Skip to main content
Log in

pH-dissociation characteristics of cardiolipin and its 2′-deoxy analogue

  • Article
  • Published:
Lipids

Abstract

Cardiolipin (CL) is found in inner mitochondrial membranes and the plasma membrane of aerobic prokaryotes. CL is tightly bound to those transmembrane enzymes associated with oxidative phosphorylation. CL has earlier been reported to have a single pK at low pH. We have titrated CL in aqueous suspension (bilayers) and in solution in methanol/water (1∶1, vol/vol) and found it to display two different pK values, pK1 at 2.8 and pK2 initially at 7.5 but shifting upwards to 9.5 as the titration proceeds. The unusually high pK2 might be explained by the formation of a unique hydrogen bond in which the free hydroxyl on the central glycerol forms a cyclic intramolecular hydrogen-bonded structure with one protonated phosphate (P-OH group). We have therefore chemically synthesized the 2′-deoxycardiolipin analogue, which lacks the central free hydroxyl group, and measured its pH-dissociation behavior by potentiometric titration, under the same conditions as those for CL. The absence of the hydroxyl group changes the titration dramatically so that the deoxy analogue displays two closely spaced low pK values (pK1=1.8; pK2=4.0). The anomalous titration behavior of the second dissociation constant of CL may be attributed to the participation of the central glycerol OH group in stabilizing the formation of a cyclic hydrogen-bonded monoprotonated form of CL, which may function as a reservoir of protons at relatively high pH. This function may have an important bearing on proton pumping in biological membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BH:

beef heart

CL:

cardiolipin (diphosphatidylglycerol)

CL-BH:

cardiolipin from beef heart

18∶0-CL (H2-CL-BH):

hydrogenated beef heart cardiolipin

H2-CL-EC:

hydrogenated cardiolipin fromE. coli

cy-17∶0 andcy-19∶0:

9,10-methylenehexadecanoic and octadecanoic acid, respectively

DAG:

diacylglycerols

dCL:

2′-deoxycardiolipin (diphosphatidyl-1,3-propanediol)

16∶0-dCL:

synthetic deoxycardiolipin with palmitoyl (16∶0) as acyl groups

DPG:

dipalmitoylglycerol

DPPA:

dipalmitoyl phosphatidic acid

FAB-MS:

fast-atom bombardment mass spectrometry

FTIR:

Fourier transform infrared spectroscopy

GLC:

gas-liquid chromatography

NMR:

nuclear magnetic resonance

PA:

phosphatidic acid

PPD:

phosphatidylpropanediol

PPOP:

phosphatidylpropanediolphosphate

TLC:

thin-layer chromatography

References

  1. Wasserman, A., Neisser, A., and Bruck, C. (1906)Dt. Med. Wschr. 32, 745–746.

    Google Scholar 

  2. Browning, C.H., Cruickshank, T., and Gilmour, W. (1911)J. Path. Bact. 15, 361–362.

    Article  CAS  Google Scholar 

  3. Noguchi, H. (1911)Z. Immunitäsforsch. Exp. Therap. 9, 715–720.

    CAS  Google Scholar 

  4. Pangborn, M. (1942)J. Biol. Chem. 143, 247–256.

    CAS  Google Scholar 

  5. Pangborn, M. (1947)J. Biol. Chem. 168, 351–361.

    CAS  PubMed  Google Scholar 

  6. Faure, M., and Maréchal, J. (1962)Compt. Rend. Acad. Sc. Paris 256, 4518–4520.

    Google Scholar 

  7. Gray, G.M., and MacFarlane, M.G. (1958)Biochem. J. 70, 409–425.

    PubMed  CAS  Google Scholar 

  8. Benson, A.A., and Strickland, E.H. (1960)Biochim. Biophys. Acta 41, 328–333.

    Article  PubMed  CAS  Google Scholar 

  9. Le Cocq, J., and Ballou, C.E. (1964)Biochemistry 3, 976–980.

    Article  Google Scholar 

  10. de Haas, G.H., Bonsen, P.P.M., and van Deenen, L.L.M. (1966)Biochim. Biophys. Acta 116, 114–124.

    PubMed  Google Scholar 

  11. Few, A.V., Gilby, A.R., and Seaman, G.V.F. (1960)Biochim. Biophys. Acta 38, 130–136.

    Article  PubMed  CAS  Google Scholar 

  12. Coulon-Morelec, M.J., Faure, M., and Maréchal, J. (1962)Bull. Soc. Chim. Biol. 44, 171–183.

    PubMed  CAS  Google Scholar 

  13. Seddon, J.M., Kaye, R.D., and Marsh, D. (1983)Biochim. Biophys. Acta 734, 347–352.

    Article  CAS  Google Scholar 

  14. Cable, M.B., Jacobus, J., and Powell, G.L. (1978)Proc. Natl. Acad. Sci. USA 75, 1227–1231.

    Article  PubMed  CAS  Google Scholar 

  15. Powell, G.L., and Jacobus, J. (1974)Biochemistry 13, 4024–4026.

    Article  PubMed  CAS  Google Scholar 

  16. Marsh, D. (1990)Handbook of Lipid Bilayers, p. 85, CRC Press, Boca Raton.

    Google Scholar 

  17. Luzatti, V., and Chapman, D. (1968)Biological Membranes, Academic Press, New York.

    Google Scholar 

  18. Batenburg, A.M., Hibbeln, J.C.L., Vekleij, A.J., and de Kruijff, B. (1987)Biochim. Biophys. Acta 903, 155–165.

    Article  PubMed  CAS  Google Scholar 

  19. Rose, H.G. (1964)Biochim. Biophys. Acta, 84, 109–113.

    PubMed  CAS  Google Scholar 

  20. Courtade, S., Marinetti, G.V., and Stotz, E. (1967)Biochim. Biophys. Acta 137, 121–134.

    PubMed  CAS  Google Scholar 

  21. Hübner, W., Mantsch, H., and Kates, M. (1991)Biochim. Biophys. Acta 1066, 166–174.

    Article  PubMed  Google Scholar 

  22. Daum, G. (1985)Biochim. Biophys. Acta 822, 1–42.

    PubMed  CAS  Google Scholar 

  23. Robinson, N.C., Zborowski, J., and Talbert, L.H. (1990)Biochemistry 29, 8962–8969.

    Article  PubMed  CAS  Google Scholar 

  24. Eble, K.S., Coleman, W.B., Hantgan, R.R., and Cunningham, C.C. (1990)J. Biol. Chem. 265, 19434–19440.

    PubMed  CAS  Google Scholar 

  25. Horvath, L.I., Drees, M., Klingenberg, M., and Marsh, D. (1990)Biochemistry 29, 10664–10669.

    Article  PubMed  CAS  Google Scholar 

  26. Dale, M.P., and Robinson, N.C. (1988)Biochemistry 27, 8270–8275.

    Article  PubMed  CAS  Google Scholar 

  27. Kagawa, Y., Kandrach, A., and Racker, E. (1973)J. Biol. Chem. 248, 676–684.

    PubMed  CAS  Google Scholar 

  28. Serrano, R., Kanner, B.J., and Racker, E. (1976)J. Biol. Chem. 251, 2453–2461.

    PubMed  CAS  Google Scholar 

  29. Bligh, E.G., and Dyer, W.J. (1959)Can. J. Biochem. Physiol. 37, 911–917.

    PubMed  CAS  Google Scholar 

  30. Kates, M. (1986)Techniques of Lipidology, 2nd edn, pp. 110–111, Elsevier, Amsterdam.

    Google Scholar 

  31. Harris, D.C. (1987)Quantitative Chemical Analysis, 2nd edn., W.H. Freeman and Co., New York.

    Google Scholar 

  32. Kates, M., Palameta, B., and Chan, T.H. (1966)Can. J. Biochem. 44, 707–712.

    Article  PubMed  CAS  Google Scholar 

  33. Cutler, Jr., F.A., Coubere, J.P., Lukes, R.M., Fisher, J.F., Mertel, H.E., Herschman, J., Chemerda, J.M., Sarett, L.M., and Pfister, K., III (1958)J. Am. Chem. Soc. 80, 6303–6320.

    Article  Google Scholar 

  34. Ali, S., and Bittman, R. (1989)Chem. Phys. Lipids 50, 11–21.

    Article  PubMed  CAS  Google Scholar 

  35. Tanford, C., and Kirkwood, J.G. (1957)J. Am. Chem. Soc. 79, 5333–5339.

    Article  CAS  Google Scholar 

  36. Haines, T.H. (1983)Proc. Natl. Acad. Sci. USA 80, 160–164.

    Article  PubMed  CAS  Google Scholar 

  37. Stewart, L.C., Kates, M., and Smith, I.C.P. (1988)Chem. Phys. Lipids 48, 177–188.

    Article  PubMed  CAS  Google Scholar 

  38. Stewart, L.C., Kates, M., Yang, P.W., and Mantsch, H.H. (1990)Biochem. Cell Biol., 68, 266–273.

    Article  CAS  Google Scholar 

  39. Kates, M., Moldoveanu, N., and Stewart, L.C. (1993)Biochim. Biophys. Acta 1169, 46–53.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Kates, M., Syz, JY., Gosser, D. et al. pH-dissociation characteristics of cardiolipin and its 2′-deoxy analogue. Lipids 28, 877–882 (1993). https://doi.org/10.1007/BF02537494

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02537494

Keywords

Navigation