B, Gonzalez L, Romeu B, Zayas C, Lastre M, Fernandez S, Oliva R, Garcia L, Perez JL, Perez O (2009) Intranasal administration of proteoliposome-derived cochleates from Vibrio cholerae O1 induce mucosal and systemic immune responses in mice. Methods 49:309–315

    Article  PubMed  CAS  Google Scholar 

  62. Gibson B, Duffy AM, Gould FS, Krause-Elsmore S, Lu R, Shang G, Chen ZW, Mannino RJ, Bouchier-Hayes DJ, Harmey JH (2004) A novel gene delivery system for mammalian cells. Anticancer Res 24:483–488

    PubMed  CAS  Google Scholar 

  63. Miclea RD, Varma PR, Peng A, Balu-Iyer SV (2007) Development and characterization of lipidic cochleate containing recombinant factor VIII. Biochim Biophys Acta 1768:2890–2898

    Article  PubMed  CAS  Google Scholar 

  64. Kates M, Syz JY, Gosser D, Haines TH (1993) pH-dissociation characteristics of cardiolipin and its 2-deoxy analogue. Lipids 28:877–882

    Article  PubMed  CAS  Google Scholar 

  65. Garidel P, Richter W, Rapp G, Blume A (2001) Structural and morphological investigations of the formation of quasi-crystalline phases of 1, 2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG). Phys Chem Chem Phys 3:1504–1513

    Article  CAS  Google Scholar 

  66. Matsumoto K, Kusaka J, Nishibori A, Hara H (2006) Lipid domains in bacterial membranes. Mol Microbiol 61:1110–1117

    Article  PubMed  CAS  Google Scholar 

  67. Elder M, Hitchcock P, Mason FRS, Shipley GG (1977) A refinement analysis of the crystallography of the phospholipid, 1, 2-Dilauroyl-DL-phosphatidylethanolamine, and some remarks on lipid–lipid and lipid-protein interactions. Proc Royal Soc London A 354:157–170

    Article  CAS  Google Scholar 

  68. Hauser H, Pascher I, Pearson RH, Sundell S (1981) Preferred conformation and molecular packing of phosphatidylethanolamine and phosphatidylcholine. Biochim Biophys Acta 650:21–51

    PubMed  CAS  Google Scholar 

  69. Boggs JM (1987) Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function. Biochim Biophys Acta 906:353–404

    PubMed  CAS  Google Scholar 

  70. Pascher I, Sundell S, Harlos K, Eibl H (1987) Conformation and packing properties of membrane lipids: the crystal structure of sodium dimyristoylphosphatidylglycerol. Biochim Biophys Acta 896:77–88

    Article  PubMed  CAS  Google Scholar 

  71. Jacobson K, Papahadjopoulos D (1975) Phase transitions and phase separations in phospholipid membranes induced by changes in temperature, pH, and concentration of bivalent cations. Biochemistry 14:152–161

    Article  PubMed  CAS  Google Scholar 

  72. Li XZ, Nikaido H (2009) Efflux-mediated drug resistance in bacteria: an update. Drugs 69:1555–1623

    Article  PubMed  CAS  Google Scholar 

  73. Nikaido H (2009) Multidrug resistance in bacteria. Annu Rev Biochem 78:119–146

    Article  PubMed  CAS  Google Scholar 

  74. Poole K (2005) Efflux-mediated antimicrobial resistance. J Antimicrob Chemother 56:20–51

    Article  PubMed  CAS  Google Scholar 

  75. Higgins CF (2007) Multiple molecular mechanisms for multidrug resistance transporters. Nature 446:749–757

    Article  PubMed  CAS  Google Scholar 

  76. Paulsen IT, Brown MH, Skurray RA (1996) Proton-dependent multidrug efflux systems. Microbiol Rev 60:575–608

    PubMed  CAS  Google Scholar 

  77. Paulsen IT, Brown MH, Littlejohn TG, Mitchell BA, Skurray RA (1996) Multidrug resistance proteins QacA and QacB from Staphylococcus aureus: membrane topology and identification of residues involved in substrate specificity. Proc Natl Acad Sci USA 93:3630–3635

    Article  PubMed  CAS  Google Scholar 

  78. DeMarco CE, Cushing LA, Frempong-Manso E, Seo SM, Jaravaza TA, Kaatz GW (2007) Efflux-related resistance to norfloxacin, dyes, and biocides in bloodstream isolates of Staphylococcus aureus. Antimicrob Agents Chemother 51:3235–3239

    Article  PubMed  CAS  Google Scholar 

  79. Paulsen IT, Skurray RA, Tam R, Saier MH Jr, Turner RJ, Weiner JH, Goldberg EB, Grinius LL (1996) The SMR family: a novel family of multidrug efflux proteins involved with the efflux of lipophilic drugs. Mol Microbiol 19:1167–1175

    Article  PubMed  CAS  Google Scholar 

  80. Schuldiner S, Granot D, Mordoch SS, Ninio S, Rotem D, Soskin M, Tate CG, Yerushalmi H (2001) Small is mighty: EmrE, a multidrug transporter as an experimental paradigm. News Physiol Sci 16:130–134

    PubMed  CAS  Google Scholar 

  81. Nikaido H (1996) Multidrug efflux pumps of gram-negative bacteria. J Bacteriol 178:5853–5859

    PubMed  CAS  Google Scholar 

  82. Su CC, Long F, Yu EW (2011) The Cus efflux system removes toxic ions via a methionine shuttle. Protein Sci 20:6–18

    Article  PubMed  CAS  Google Scholar 

  83. Miyamae S, Ueda O, Yoshimura F, Hwang J, Tanaka Y, Nikaido H (2001) A MATE family multidrug efflux transporter pumps out fluoroquinolones in Bacteroides thetaiotaomicron. Antimicrob Agents Chemother 45:3341–3346

    Article  PubMed  CAS  Google Scholar 

  84. Morita Y, Kataoka A, Shiota S, Mizushima T, Tsuchiya T (2000) NorM of vibrio parahaemolyticus is an Na(+)-driven multidrug efflux pump. J Bacteriol 182:6694–6697

    Article  PubMed  CAS  Google Scholar 

  85. Davidson AL, Dassa E, Orelle C, Chen J (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72:317–364

    Article  PubMed  CAS  Google Scholar 

  86. Kristiansen JE, Thomsen VF, Martins A, Viveiros M, Amaral L (2010) Non-antibiotics reverse resistance of bacteria to antibiotics. In Vivo 24:751–754

    PubMed  CAS  Google Scholar 

  87. Pages JM, ibert-Franco S, Mahamoud A, Bolla JM, vin-Regli A, Chevalier J, Garnotel E (2010) Efflux pumps of Gram-negative bacteria, a new target for new molecules. Curr Top Med Chem 10(18):1848–1857

    PubMed  CAS  Google Scholar 

  88. Zechini B, Versace I (2009) Inhibitors of multidrug resistant efflux systems in bacteria. Recent Pat Antiinfect Drug Discov 4:37–50

    Article  PubMed  CAS  Google Scholar 

  89. Anantharaman A, Rizvi MS, Sahal D (2010) Synergy with rifampin and kanamycin enhances potency, kill kinetics, and selectivity of de novo-designed antimicrobial peptides. Antimicrob Agents Chemother 54:1693–1699

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Epand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Epand, R.F., Mor, A. & Epand, R.M. Lipid complexes with cationic peptides and OAKs; their role in antimicrobial action and in the delivery of antimicrobial agents. Cell. Mol. Life Sci. 68, 2177–2188 (2011). https://doi.org/10.1007/s00018-011-0711-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0711-9

Keywords

Navigation