van der Pol E, Hoekstra AG, Sturk A, Otto C, van Leeuwen TG, Nieuwland R (2010) Optical and non-optical methods for detection and characterization of microparticles and exosomes. J Thromb Haemost 8(12):2596–2607
PubMed
Google Scholar
Thery C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9(8):581–593
PubMed
CAS
Article
Google Scholar
Silverman JM, Reiner NE (2011) Exosomes and other microvesicles in infection biology: organelles with unanticipated phenotypes. Cell Microbiol 13(1):1–9
PubMed
CAS
Article
Google Scholar
Rivera J, Cordero RJ, Nakouzi AS, Frases S, Nicola A, Casadevall A (2010) Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins. Proc Natl Acad Sci USA 107(44):19002–19007
PubMed
CAS
Article
Google Scholar
Islam A, Jones H, Hiroi T, Lam J, Zhang J, Moss J, Vaughan M, Levine SJ (2008) cAMP-dependent protein kinase A (PKA) signaling induces TNFR1 exosome-like vesicle release via anchoring of PKA regulatory subunit RIIbeta to BIG2. J Biol Chem 283(37):25364–25371
PubMed
CAS
Article
Google Scholar
Marzesco AM, Janich P, Wilsch-Bräuninger M, Dubreuil V, Langenfeld K, Corbeil D, Huttner WB (2005) Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J Cell Sci 118(Pt 13):2849–2858
Google Scholar
Stinchcombe J, Bossi G, Griffiths GM (2004) Linking albinism and immunity: the secrets of secretory lysosomes. Science 305(5680):55–59
PubMed
CAS
Article
Google Scholar
Davis DM (2007) Intercellular transfer of cell-surface proteins is common and can affect many stages of an immune response. Nat Rev Immunol 7(3):238–243
PubMed
CAS
Article
Google Scholar
Gasser O, Schifferli JA (2004) Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis. Blood 104(8):2543–2548
PubMed
CAS
Article
Google Scholar
Bretting H, Konigsmann K (1979) Investigations on the lectin-producing cells in the sponge Axinella polypoides (Schmidt). Cell Tissue Res 201(3):487–497
PubMed
CAS
Google Scholar
Powell JJ, Thoree V, Pele LC (2007) Dietary microparticles and their impact on tolerance and immune responsiveness of the gastrointestinal tract. Br J Nutr 98(Suppl 1):59–63
Google Scholar
Bona C, Robineaux R, Anteunis A, Heuclin C, Astesano A (1973) Transfer of antigen from macrophages to lymphocytes. II. Immunological significance of the transfer of lipopolysaccharide. Immunology 24 (5):831–840
Google Scholar
Rechavi O, Goldstein I, Kloog Y (2009) Intercellular exchange of proteins: the immune cell habit of sharing. FEBS Lett 583(11):1792–1799
PubMed
CAS
Article
Google Scholar
Trams EG, Lauter CJ, Salem N Jr, Heine U (1981) Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim Biophys Acta 645(1):63–70
PubMed
CAS
Google Scholar
Harding C, Heuser J, Stahl P (1983) Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 97(2):329–339
PubMed
CAS
Article
Google Scholar
Pan BT, Teng K, Wu C, Adam M, Johnstone RM (1985) Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol 101(3):942–948
PubMed
CAS
Article
Google Scholar
Hurley JH, Boura E, Carlson LA, Różycki B (2010) Membrane budding. Cell 143(6):875–87
Google Scholar
Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659
PubMed
CAS
Article
Google Scholar
Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, Rak J (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10(5):619–624
PubMed
CAS
Article
Google Scholar
Izquierdo-Useros N, Naranjo-Gomez M, Archer J, Hatch SC, Erkizia I, Blanco J, Borras FE, Puertas MC, Connor JH, Fernandez-Figueras MT, Moore L, Clotet B, Gummuluru S, Martinez-Picado J (2009) Capture and transfer of HIV-1 particles by mature dendritic cells converges with the exosome-dissemination pathway. Blood 113(12):2732–2741
PubMed
CAS
Article
Google Scholar
Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, Geuze HJ (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183(3):1161–1172
PubMed
CAS
Article
Google Scholar
Chaput N, Thery C (2010) Exosomes: immune properties and potential clinical implementations. Semin Immunopathol (in press)
Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: extracellular organelles important in intercellular communication. J Proteomics 73(10):1907–1920
PubMed
CAS
Article
Google Scholar
Dignat-George F, Boulanger CM (2011) The many faces of endothelial microparticles. Arterioscler Thromb Vasc Biol 31(1):27–33
PubMed
CAS
Article
Google Scholar
Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol (Chapter 3:Unit 3) 22
Fevrier B, Raposo G (2004) Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol 16(4):415–421
PubMed
CAS
Article
Google Scholar
Anand PK (2010) Exosomal membrane molecules are potent immune response modulators. Commun Integr Biol 3(5):405–408
PubMed
Article
CAS
Google Scholar
Lotvall J, Valadi H (2007) Cell to cell signalling via exosomes through esRNA. Cell Adh Migr 1(3):156–158
PubMed
Article
Google Scholar
Belting M, Wittrup A (2008) Nanotubes, exosomes, and nucleic acid-binding peptides provide novel mechanisms of intercellular communication in eukaryotic cells: implications in health and disease. J Cell Biol 183(7):1187–1191
PubMed
CAS
Article
Google Scholar
Admyre C, Telemo E, Almqvist N, Lotvall J, Lahesmaa R, Scheynius A, Gabrielsson S (2008) Exosomes—nanovesicles with possible roles in allergic inflammation. Allergy 63(4):404–408
PubMed
CAS
Article
Google Scholar
Lakkaraju A, Rodriguez-Boulan E (2008) Itinerant exosomes: emerging roles in cell and tissue polarity. Trends Cell Biol 18(5):199–209
PubMed
CAS
Article
Google Scholar
Simpson RJ, Lim JW, Moritz RL, Mathivanan S (2009) Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics 6(3):267–283
PubMed
CAS
Article
Google Scholar
Simons M, Raposo G (2009) Exosomes—vesicular carriers for intercellular communication. Curr Opin Cell Biol 21(4):575–581
PubMed
CAS
Article
Google Scholar
Dimov I, Jankovic Velickovic L, Stefanovic V (2009) Urinary exosomes. Sci World J 9:1107–1118
CAS
Google Scholar
Cocucci E, Racchetti G, Meldolesi J (2009) Shedding microvesicles: artefacts no more. Trends Cell Biol 19(2):43–51
PubMed
CAS
Article
Google Scholar
Chargaff E, West R (1946) The biological significance of the thromboplastic protein of blood. J Biol Chem 166(1):189–197
PubMed
CAS
Google Scholar
Wolf P (1967) The nature and significance of platelet products in human plasma. Br J Haematol 13(3):269–288
PubMed
CAS
Article
Google Scholar
Gyorgy B, Modos K, Pallinger E, Paloczi K, Pasztoi M, Misjak P, Deli MA, Sipos A, Szalai A, Voszka I, Polgar A, Toth K, Csete M, Nagy G, Gay S, Falus A, Kittel A, Buzas EI (2011) Detection and isolation of cell-derived microparticles are compromised by protein complexes due to shared biophysical parameters. Blood 117(4):e39–48
Google Scholar
Yuana Y, Bertina RM, Osanto S (2010) Pre-analytical and analytical issues in the analysis of blood microparticles. Thromb Haemost 105 (3) (in press)
Smalley DM, Sheman NE, Nelson K, Theodorescu D (2008) Isolation and identification of potential urinary microparticle biomarkers of bladder cancer. J Proteome Res 7(5):2088–2096
PubMed
CAS
Article
Google Scholar
Baroni M, Pizzirani C, Pinotti M, Ferrari D, Adinolfi E, Calzavarini S, Caruso P, Bernardi F, Di Virgilio F (2007) Stimulation of P2 (P2X7) receptors in human dendritic cells induces the release of tissue factor-bearing microparticles. FASEB J 21(8):1926–1933
PubMed
CAS
Article
Google Scholar
Kahner BN, Dorsam RT, Kunapuli SP (2008) Role of P2Y receptor subtypes in platelet-derived microparticle generation. Front Biosci 13:433–439
PubMed
CAS
Article
Google Scholar
Leroyer AS, Tedgui A, Boulanger CM (2008) Role of microparticles in atherothrombosis. J Intern Med 263(5):528–537
PubMed
CAS
Article
Google Scholar
MacKenzie A, Wilson HL, Kiss-Toth E, Dower SK, North RA, Surprenant A (2001) Rapid secretion of interleukin-1beta by microvesicle shedding. Immunity 15(5):825–835
PubMed
CAS
Article
Google Scholar
Boilard E, Nigrovic PA, Larabee K, Watts GF, Coblyn JS, Weinblatt ME, Massarotti EM, Remold-O’Donnell E, Farndale RW, Ware J, Lee DM (2010) Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 327(5965):580–583
PubMed
CAS
Article
Google Scholar
Distler JH, Jungel A, Huber LC, Seemayer CA, Reich CF 3rd, Gay RE, Michel BA, Fontana A, Gay S, Pisetsky DS, Distler O (2005) The induction of matrix metalloproteinase and cytokine expression in synovial fibroblasts stimulated with immune cell microparticles. Proc Natl Acad Sci USA 102(8):2892–2897
PubMed
CAS
Article
Google Scholar
Jungel A, Distler O, Schulze-Horsel U, Huber LC, Ha HR, Simmen B, Kalden JR, Pisetsky DS, Gay S, Distler JH (2007) Microparticles stimulate the synthesis of prostaglandin E(2) via induction of cyclooxygenase 2 and microsomal prostaglandin E synthase 1. Arthr Rheum 56(11):3564–3574
CAS
Article
Google Scholar
Giusti I, D’Ascenzo S, Millimaggi D, Taraboletti G, Carta G, Franceschini N, Pavan A, Dolo V (2008) Cathepsin B mediates the pH-dependent proinvasive activity of tumor-shed microvesicles. Neoplasia 10(5):481–488
PubMed
CAS
Google Scholar
Antonyak MA, Li B, Boroughs LK, Johnson JL, Druso JE, Bryant KL, Holowka DA, Cerione RA (2011) Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells. Proc Natl Acad Sci USA 108(12):4852–4857
Google Scholar
Pap E, Pallinger E, Falus A, Kiss AA, Kittel A, Kovacs P, Buzas EI (2008) T lymphocytes are targets for platelet- and trophoblast-derived microvesicles during pregnancy. Placenta 29(9):826–832
PubMed
CAS
Article
Google Scholar
Connor DE, Exner T, Ma DD, Joseph JE (2010) The majority of circulating platelet-derived microparticles fail to bind annexin V, lack phospholipid-dependent procoagulant activity and demonstrate greater expression of glycoprotein Ib. Thromb Haemost 103(5):1044–1052
PubMed
CAS
Article
Google Scholar
Sellam J, Proulle V, Jüngel A, Ittah M, Miceli Richard C, Gottenberg JE, Toti F, Benessiano J, Gay S, Freyssinet JM, Mariette X (2009) Increased levels of circulating microparticles in primary Sjögren’s syndrome, systemic lupus erythematosus and rheumatoid arthritis and relation with disease activity. Arthritis Res Ther 11(5):R156
PubMed
Article
CAS
Google Scholar
Leroyer AS, Anfosso F, Lacroix R, Sabatier F, Simoncini S, Njock SM, Jourde N, Brunet P, Camoin-Jau L, Sampol J, Dignat-George F (2010) Endothelial-derived microparticles: Biological conveyors at the crossroad of inflammation, thrombosis and angiogenesis. Thromb Haemost 104(3):456–463
PubMed
CAS
Article
Google Scholar
Aharon A, Brenner B (2009) Microparticles, thrombosis and cancer. Best Pract Res Clin Haematol 22(1):61–69
PubMed
CAS
Article
Google Scholar
Piccin A, Murphy WG, Smith OP (2007) Circulating microparticles: pathophysiology and clinical implications. Blood Rev 21(3):157–171
PubMed
CAS
Article
Google Scholar
Little KM, Smalley DM, Harthun NL, Ley K (2010) The plasma microparticle proteome. Semin Thromb Hemost 36(8):845–856
PubMed
CAS
Article
Google Scholar
Amabile N, Rautou PE, Tedgui A, Boulanger CM (2010) Microparticles: key protagonists in cardiovascular disorders. Semin Thromb Hemost 36(8):907–916
PubMed
CAS
Article
Google Scholar
Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257
PubMed
CAS
Article
Google Scholar
Sulston JE, Horvitz HR (1977) Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 56(1):110–156
PubMed
Article
CAS
Google Scholar
Fixsen W, Sternberg P, Ellis H, Horvitz R (1985) Genes that affect cell fates during the development of Caenorhabditis elegans. Cold Spring Harb Symp Quant Biol 50:99–104
PubMed
CAS
Google Scholar
Hristov M, Erl W, Linder S, Weber PC (2004) Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro. Blood 104(9):2761–2766
PubMed
CAS
Article
Google Scholar
Beyer C, Pisetsky DS (2010) The role of microparticles in the pathogenesis of rheumatic diseases. Nat Rev Rheumatol 6(1):21–29
PubMed
CAS
Article
Google Scholar
Bergsmedh A, Szeles A, Henriksson M, Bratt A, Folkman MJ, Spetz AL, Holmgren L (2001) Horizontal transfer of oncogenes by uptake of apoptotic bodies. Proc Natl Acad Sci USA 98(11):6407–6411
PubMed
CAS
Article
Google Scholar
Holmgren L, Szeles A, Rajnavolgyi E, Folkman J, Klein G, Ernberg I, Falk KI (1999) Horizontal transfer of DNA by the uptake of apoptotic bodies. Blood 93(11):3956–3963
PubMed
CAS
Google Scholar
Bellone M, Iezzi G, Rovere P, Galati G, Ronchetti A, Protti MP, Davoust J, Rugarli C, Manfredi AA (1997) Processing of engulfed apoptotic bodies yields T cell epitopes. J Immunol 159(11):5391–5399
PubMed
CAS
Google Scholar
Cocca BA, Cline AM, Radic MZ (2002) Blebs and apoptotic bodies are B cell autoantigens. J Immunol 169(1):159–166
PubMed
CAS
Google Scholar
Savill J, Dransfield I, Gregory C, Haslett C (2002) A blast from the past: clearance of apoptotic cells regulates immune responses. Nat Rev Immunol 2(12):965–975
PubMed
CAS
Article
Google Scholar
Dignat-George F, Freyssinet JM, Key NS (2009) Centrifugation is a crucial step impacting microparticle measurement. Platelets 20 (3):225–226; author reply 227–228
Google Scholar
Chen C, Skog J, Hsu CH, Lessard RT, Balaj L, Wurdinger T, Carter BS, Breakefield XO, Toner M, Irimia D (2010) Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip 10(4):505–511
PubMed
CAS
Article
Google Scholar
Booth AM, Fang Y, Fallon JK, Yang JM, Hildreth JE, Gould SJ (2006) Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane. J Cell Biol 172(6):923–935
Google Scholar
Rubin O, Crettaz D, Tissot JD, Lion N (2010) Pre-analytical and methodological challenges in red blood cell microparticle proteomics. Talanta 82(1):1–8
PubMed
CAS
Article
Google Scholar
Lawrie AS, Albanyan A, Cardigan RA, Mackie IJ, Harrison P (2009) Microparticle sizing by dynamic light scattering in fresh-frozen plasma. Vox Sang 96(3):206–212
PubMed
CAS
Article
Google Scholar
Yuana Y, Oosterkamp TH, Bahatyrova S, Ashcroft B, Garcia Rodriguez P, Bertina RM, Osanto S (2010) Atomic force microscopy: a novel approach to the detection of nanosized blood microparticles. J Thromb Haemost 8(2):315–323
PubMed
CAS
Article
Google Scholar
Miyazaki Y, Nomura S, Miyake T, Kagawa H, Kitada C, Taniguchi H, Komiyama Y, Fujimura Y, Ikeda Y, Fukuhara S (1996) High shear stress can initiate both platelet aggregation and shedding of procoagulant containing microparticles. Blood 88(9):3456–3464
PubMed
CAS
Google Scholar
Bode AP, Orton SM, Frye MJ, Udis BJ (1991) Vesiculation of platelets during in vitro aging. Blood 77(4):887–895
PubMed
CAS
Google Scholar
Dey-Hazra E, Hertel B, Kirsch T, Woywodt A, Lovric S, Haller H, Haubitz M, Erdbruegger U (2010) Detection of circulating microparticles by flow cytometry: influence of centrifugation, filtration of buffer, and freezing. Vasc Health Risk Manag 6:1125–1133
PubMed
Google Scholar
Fernández-Llama P, Khositseth S, Gonzales PA, Star RA, Pisitkun T, Knepper MA (2010) Tamm-Horsfall protein and urinary exosome isolation. Kidney Int Apr 77(8):736–742
Article
Google Scholar
Cantin R, Diou J, Belanger D, Tremblay AM, Gilbert C (2008) Discrimination between exosomes and HIV-1: purification of both vesicles from cell-free supernatants. J Immunol Methods 338(1–2):21–30
PubMed
CAS
Article
Google Scholar
Robert S, Poncelet P, Lacroix R, Arnaud L, Giraudo L, Hauchard A, Sampol J, Dignat-George F (2009) Standardization of platelet-derived microparticle counting using calibrated beads and a Cytomics FC500 routine flow cytometer: a first step towards multicenter studies? J Thromb Haemost 7(1):190–197
PubMed
Article
CAS
Google Scholar
Lacroix R, Robert S, Poncelet P, Kasthuri RS, Key NS, Dignat-George F (2010) Standardization of platelet-derived microparticle enumeration by flow cytometry using calibrated beads: results of ISTH SSC collaborative workshop. J Thromb Haemost. doi:10.1111/j.1538-7836.2010.04047.x
Cerri C, Chimenti D, Conti I, Neri T, Paggiaro P, Celi A (2006) Monocyte/macrophage-derived microparticles up-regulate inflammatory mediator synthesis by human airway epithelial cells. J Immunol 177(3):1975–1980
PubMed
CAS
Google Scholar
Enjeti AK, Lincz L, Seldon M (2008) Bio-maleimide as a generic stain for detection and quantitation of microparticles. Int J Lab Hematol 30(3):196–199
PubMed
Article
CAS
Google Scholar
Flaumenhaft R, Dilks JR, Richardson J, Alden E, Patel-Hett SR, Battinelli E, Klement GL, Sola-Visner M, Italiano JE, Jr. (2009) Megakaryocyte-derived microparticles: direct visualization and distinction from platelet-derived microparticles. Blood 113(5):1112–1121. doi:10.1182/blood-2008-06-163832
Google Scholar
Rood IM, Deegens JK, Merchant ML, Tamboer WP, Wilkey DW, Wetzels JF, Klein JB (2010) Comparison of three methods for isolation of urinary microvesicles to identify biomarkers of nephrotic syndrome. Kidney Int 78(8):810–816
PubMed
CAS
Article
Google Scholar
Krishnamoorthy L, Bess JW Jr, Preston AB, Nagashima K, Mahal LK (2009) HIV-1 and microvesicles from T cells share a common glycome, arguing for a common origin. Nat Chem Biol 5(4):244–250
PubMed
CAS
Article
Google Scholar
Park IW, He JJ (2010) HIV-1 is budded from CD4+ T lymphocytes independently of exosomes. Virol J 7:234
PubMed
Article
CAS
Google Scholar
Walker JD, Maier CL, Pober JS (2009) Cytomegalovirus-infected human endothelial cells can stimulate allogeneic CD4+ memory T cells by releasing antigenic exosomes. J Immunol 182(3):1548–1559
Google Scholar
Meckes DG Jr, Shair KH, Marquitz AR, Kung CP, Edwards RH, Raab-Traub N (2010) Human tumor virus utilizes exosomes for intercellular communication. Proc Natl Acad Sci USA 107(47):20370–20375
Google Scholar
Qu Y, Ramachandra L, Mohr S, Franchi L, Harding CV, Nunez G, Dubyak GR (2009) P2X7 receptor-stimulated secretion of MHC class II-containing exosomes requires the ASC/NLRP3 inflammasome but is independent of caspase-1. J Immunol 182(8):5052–5062
PubMed
CAS
Article
Google Scholar
Constantinescu P, Wang B, Kovacevic K, Jalilian I, Bosman GJ, Wiley JS, Sluyter R (2010) P2X7 receptor activation induces cell death and microparticle release in murine erythroleukemia cells. Biochim Biophys Acta 1798(9):1797–1804
PubMed
CAS
Google Scholar
Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ (1999) Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94(11):3791–3799
PubMed
CAS
Google Scholar
Wewers MD, Sarkar A (2009) P2X(7) receptor and macrophage function. Purinergic Signal 5(2):189–195
PubMed
CAS
Article
Google Scholar
Shemon AN, Sluyter R, Wiley JS (2007) Rottlerin inhibits P2X(7) receptor-stimulated phospholipase D activity in chronic lymphocytic leukaemia B-lymphocytes. Immunol Cell Biol 85(1):68–72
PubMed
CAS
Article
Google Scholar
Shemon AN, Sluyter R, Stokes L, Manley PW, Wiley JS (2008) Inhibition of the human P2X7 receptor by a novel protein tyrosine kinase antagonist. Biochem Biophys Res Commun 365(3):515–520
PubMed
CAS
Article
Google Scholar
Théry C, Regnault A, Garin J, Wolfers J, Zitvogel L, Ricciardi-Castagnoli P, Raposo G, Amigorena S (1999) Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J Cell Biol 147(3):599–610
Google Scholar
Alonso R, Rodríguez MC, Pindado J, Merino E, Mérida I, Izquierdo M (2005) Diacylglycerol kinase alpha regulates the secretion of lethal exosomes bearing Fas ligand during activation-induced cell death of T lymphocytes. J Biol Chem 280(31):28439–28450
Google Scholar
Pasquet JM, Dachary-Prigent J, Nurden AT (1998) Microvesicle release is associated with extensive protein tyrosine dephosphorylation in platelets stimulated by A23187 or a mixture of thrombin and collagen. Biochem J 333(Pt 3):591–599
PubMed
CAS
Google Scholar
Henriksson CE, Klingenberg O, Hellum M, Landsverk KS, Joo GB, Westvik AB, Kierulf P (2007) Calcium ionophore-induced de-encryption of tissue factor in monocytes is associated with extensive cell death. Thromb Res 119(5):621–630
PubMed
CAS
Article
Google Scholar
Crespin M, Vidal C, Picard F, Lacombe C, Fontenay M (2009) Activation of PAK1/2 during the shedding of platelet microvesicles. Blood Coagul Fibrinolysis 20(1):63–70
PubMed
CAS
Article
Google Scholar
Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, De Milito A, Coscia C, Iessi E, Logozzi M, Molinari A, Colone M, Tatti M, Sargiacomo M, Fais S (2009) Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem 284(49):34211–34222
PubMed
CAS
Article
Google Scholar
Muralidharan-Chari V, Clancy J, Plou C, Romao M, Chavrier P, Raposo G, D’Souza-Schorey C (2009) ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol 19(22):1875–1885
PubMed
CAS
Article
Google Scholar
Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brugger B, Simons M (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319(5867):1244–1247
PubMed
CAS
Article
Google Scholar
Gonzalez LJ, Gibbons E, Bailey RW, Fairbourn J, Nguyen T, Smith SK, Best KB, Nelson J, Judd AM, Bell JD (2009) The influence of membrane physical properties on microvesicle release in human erythrocytes. PMC Biophys 2(1):7
PubMed
Article
CAS
Google Scholar
Fong KP, Barry C, Tran AN, Traxler EA, Wannemacher KM, Tang HY, Speicher KD, Blair IA, Speicher DW, Grosser T, Brass LF (2010) Deciphering the human platelet sheddome. Blood 117(1):e15–e26
Google Scholar
Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, Moita CF, Schauer K, Hume AN, Freitas RP, Goud B, Benaroch P, Hacohen N, Fukuda M, Desnos C, Seabra MC, Darchen F, Amigorena S, Moita LF, Thery C (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12(1):19–30; sup pp 1–13
Google Scholar
Castaman G, Yu-Feng L, Battistin E, Rodeghiero F (1997) Characterization of a novel bleeding disorder with isolated prolonged bleeding time and deficiency of platelet microvesicle generation. Br J Haematol 96(3):458–463
PubMed
CAS
Article
Google Scholar
Brooks MB, Catalfamo JL, Brown HA, Ivanova P, Lovaglio J (2002) A hereditary bleeding disorder of dogs caused by a lack of platelet procoagulant activity. Blood 99(7):2434–2441
PubMed
CAS
Article
Google Scholar
Brooks M, Etter K, Catalfamo J, Brisbin A, Bustamante C, Mezey J (2010) A genome-wide linkage scan in German shepherd dogs localizes canine platelet procoagulant deficiency (Scott syndrome) to canine chromosome 27. Gene 450(1–2):70–75
PubMed
CAS
Article
Google Scholar
Ward JR, West PW, Ariaans MP, Parker LC, Francis SE, Crossman DC, Sabroe I, Wilson HL (2010) Temporal interleukin-1beta secretion from primary human peripheral blood monocytes by P2X7-independent and P2X7-dependent mechanisms. J Biol Chem 285(30):23147–23158
PubMed
CAS
Article
Google Scholar
Stokes L, Fuller SJ, Sluyter R, Skarratt KK, Gu BJ, Wiley JS (2010) Two haplotypes of the P2X(7) receptor containing the Ala-348 to Thr polymorphism exhibit a gain-of-function effect and enhanced interleukin-1beta secretion. FASEB J 24(8):2916–2927
PubMed
CAS
Article
Google Scholar
Sluyter R, Shemon AN, Wiley JS (2004) Glu496 to Ala polymorphism in the P2X7 receptor impairs ATP-induced IL-1 beta release from human monocytes. J Immunol 172(6):3399–3405
PubMed
CAS
Google Scholar
Labasi JM, Petrushova N, Donovan C, McCurdy S, Lira P, Payette MM, Brissette W, Wicks JR, Audoly L, Gabel CA (2002) Absence of the P2X7 receptor alters leukocyte function and attenuates an inflammatory response. J Immunol 168(12):6436–6445
PubMed
CAS
Google Scholar
Lespagnol A, Duflaut D, Beekman C, Blanc L, Fiucci G, Marine JC, Vidal M, Amson R, Telerman A (2008) Exosome secretion, including the DNA damage-induced p53-dependent secretory pathway, is severely compromised in TSAP6/Steap3-null mice. Cell Death Differ 15(11):1723–1733
PubMed
CAS
Article
Google Scholar
Li MO, Sarkisian MR, Mehal WZ, Rakic P, Flavell RA (2003) Phosphatidylserine receptor is required for clearance of apoptotic cells. Science 302(5650):1560–1563
PubMed
CAS
Article
Google Scholar
Rodriguez-Manzanet R, Sanjuan MA, Wu HY, Quintana FJ, Xiao S, Anderson AC, Weiner HL, Green DR, Kuchroo VK (2010) T and B cell hyperactivity and autoimmunity associated with niche-specific defects in apoptotic body clearance in TIM-4-deficient mice. Proc Natl Acad Sci USA 107(19):8706–8711
PubMed
CAS
Article
Google Scholar
Lemke G, Rothlin CV (2008) Immunobiology of the TAM receptors. Nat Rev Immunol 8(5):327–336
PubMed
CAS
Article
Google Scholar
Lu Q, Lemke G (2001) Homeostatic regulation of the immune system by receptor tyrosine kinases of the Tyro 3 family. Science 293(5528):306–311
PubMed
CAS
Article
Google Scholar
Andrade F, Casciola-Rosen L, Rosen A (2000) Apoptosis in systemic lupus erythematosus. Clinical implications. Rheum Dis Clin North Am 26(2):215–227
Google Scholar
Munoz LE, van Bavel C, Franz S, Berden J, Herrmann M, van der Vlag J (2008) Apoptosis in the pathogenesis of systemic lupus erythematosus. Lupus 17(5):371–375
PubMed
CAS
Article
Google Scholar
Kamradt T, Mitchison NA (2001) Tolerance and autoimmunity. N Engl J Med 344(9):655–664
PubMed
CAS
Google Scholar
Green DR (2003) Overview: apoptotic signaling pathways in the immune system. Immunol Rev 193:5–9
PubMed
CAS
Article
Google Scholar
Ren Y, Tang J, Mok MY, Chan AW, Wu A, Lau CS (2003) Increased apoptotic neutrophils and macrophages and impaired macrophage phagocytic clearance of apoptotic neutrophils in systemic lupus erythematosus. Arthr Rheum 48(10):2888–2897
Article
Google Scholar
Shoshan Y, Shapira I, Toubi E, Frolkis I, Yaron M, Mevorach D (2001) Accelerated Fas-mediated apoptosis of monocytes and maturing macrophages from patients with systemic lupus erythematosus: relevance to in vitro impairment of interaction with iC3b-opsonized apoptotic cells. J Immunol 167(10):5963–5969
PubMed
CAS
Google Scholar
Subra C, Laulagnier K, Perret B, Record M (2007) Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie 89(2):205–212
PubMed
CAS
Article
Google Scholar
Vidal M, Sainte-Marie J, Philippot JR, Bienvenue A (1989) Asymmetric distribution of phospholipids in the membrane of vesicles released during in vitro maturation of guinea pig reticulocytes: evidence precluding a role for “aminophospholipid translocase”. J Cell Physiol 140(3):455–462
PubMed
CAS
Article
Google Scholar
Wubbolts R, Leckie RS, Veenhuizen PT, Schwarzmann G, Mobius W, Hoernschemeyer J, Slot JW, Geuze HJ, Stoorvogel W (2003) Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body formation. J Biol Chem 278(13):10963–10972
PubMed
CAS
Article
Google Scholar
Laulagnier K, Motta C, Hamdi S, Roy S, Fauvelle F, Pageaux JF, Kobayashi T, Salles JP, Perret B, Bonnerot C, Record M (2004) Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem J 380(Pt 1):161–171
PubMed
CAS
Article
Google Scholar
Mayr M, Grainger D, Mayr U, Leroyer AS, Leseche G, Sidibe A, Herbin O, Yin X, Gomes A, Madhu B, Griffiths JR, Xu Q, Tedgui A, Boulanger CM (2009) Proteomics, metabolomics, and immunomics on microparticles derived from human atherosclerotic plaques. Circ Cardiovasc Genet 2(4):379–388
PubMed
CAS
Article
Google Scholar
Mathivanan S, Simpson RJ (2009) ExoCarta: a compendium of exosomal proteins and RNA. Proteomics 9(21):4997–5000
PubMed
CAS
Article
Google Scholar
Looze C, Yui D, Leung L, Ingham M, Kaler M, Yao X, Wu WW, Shen RF, Daniels MP, Levine SJ (2009) Proteomic profiling of human plasma exosomes identifies PPARgamma as an exosome-associated protein. Biochem Biophys Res Commun 378(3):433–438
PubMed
CAS
Article
Google Scholar
Admyre C, Johansson SM, Qazi KR, Filen JJ, Lahesmaa R, Norman M, Neve EP, Scheynius A, Gabrielsson S (2007) Exosomes with immune modulatory features are present in human breast milk. J Immunol 179(3):1969–1978
PubMed
CAS
Google Scholar
Graner MW, Alzate O, Dechkovskaia AM, Keene JD, Sampson JH, Mitchell DA, Bigner DD (2009) Proteomic and immunologic analyses of brain tumor exosomes. FASEB J 23(5):1541–1557
PubMed
CAS
Article
Google Scholar
Bard MP, Hegmans JP, Hemmes A, Luider TM, Willemsen R, Severijnen LA, van Meerbeeck JP, Burgers SA, Hoogsteden HC, Lambrecht BN (2004) Proteomic analysis of exosomes isolated from human malignant pleural effusions. Am J Respir Cell Mol Biol 31(1):114–121
PubMed
CAS
Article
Google Scholar
Prokopi M, Pula G, Mayr U, Devue C, Gallagher J, Xiao Q, Boulanger CM, Westwood N, Urbich C, Willeit J, Steiner M, Breuss J, Xu Q, Kiechl S, Mayr M (2009) Proteomic analysis reveals presence of platelet microparticles in endothelial progenitor cell cultures. Blood 114(3):723–732
PubMed
CAS
Google Scholar
Smalley DM, Root KE, Cho H, Ross MM, Ley K (2007) Proteomic discovery of 21 proteins expressed in human plasma-derived but not platelet-derived microparticles. Thromb Haemost 97(1):67–80
PubMed
CAS
Google Scholar
Dean WL, Lee MJ, Cummins TD, Schultz DJ, Powell DW (2009) Proteomic and functional characterisation of platelet microparticle size classes. Thromb Haemost 102(4):711–718
PubMed
CAS
Google Scholar
O’Donovan C, Martin MJ, Gattiker A, Gasteiger E, Bairoch A, Apweiler R (2002) High-quality protein knowledge resource: SWISS-PROT and TrEMBL. Brief Bioinform 3(3):275–284
PubMed
Article
Google Scholar
O’Donovan C, Apweiler R (2011) A guide to UniProt for protein scientists. Methods Mol Biol 694:25–35
PubMed
Article
CAS
Google Scholar
Eder C (2009) Mechanisms of interleukin-1beta release. Immunobiology 214(7):543–553
PubMed
CAS
Article
Google Scholar
Bendtsen JD, Jensen LJ, Blom N, Von Heijne G, Brunak S (2004) Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel 17(4):349–356
PubMed
CAS
Article
Google Scholar
http://www.cbs.dtu.dk/services/SecretomeP
Lowry SF, Lin E, Calvano SE (2008) Chapter 4: Mediators of Inflammation and injury. In: Norton JA, Barie PS, Bollinger RR et al (eds) Surgery: basic science and clinical evidence, 2nd edn. Springer, London, p 85
Google Scholar
Qu Y, Franchi L, Nunez G, Dubyak GR (2007) Nonclassical IL-1 beta secretion stimulated by P2X7 receptors is dependent on inflammasome activation and correlated with exosome release in murine macrophages. J Immunol 179(3):1913–1925
PubMed
CAS
Google Scholar
Mohan SK, Rani SG, Yu C (2010) The heterohexameric complex structure, a component in the non-classical pathway for fibroblast growth factor 1 (FGF1) secretion. J Biol Chem 285(20):15464–15475
PubMed
CAS
Article
Google Scholar
Izquierdo-Useros N, Naranjo-Gomez M, Erkizia I, Puertas MC, Borras FE, Blanco J, Martinez-Picado J (2010) HIV and mature dendritic cells: Trojan exosomes riding the Trojan horse? PLoS Pathog 6(3):e1000740
PubMed
Article
CAS
Google Scholar
Lui WY, Lee WM, Cheng CY (2003) Sertoli-germ cell adherens junction dynamics in the testis are regulated by RhoB GTPase via the ROCK/LIMK signaling pathway. Biol Reprod 68(6):2189–2206
PubMed
CAS
Google Scholar
Werner N, Wassmann S, Ahlers P, Kosiol S, Nickenig G (2006) Circulating CD31+/annexin V+ apoptotic microparticles correlate with coronary endothelial function in patients with coronary artery disease. Arterioscler Thromb Vasc Biol 26(1):112–116
PubMed
CAS
Article
Google Scholar
Esposito K, Ciotola M, Schisano B, Gualdiero R, Sardelli L, Misso L, Giannetti G, Giugliano D (2006) Endothelial microparticles correlate with endothelial dysfunction in obese women. J Clin Endocrinol Metab 91(9):3676–3679
PubMed
CAS
Article
Google Scholar
Amabile N, Guerin AP, Leroyer A, Mallat Z, Nguyen C, Boddaert J, London GM, Tedgui A, Boulanger CM (2005) Circulating endothelial microparticles are associated with vascular dysfunction in patients with end-stage renal failure. J Am Soc Nephrol 16(11):3381–3388
PubMed
CAS
Article
Google Scholar
Mallat Z, Benamer H, Hugel B, Benessiano J, Steg PG, Freyssinet JM, Tedgui A (2000) Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes. Circulation 101(8):841–843
PubMed
CAS
Google Scholar
Preston RA, Jy W, Jimenez JJ, Mauro LM, Horstman LL, Valle M, Aime G, Ahn YS (2003) Effects of severe hypertension on endothelial and platelet microparticles. Hypertension 41(2):211–217
PubMed
CAS
Article
Google Scholar
Amabile N, Heiss C, Real WM, Minasi P, McGlothlin D, Rame EJ, Grossman W, De Marco T, Yeghiazarians Y (2008) Circulating endothelial microparticle levels predict hemodynamic severity of pulmonary hypertension. Am J Respir Crit Care Med 177(11):1268–1275
PubMed
CAS
Article
Google Scholar
Chironi GN, Boulanger CM, Simon A, Dignat-George F, Freyssinet JM, Tedgui A (2009) Endothelial microparticles in diseases. Cell Tissue Res 335(1):143–151
PubMed
Article
Google Scholar
Brodsky SV, Zhang F, Nasjletti A, Goligorsky MS (2004) Endothelium-derived microparticles impair endothelial function in vitro. Am J Physiol Heart Circ Physiol 286(5):H1910–H1915
PubMed
CAS
Article
Google Scholar
Li X, Cong H (2009) Platelet-derived microparticles and the potential of glycoprotein IIb/IIIa antagonists in treating acute coronary syndrome. Tex Heart Inst J 36(2):134–139
PubMed
Google Scholar
Salanova B, Choi M, Rolle S, Wellner M, Luft FC, Kettritz R (2007) Beta2-integrins and acquired glycoprotein IIb/IIIa (GPIIb/IIIa) receptors cooperate in NF-kappaB activation of human neutrophils. J Biol Chem 282(38):27960–27969
PubMed
CAS
Article
Google Scholar
Iero M, Valenti R, Huber V, Filipazzi P, Parmiani G, Fais S, Rivoltini L (2008) Tumour-released exosomes and their implications in cancer immunity. Cell Death Differ 15(1):80–88
PubMed
CAS
Article
Google Scholar
Muralidharan-Chari V, Clancy JW, Sedgwick A, D’Souza-Schorey C (2010) Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci 123(Pt 10):1603–1611
PubMed
CAS
Article
Google Scholar
Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470–1476
PubMed
CAS
Article
Google Scholar
Kosaka N, Iguchi H, Ochiya T (2010) Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 101(10):2087–2092
PubMed
CAS
Article
Google Scholar
Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110(1):13–21
PubMed
CAS
Article
Google Scholar
El-Hefnawy T, Raja S, Kelly L, Bigbee WL, Kirkwood JM, Luketich JD, Godfrey TE (2004) Characterization of amplifiable, circulating RNA in plasma and its potential as a tool for cancer diagnostics. Clin Chem 50(3):564–573
PubMed
CAS
Article
Google Scholar
Rabinowits G, Gercel-Taylor C, Day JM, Taylor DD, Kloecker GH (2009) Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer 10(1):42–46
PubMed
CAS
Article
Google Scholar
Kuslich C, Pawlowski T, Kimbrough J, Deng T, Tinder T, Kim J, Spetzler D (2010) Plasma exosomes are a robust biosignature for prostate cancer. In: Paper presented at the American Academy of Cancer Research, Washington D.C
Spetzler D, Pawlowski T, Kimbrough J, Deng T, Tinder T, Kim J, Kuslich C (2010) Plasma exosome-based biosignatures: a novel method for early diagnosis of colorectal cancer
Spetzler D, Tinder T, Kankipati S, Maheshwari M, Kuslich CD (2011) A circulating microvesicle-based biosignature for the detection of colorectal cancer. J Clin Oncol 29: suppl 4; abstr 373
Google Scholar
Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol
Pereira J, Alfaro G, Goycoolea M, Quiroga T, Ocqueteau M, Massardo L, Perez C, Saez C, Panes O, Matus V, Mezzano D (2006) Circulating platelet-derived microparticles in systemic lupus erythematosus. Association with increased thrombin generation and procoagulant state. Thromb Haemost 95(1):94–99
PubMed
CAS
Google Scholar
Dignat-George F, Camoin-Jau L, Sabatier F, Arnoux D, Anfosso F, Bardin N, Veit V, Combes V, Gentile S, Moal V, Sanmarco M, Sampol J (2004) Endothelial microparticles: a potential contribution to the thrombotic complications of the antiphospholipid syndrome. Thromb Haemost 91(4):667–673
PubMed
CAS
Google Scholar
Jy W, Tiede M, Bidot CJ, Horstman LL, Jimenez JJ, Chirinos J, Ahn YS (2007) Platelet activation rather than endothelial injury identifies risk of thrombosis in subjects positive for antiphospholipid antibodies. Thromb Res 121(3):319–325
PubMed
CAS
Article
Google Scholar
Knijff-Dutmer EA, Koerts J, Nieuwland R, Kalsbeek-Batenburg EM, van de Laar MA (2002) Elevated levels of platelet microparticles are associated with disease activity in rheumatoid arthritis. Arthritis Rheum 46(6):1498–1503
PubMed
CAS
Article
Google Scholar
Messer L, Alsaleh G, Freyssinet JM, Zobairi F, Leray I, Gottenberg JE, Sibilia J, Toti-Orfanoudakis F, Wachsmann D (2009) Microparticle-induced release of B-lymphocyte regulators by rheumatoid synoviocytes. Arthritis Res Ther 11(2):R40
PubMed
Article
CAS
Google Scholar
Nomura S, Inami N, Ozaki Y, Kagawa H, Fukuhara S (2008) Significance of microparticles in progressive systemic sclerosis with interstitial pneumonia. Platelets 19(3):192–198
PubMed
CAS
Article
Google Scholar
Guiducci S, Distler JH, Jungel A, Huscher D, Huber LC, Michel BA, Gay RE, Pisetsky DS, Gay S, Matucci-Cerinic M, Distler O (2008) The relationship between plasma microparticles and disease manifestations in patients with systemic sclerosis. Arthritis Rheum 58(9):2845–2853
PubMed
Article
Google Scholar
Brogan PA, Dillon MJ (2004) Endothelial microparticles and the diagnosis of the vasculitides. Intern Med 43(12):1115–1119
PubMed
Article
Google Scholar
Daniel L, Fakhouri F, Joly D, Mouthon L, Nusbaum P, Grunfeld JP, Schifferli J, Guillevin L, Lesavre P, Halbwachs-Mecarelli L (2006) Increase of circulating neutrophil and platelet microparticles during acute vasculitis and hemodialysis. Kidney Int 69(8):1416–1423
PubMed
CAS
Google Scholar
Erdbruegger U, Grossheim M, Hertel B, Wyss K, Kirsch T, Woywodt A, Haller H, Haubitz M (2008) Diagnostic role of endothelial microparticles in vasculitis. Rheumatology (Oxford) 47(12):1820–1825
CAS
Article
Google Scholar
Sabatier F, Darmon P, Hugel B, Combes V, Sanmarco M, Velut JG, Arnoux D, Charpiot P, Freyssinet JM, Oliver C, Sampol J, Dignat-George F (2002) Type 1 and type 2 diabetic patients display different patterns of cellular microparticles. Diabetes 51(9):2840–2845
PubMed
CAS
Article
Google Scholar
Sheremata WA, Jy W, Horstman LL, Ahn YS, Alexander JS, Minagar A (2008) Evidence of platelet activation in multiple sclerosis. J Neuroinflamm 5:27
Article
CAS
Google Scholar
Minagar A, Jy W, Jimenez JJ, Sheremata WA, Mauro LM, Mao WW, Horstman LL, Ahn YS (2001) Elevated plasma endothelial microparticles in multiple sclerosis. Neurology 56(10):1319–1324
PubMed
CAS
Google Scholar
Bernard S, Loffroy R, Serusclat A, Boussel L, Bonnefoy E, Thevenon C, Rabilloud M, Revel D, Moulin P, Douek P (2009) Increased levels of endothelial microparticles CD144 (VE-Cadherin) positives in type 2 diabetic patients with coronary noncalcified plaques evaluated by multidetector computed tomography (MDCT). Atherosclerosis 203(2):429–435
PubMed
CAS
Article
Google Scholar
Nomura S, Uehata S, Saito S, Osumi K, Ozeki Y, Kimura Y (2003) Enzyme immunoassay detection of platelet-derived microparticles and RANTES in acute coronary syndrome. Thromb Haemost 89(3):506–512
PubMed
CAS
Google Scholar
Bernal-Mizrachi L, Jy W, Jimenez JJ, Pastor J, Mauro LM, Horstman LL, de Marchena E, Ahn YS (2003) High levels of circulating endothelial microparticles in patients with acute coronary syndromes. Am Heart J 145(6):962–970
PubMed
Article
Google Scholar
Bernal-Mizrachi L, Jy W, Fierro C, Macdonough R, Velazques HA, Purow J, Jimenez JJ, Horstman LL, Ferreira A, de Marchena E, Ahn YS (2004) Endothelial microparticles correlate with high-risk angiographic lesions in acute coronary syndromes. Int J Cardiol 97(3):439–446
PubMed
Article
Google Scholar
Nozaki T, Sugiyama S, Koga H, Sugamura K, Ohba K, Matsuzawa Y, Sumida H, Matsui K, Jinnouchi H, Ogawa H (2009) Significance of a multiple biomarkers strategy including endothelial dysfunction to improve risk stratification for cardiovascular events in patients at high risk for coronary heart disease. J Am Coll Cardiol 54(7):601–608
PubMed
Article
Google Scholar
Huang PH, Huang SS, Chen YH, Lin CP, Chiang KH, Chen JS, Tsai HY, Lin FY, Chen JW, Lin SJ (2010) Increased circulating CD31+/annexin V+ apoptotic microparticles and decreased circulating endothelial progenitor cell levels in hypertensive patients with microalbuminuria. J Hypertens 28(8):1655–1665
PubMed
CAS
Article
Google Scholar
Diehl P, Aleker M, Helbing T, Sossong V, Germann M, Sorichter S, Bode C, Moser M (2010) Increased platelet, leukocyte and endothelial microparticles predict enhanced coagulation and vascular inflammation in pulmonary hypertension. J Thromb Thrombolysis (in press)
Bakouboula B, Morel O, Faure A, Zobairi F, Jesel L, Trinh A, Zupan M, Canuet M, Grunebaum L, Brunette A, Desprez D, Chabot F, Weitzenblum E, Freyssinet JM, Chaouat A, Toti F (2008) Procoagulant membrane microparticles correlate with the severity of pulmonary arterial hypertension. Am J Respir Crit Care Med 177(5):536–543
PubMed
CAS
Google Scholar
Rossig L, Haendeler J, Mallat Z, Hugel B, Freyssinet JM, Tedgui A, Dimmeler S, Zeiher AM (2000) Congestive heart failure induces endothelial cell apoptosis: protective role of carvedilol. J Am Coll Cardiol 36(7):2081–2089
PubMed
CAS
Article
Google Scholar
Nozaki T, Sugiyama S, Sugamura K, Ohba K, Matsuzawa Y, Konishi M, Matsubara J, Akiyama E, Sumida H, Matsui K, Jinnouchi H, Ogawa H (2010) Prognostic value of endothelial microparticles in patients with heart failure. Eur J Heart Fail 12(11):1223–1228
PubMed
Article
Google Scholar
Garcia S, Chirinos J, Jimenez J, Del Carpio Munoz F, Canoniero M, Jy W, Horstman L, Ahn Y (2005) Phenotypic assessment of endothelial microparticles in patients with heart failure and after heart transplantation: switch from cell activation to apoptosis. J Heart Lung Transplant 24(12):2184–2189
PubMed
Article
Google Scholar
Chirinos JA, Heresi GA, Velasquez H, Jy W, Jimenez JJ, Ahn E, Horstman LL, Soriano AO, Zambrano JP, Ahn YS (2005) Elevation of endothelial microparticles, platelets, and leukocyte activation in patients with venous thromboembolism. J Am Coll Cardiol 45(9):1467–1471
PubMed
CAS
Article
Google Scholar
Rectenwald JE, Myers DD Jr, Hawley AE, Longo C, Henke PK, Guire KE, Schmaier AH, Wakefield TW (2005) D-dimer, P-selectin, and microparticles: novel markers to predict deep venous thrombosis. A pilot study. Thromb Haemost 94(6):1312–1317
PubMed
CAS
Google Scholar
Bal L, Ederhy S, Di Angelantonio E, Toti F, Zobairi F, Dufaitre G, Meuleman C, Mallat Z, Boccara F, Tedgui A, Freyssinet JM, Cohen A (2010) Circulating procoagulant microparticles in acute pulmonary embolism: a case-control study. Int J Cardiol 145(2):321–322
PubMed
Article
Google Scholar
Darnige L, Helley D, Fischer AM, Emmerich J, Smadja DM, Fiessinger JN (2010) Platelet microparticle levels: a biomarker of thromboangiitis obliterans (Buerger’s disease) exacerbation. J Cell Mol Med 14(1–2):449–451
PubMed
CAS
Article
Google Scholar
Chironi G, Simon A, Hugel B, Del Pino M, Gariepy J, Freyssinet JM, Tedgui A (2006) Circulating leukocyte-derived microparticles predict subclinical atherosclerosis burden in asymptomatic subjects. Arterioscler Thromb Vasc Biol 26(12):2775–2780
PubMed
CAS
Article
Google Scholar
Michelsen AE, Noto AT, Brodin E, Mathiesen EB, Brosstad F, Hansen JB (2009) Elevated levels of platelet microparticles in carotid atherosclerosis and during the postprandial state. Thromb Res 123(6):881–886
PubMed
CAS
Article
Google Scholar
Lee YJ, Jy W, Horstman LL, Janania J, Reyes Y, Kelley RE, Ahn YS (1993) Elevated platelet microparticles in transient ischemic attacks, lacunar infarcts, and multiinfarct dementias. Thromb Res 72(4):295–304
PubMed
CAS
Article
Google Scholar
Lackner P, Dietmann A, Beer R, Fischer M, Broessner G, Helbok R, Marxgut J, Pfausler B, Schmutzhard E (2010) Cellular microparticles as a marker for cerebral vasospasm in spontaneous subarachnoid hemorrhage. Stroke 41(10):2353–2357
PubMed
Article
Google Scholar
Lukasik M, Rozalski M, Luzak B, Michalak S, Kozubski W, Watala C (2010) Platelet activation and reactivity in the convalescent phase of ischaemic stroke. Thromb Haemost 103(3):644–650
PubMed
CAS
Article
Google Scholar
Jung KH, Chu K, Lee ST, Park HK, Bahn JJ, Kim DH, Kim JH, Kim M, Kun Lee S, Roh JK (2009) Circulating endothelial microparticles as a marker of cerebrovascular disease. Ann Neurol 66(2):191–199, 186
Google Scholar
Simak J, Gelderman MP, Yu H, Wright V, Baird AE (2006) Circulating endothelial microparticles in acute ischemic stroke: a link to severity, lesion volume and outcome. J Thromb Haemost 4(6):1296–1302
PubMed
CAS
Article
Google Scholar
Simak J, Holada K, Risitano AM, Zivny JH, Young NS, Vostal JG (2004) Elevated circulating endothelial membrane microparticles in paroxysmal nocturnal haemoglobinuria. Br J Haematol 125(6):804–813
PubMed
Article
Google Scholar
Shet AS, Aras O, Gupta K, Hass MJ, Rausch DJ, Saba N, Koopmeiners L, Key NS, Hebbel RP (2003) Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes. Blood 102(7):2678–2683
PubMed
CAS
Article
Google Scholar
Tantawy AA, Matter RM, Hamed AA, Shams El Din El Telbany MA (2010) Platelet microparticles in immune thrombocytopenic purpura in pediatrics. Pediatr Hematol Oncol 27(4):283–296
PubMed
Article
Google Scholar
Jimenez JJ, Jy W, Mauro LM, Horstman LL, Soderland C, Ahn YS (2003) Endothelial microparticles released in thrombotic thrombocytopenic purpura express von Willebrand factor and markers of endothelial activation. Br J Haematol 123(5):896–902
PubMed
Article
Google Scholar
Mitchell PJ, Welton J, Staffurth J, Court J, Mason MD, Tabi Z, Clayton A (2009) Can urinary exosomes act as treatment response markers in prostate cancer? J Transl Med 7:4
PubMed
Article
CAS
Google Scholar
Nilsson J, Skog J, Nordstrand A, Baranov V, Mincheva-Nilsson L, Breakefield XO, Widmark A (2009) Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br J Cancer 100(10):1603–1607
PubMed
CAS
Article
Google Scholar
Kim HK, Song KS, Park YS, Kang YH, Lee YJ, Lee KR, Ryu KW, Bae JM, Kim S (2003) Elevated levels of circulating platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: possible role of a metastasis predictor. Eur J Cancer 39(2):184–191
PubMed
CAS
Article
Google Scholar
Logozzi M, De Milito A, Lugini L, Borghi M, Calabro L, Spada M, Perdicchio M, Marino ML, Federici C, Iessi E, Brambilla D, Venturi G, Lozupone F, Santinami M, Huber V, Maio M, Rivoltini L, Fais S (2009) High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PLoS One 4(4):e5219
PubMed
Article
CAS
Google Scholar
Kim JW, Wieckowski E, Taylor DD, Reichert TE, Watkins S, Whiteside TL (2005) Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes. Clin Cancer Res 11(3):1010–1020
PubMed
CAS
Google Scholar
Hron G, Kollars M, Weber H, Sagaster V, Quehenberger P, Eichinger S, Kyrle PA, Weltermann A (2007) Tissue factor-positive microparticles: cellular origin and association with coagulation activation in patients with colorectal cancer. Thromb Haemost 97(1):119–123
PubMed
CAS
Google Scholar
Auwerda JJ, Yuana Y, Osanto S, de Maat MP, Sonneveld P, Bertina RM, Leebeek FW (2010) Microparticle-associated tissue factor activity and venous thrombosis in multiple myeloma. Thromb Haemost 105 (1) (in press)
Tesselaar ME, Romijn FP, Van Der Linden IK, Prins FA, Bertina RM, Osanto S (2007) Microparticle-associated tissue factor activity: a link between cancer and thrombosis? J Thromb Haemost 5(3):520–527
PubMed
CAS
Article
Google Scholar
Matsubara E, Shoji M, Murakami T, Abe K, Frangione B, Ghiso J (2002) Platelet microparticles as carriers of soluble Alzheimer’s amyloid beta (sAbeta). Ann NY Acad Sci 977:340–348
PubMed
CAS
Article
Google Scholar
Koga H, Sugiyama S, Kugiyama K, Fukushima H, Watanabe K, Sakamoto T, Yoshimura M, Jinnouchi H, Ogawa H (2006) Elevated levels of remnant lipoproteins are associated with plasma platelet microparticles in patients with type-2 diabetes mellitus without obstructive coronary artery disease. Eur Heart J 27(7):817–823
PubMed
CAS
Article
Google Scholar
Tan KT, Tayebjee MH, Lim HS, Lip GY (2005) Clinically apparent atherosclerotic disease in diabetes is associated with an increase in platelet microparticle levels. Diabet Med 22(12):1657–1662
PubMed
CAS
Article
Google Scholar
Diamant M, Nieuwland R, Pablo RF, Sturk A, Smit JW, Radder JK (2002) Elevated numbers of tissue-factor exposing microparticles correlate with components of the metabolic syndrome in uncomplicated type 2 diabetes mellitus. Circulation 106(19):2442–2447
PubMed
CAS
Article
Google Scholar
Omoto S, Nomura S, Shouzu A, Nishikawa M, Fukuhara S, Iwasaka T (2002) Detection of monocyte-derived microparticles in patients with Type II diabetes mellitus. Diabetologia 45(4):550–555
PubMed
CAS
Google Scholar
Esposito K, Ciotola M, Giugliano D (2006) Pioglitazone reduces endothelial microparticles in the metabolic syndrome. Arterioscler Thromb Vasc Biol 26(8):1926
PubMed
CAS
Article
Google Scholar
Agouni A, Lagrue-Lak-Hal AH, Ducluzeau PH, Mostefai HA, Draunet-Busson C, Leftheriotis G, Heymes C, Martinez MC, Andriantsitohaina R (2008) Endothelial dysfunction caused by circulating microparticles from patients with metabolic syndrome. Am J Pathol 173(4):1210–1219
PubMed
CAS
Google Scholar
Faure V, Dou L, Sabatier F, Cerini C, Sampol J, Berland Y, Brunet P, Dignat-George F (2006) Elevation of circulating endothelial microparticles in patients with chronic renal failure. J Thromb Haemost 4(3):566–573
PubMed
CAS
Article
Google Scholar
Ayers L, Ferry B, Craig S, Nicoll D, Stradling JR, Kohler M (2009) Circulating cell-derived microparticles in patients with minimally symptomatic obstructive sleep apnoea. Eur Respir J 33(3):574–580
PubMed
CAS
Article
Google Scholar
Yun CH, Jung KH, Chu K, Kim SH, Ji KH, Park HK, Kim HC, Lee ST, Lee SK, Roh JK (2010) Increased circulating endothelial microparticles and carotid atherosclerosis in obstructive sleep apnea. J Clin Neurol 6(2):89–98
PubMed
Article
Google Scholar
Gonzalez-Quintero VH, Smarkusky LP, Jimenez JJ, Mauro LM, Jy W, Hortsman LL, O’Sullivan MJ, Ahn YS (2004) Elevated plasma endothelial microparticles: preeclampsia versus gestational hypertension. Am J Obstet Gynecol 191(4):1418–1424
PubMed
CAS
Article
Google Scholar
Gonzalez-Quintero VH, Jimenez JJ, Jy W, Mauro LM, Hortman L, O’Sullivan MJ, Ahn Y (2003) Elevated plasma endothelial microparticles in preeclampsia. Am J Obstet Gynecol 189(2):589–593
PubMed
Article
Google Scholar
Knight M, Redman CW, Linton EA, Sargent IL (1998) Shedding of syncytiotrophoblast microvilli into the maternal circulation in pre-eclamptic pregnancies. Br J Obstet Gynaecol 105(6):632–640
PubMed
CAS
Google Scholar
Goswami D, Tannetta DS, Magee LA, Fuchisawa A, Redman CW, Sargent IL, von Dadelszen P (2006) Excess syncytiotrophoblast microparticle shedding is a feature of early-onset pre-eclampsia, but not normotensive intrauterine growth restriction. Placenta 27(1):56–61
PubMed
CAS
Article
Google Scholar
VanWijk MJ, Nieuwland R, Boer K, van der Post JA, VanBavel E, Sturk A (2002) Microparticle subpopulations are increased in preeclampsia: possible involvement in vascular dysfunction? Am J Obstet Gynecol 187(2):450–456
PubMed
Article
Google Scholar
Lok CA, Nieuwland R, Sturk A, Hau CM, Boer K, Vanbavel E, Vanderpost JA (2007) Microparticle-associated P-selectin reflects platelet activation in preeclampsia. Platelets 18(1):68–72
PubMed
CAS
Article
Google Scholar
Soriano AO, Jy W, Chirinos JA, Valdivia MA, Velasquez HS, Jimenez JJ, Horstman LL, Kett DH, Schein RM, Ahn YS (2005) Levels of endothelial and platelet microparticles and their interactions with leukocytes negatively correlate with organ dysfunction and predict mortality in severe sepsis. Crit Care Med 33(11):2540–2546
PubMed
Article
Google Scholar
Mostefai HA, Meziani F, Mastronardi ML, Agouni A, Heymes C, Sargentini C, Asfar P, Martinez MC, Andriantsitohaina R (2008) Circulating microparticles from patients with septic shock exert protective role in vascular function. Am J Respir Crit Care Med 178(11):1148–1155
PubMed
CAS
Article
Google Scholar
Nieuwland R, Berckmans RJ, McGregor S, Boing AN, Romijn FP, Westendorp RG, Hack CE, Sturk A (2000) Cellular origin and procoagulant properties of microparticles in meningococcal sepsis. Blood 95(3):930–935
PubMed
CAS
Google Scholar