Skip to main content
Log in

Rhizobial measures to evade host defense strategies and endogenous threats to persistent symbiotic nitrogen fixation: a focus on two legume-rhizobium model systems

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The establishment and maintenance of rhizobium–legume symbioses require a sequence of highly regulated and coordinated events between the organisms. Although the interaction is mutually beneficial under nitrogen-limited conditions, it can resemble a pathogenic infection at some stages. Some host legumes mount defense reactions, including the production of reactive oxygen species (ROS) and defensin-like antimicrobial compounds. To subvert these host defenses, the infecting rhizobial cells can use measures to passively protect themselves and actively modulate host functions. This review first describes the establishment and maintenance of active nodules, as well as the external and endogenous attack and threat stages. Next, recent studies of ROS scavenging enzymes, the BacA protein originally found in Sinorhizobium meliloti, and the type III/IV secretion systems are discussed, with a focus on two legume–rhizobium model systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Oldroyd GED, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546

    PubMed  CAS  Google Scholar 

  2. Parniske M (2000) Intracellular accommodation of microbes by plants: a common developmental program for symbiosis and disease? Curr Opin Plant Biol 3:320–328

    PubMed  CAS  Google Scholar 

  3. Mithöfer A (2002) Suppression of plant defence in rhizobia–legume symbiosis. Trends Plant Sci 7:440–444

    PubMed  Google Scholar 

  4. El Yahyaoui F, Kuster H, Ben Amor B, Hohnjec N, Puhler A, Becker A, Gouzy J, Vernie T, Gough C, Niebel A, Godiard L, Gamas P (2004) Expression profiling in Medicago truncatula Identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program. Plant Physiol 136:3159–3176

    PubMed  CAS  Google Scholar 

  5. Kouchi H, Shimomura K, Hata S, Hirota A, Wu G-J, Kumagai H, Tajima S, Suganuma N, Suzuki A, Aoki T, Hayashi M, Yokoyama T, Ohyama T, Asamizu E, Kuwata C, Shibata D, Tabata S (2004) Large-scale analysis of gene expression profiles during early stages of root nodule formation in a model legume, Lotus japonicus. DNA Res 11:263–274

    PubMed  CAS  Google Scholar 

  6. Vasse J, de Billy F, Truchet G (1993) Abortion of infection during the rhizobium meliloti-alfalfa symbiotic interaction is accompanied by a hypersensitive reaction. Plant J 4:555–566

    Google Scholar 

  7. Maeda D, Ashida K, Iguchi K, Chechetka SA, Hijikata A, Okusako Y, Deguchi Y, Izui K, Hata S (2006) Knockdown of an arbuscular Mycorrhiza-inducible phosphate transporter gene of Lotus japonicus suppresses mutualistic symbiosis. Plant Cell Physiol 47:807–817

    PubMed  CAS  Google Scholar 

  8. Schumpp O, Crevecoeur M, Broughton WJ, Deakin WJ (2009) Delayed maturation of nodules reduces symbiotic effectiveness of the Lotus japonicus-Rhizobium sp. NGR234 interaction. J Exp Bot 60:581–590

    PubMed  CAS  Google Scholar 

  9. Handberg K, Stougaard J (1992) Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant J 2:487–496

    Google Scholar 

  10. Barker D, Bianchi S, Blondon F, Dattée Y, Duc G, Essad S, Flament P, Gallusci P, Génier G, Guy P, Muel X, Tourneur J, Dénarié J, Huguet T (1990) Medicago truncatula, a model plant for studying the molecular genetics of the rhizobium–legume symbiosis. Plant Mol Biol Rep 8:40–49

    CAS  Google Scholar 

  11. Glazebrook J, Ichige A, Walker GC (1993) A Rhizobium meliloti homolog of the Escherichia coli peptide-antibiotic transport protein SbmA is essential for bacteroid development. Genes Dev 7:1485–1497

    PubMed  CAS  Google Scholar 

  12. Deakin WJ, Broughton WJ (2009) Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nat Rev Micro 7:312–320

    CAS  Google Scholar 

  13. D’Haeze W, Holsters M (2004) Surface polysaccharides enable bacteria to evade plant immunity. Trends Microbiol 12:555–561

    PubMed  Google Scholar 

  14. Gibson KE, Kobayashi H, Walker GC (2008) Molecular determinants of a symbiotic chronic infection. Annu Rev Genet 42:413–441

    PubMed  CAS  Google Scholar 

  15. Spaink HP (1995) The molecular basis of infection and nodulation by rhizobia: the ins and outs of sympathogenesis. Annu Rev Phytopathol 33:345–368

    PubMed  CAS  Google Scholar 

  16. Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201

    PubMed  CAS  Google Scholar 

  17. Gage DJ (2004) Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68:280–300

    PubMed  CAS  Google Scholar 

  18. Ferguson BJ, Indrasumunar A, Hayashi S, Lin MH, Lin YH, Reid DE, Gresshoff PM (2010) Molecular analysis of legume nodule development and autoregulation. J Integr Plant Biol 52:61–76

    PubMed  CAS  Google Scholar 

  19. Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev Microbiol 5:619–633

    PubMed  CAS  Google Scholar 

  20. Oldroyd GED, Downie JA (2006) Nuclear calcium changes at the core of symbiosis signalling. Curr Opin Plant Biol 9:351–357

    PubMed  CAS  Google Scholar 

  21. Mergaert P, Uchiumi T, Alunni B, Evanno G, Cheron A, Catrice O, Mausset A-E, Barloy-Hubler F, Galibert F, Kondorosi A, Kondorosi E (2006) Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium–legume symbiosis. Proc Natl Acad Sci USA 103:5230–5235

    PubMed  CAS  Google Scholar 

  22. Oke V, Long SR (1999) Bacteroid formation in the rhizobium–legume symbiosis. Curr Opin Microbiol 2:641–646

    PubMed  CAS  Google Scholar 

  23. Kijne JW (1975) The fine structure of pea root nodules. 1. Vacuolar changes after endocytotic host cell infection by Rhizobium leguminosarum. Physiol Plant Pathol 5:75–76 IN25-IN31, 77–79

    Google Scholar 

  24. Kijne JW (1975) The fine structure of pea root nodules. 2. Senescence and disintegration of the bacteroid tissue. Physiol Plant Pathol 7:17–21

    Google Scholar 

  25. Gresshoff PM, Rolfe BG (1978) Viability of Rhizobium bacteroids isolated from soybean nodule protoplasts. Planta 142:329–333

    Google Scholar 

  26. Sutton WD, Paterson AD (1983) Further evidence for a plant host effect on Rhizobium bacteroid viability. Plant Sci Lett 30:33–41

    Google Scholar 

  27. Sutton WD, Paterson AD (1980) Effects of the plant host on the detergent sensitivity and viability of Rhizobium bacteroids. Planta 148:287–292

    CAS  Google Scholar 

  28. Puppo A, Groten K, Bastian F, Carzaniga R, Soussi M, Lucas MM, De Felipe MR, Harrison J, Vanacker H, Foyer CH (2005) Legume nodule senescence: roles for redox and hormone signalling in the orchestration of the natural aging process. New Phytol 165:683–701

    PubMed  CAS  Google Scholar 

  29. Mitra RM, Shaw SL, Long SR (2004) Six nonnodulating plant mutants defective for Nod factor-induced transcriptional changes associated with the legume–rhizobia symbiosis. Proc Natl Acad Sci USA 101:10217–10222

    PubMed  CAS  Google Scholar 

  30. Mitra RM, Long SR (2004) Plant and bacterial symbiotic mutants define three transcriptionally distinct stages in the development of the Medicago truncatula/Sinorhizobium meliloti symbiosis. Plant Physiol 134:595–604

    PubMed  CAS  Google Scholar 

  31. Cárdenas L, Martínez A, Sánchez F, Quinto C (2008) Fast, transient and specific intracellular ROS changes in living root hair cells responding to Nod factors (NFs). Plant J 56:802–813

    PubMed  Google Scholar 

  32. Santos R, Hérouart D, Sigaud S, Touati D, Puppo A (2001) Oxidative burst in Alfalfa–Sinorhizobium meliloti symbiotic interaction. Mol Plant Microbe Interact 14:86–89

    PubMed  CAS  Google Scholar 

  33. Shaw SL, Long SR (2003) Nod factor inhibition of reactive oxygen efflux in a host legume. Plant Physiol 132:2196–2204

    PubMed  CAS  Google Scholar 

  34. Nagata M, Murakami E-i, Shimoda Y, Shimoda-Sasakura F, Kucho K-i, Suzuki A, Abe M, Higashi S, Uchiumi T (2008) Expression of a class 1 hemoglobin gene and production of nitric oxide in response to symbiotic and pathogenic bacteria in Lotus japonicus. Mol Plant Microbe Interact 21:1175–1183

    PubMed  CAS  Google Scholar 

  35. Gamas P, de Billy F, Truchet G (1998) Symbiosis-specific expression of two Medicago truncatula nodulin genes, MtN1 and MtN13, encoding products homologous to plant defense proteins. Mol Plant Microbe Interact 11:393–403

    PubMed  CAS  Google Scholar 

  36. Jamet A, Sigaud S, Van de Sype G, Puppo A, Hérouart D (2003) Expression of the bacterial catalase genes during Sinorhizobium melilotiMedicago sativa symbiosis and their crucial role during the infection process. Mol Plant Microbe Interact 16:217–225

    PubMed  CAS  Google Scholar 

  37. Santos R, Hérouart D, Puppo A, Touati D (2000) Critical protective role of bacterial superoxide dismutase in rhizobium–legume symbiosis. Mol Microbiol 38:750–759

    PubMed  CAS  Google Scholar 

  38. Campbell GRO, Reuhs BL, Walker GC (2002) Chronic intracellular infection of alfalfa nodules by Sinorhizobium meliloti requires correct lipopolysaccharide core. Proc Natl Acad Sci USA 99:3938–3943

    PubMed  CAS  Google Scholar 

  39. Leigh JA, Signer ER, Walker GC (1985) Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules. Proc Natl Acad Sci USA 82:6231–6235

    PubMed  CAS  Google Scholar 

  40. Leigh JA, Walker GC (1994) Exopolysaccharides of Rhizobium: synthesis, regulation and symbiotic function. Trends Genet 10:63–67

    PubMed  CAS  Google Scholar 

  41. Jones KM, Sharopova N, Lohar DP, Zhang JQ, VandenBosch KA, Walker GC (2008) Differential response of the plant Medicago truncatula to its symbiont Sinorhizobium meliloti or an exopolysaccharide-deficient mutant. Proc Natl Acad Sci USA 105:704–709

    PubMed  CAS  Google Scholar 

  42. Banba M, Siddique A-BM, Kouchi H, Izui K, Hata S (2001) Lotus japonicus forms early senescent root nodules with Rhizobium etli. Mol Plant Microbe Interact 14:173–180

    PubMed  CAS  Google Scholar 

  43. Van de Velde W, Guerra JCP, Keyser AD, De Rycke R, Rombauts S, Maunoury N, Mergaert P, Kondorosi E, Holsters M, Goormachtig S (2006) Aging in legume symbiosis. A molecular view on nodule senescence in Medicago truncatula. Plant Physiol 141:711–720

    PubMed  Google Scholar 

  44. Perez Guerra JC, Coussens G, De Keyser A, De Rycke R, De Bodt S, Van De Velde W, Goormachtig S, Holsters M (2010) Comparison of developmental and stress-induced nodule senescence in Medicago truncatula. Plant Physiol 152:1574–1584

    PubMed  Google Scholar 

  45. Kardailsky IV, Brewin NJ (1996) Expression of cysteine protease genes in pea nodule development and senescence. Mol Plant Microbe Interact 9:689–695

    PubMed  CAS  Google Scholar 

  46. Alesandrini F, Mathis R, Van de Sype G, Hérouart D, Puppo A (2003) Possible roles for a cysteine protease and hydrogen peroxide in soybean nodule development and senescence. New Phytol 158:131–138

    CAS  Google Scholar 

  47. Asp T, Bowra S, Borg S, Holm PB (2004) Cloning and characterisation of three groups of cysteine protease genes expressed in the senescing zone of white clover (Trifolium repens) nodules. Plant Sci 167:825–837

    CAS  Google Scholar 

  48. Li Y, Zhou L, Chen D, Tan X, Lei L, Zhou J (2008) A nodule-specific plant cysteine proteinase, AsNODF32, is involved in nodule senescence and nitrogen-fixation activity of the green manure legume Astragalus sinicus. New Phytol 180:185–192

    PubMed  CAS  Google Scholar 

  49. Limpens E, Ivanov S, van Esse W, Voets G, Fedorova E, Bisseling T (2009) Medicago N2-fixing symbiosomes acquire the endocytic identity marker Rab7 but delay the acquisition of vacuolar identity. Plant Cell 21:2811–2828

    PubMed  CAS  Google Scholar 

  50. Kiers ET, Rousseau RA, West SA, Denison RF (2003) Host sanctions and the legume–rhizobium mutualism. Nature 425:78–81

    PubMed  CAS  Google Scholar 

  51. Matamoros MA, Dalton DA, Ramos J, Clemente MR, Rubio MC, Becana M (2003) Biochemistry and molecular biology of antioxidants in the rhizobia–legume symbiosis. Plant Physiol 133:499–509

    PubMed  CAS  Google Scholar 

  52. Glyan’ko A, Vasil’eva G (2010) Reactive oxygen and nitrogen species in legume–rhizobial symbiosis: a review. Appl Biochem Microbiol 46:15–22

    Google Scholar 

  53. Jamet A, Mandon K, Puppo A, Herouart D (2007) H2O2 is required for optimal establishment of the Medicago sativa/Sinorhizobium meliloti symbiosis. J Bacteriol 189:8741–8745

    PubMed  CAS  Google Scholar 

  54. Herouart D, Sigaud S, Moreau S, Frendo P, Touati D, Puppo A (1996) Cloning and characterization of the katA gene of Rhizobium meliloti encoding a hydrogen peroxide-inducible catalase. J Bacteriol 178:6802–6809

    PubMed  CAS  Google Scholar 

  55. Sigaud S, Becquet V, Frendo P, Puppo A, Herouart D (1999) Differential regulation of two divergent Sinorhizobium meliloti genes for HPII-Like catalases during free-living growth and protective role of both catalases during symbiosis. J Bacteriol 181:2634–2639

    PubMed  CAS  Google Scholar 

  56. Santos R, Bocquet S, Puppo A, Touati D (1999) Characterization of an atypical superoxide dismutase from Sinorhizobium meliloti. J Bacteriol 181:4509–4516

    PubMed  CAS  Google Scholar 

  57. Davies BW, Walker GC (2007) Identification of novel Sinorhizobium meliloti mutants compromised for oxidative stress protection and symbiosis. J Bacteriol 189:2110–2113

    PubMed  CAS  Google Scholar 

  58. Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338

    PubMed  CAS  Google Scholar 

  59. Hanyu M, Fujimoto H, Tejima K, Saeki K (2009) Functional differences of two distinct catalases in Mesorhizobium loti MAFF303099 under free-living and symbiotic conditions. J Bacteriol 191:1463–1471

    PubMed  CAS  Google Scholar 

  60. del Carmen Vargas M, Encarnacion S, Davalos A, Reyes-Perez A, Mora Y, Garcia-de los Santos A, Brom S, Mora J (2003) Only one catalase, katG, is detectable in Rhizobium etli, and is encoded along with the regulator OxyR on a plasmid replicon. Microbiology 149:1165–1176

    Google Scholar 

  61. Dombrecht B, Heusdens C, Beullens S, Verreth C, Mulkers E, Proost P, Vanderleyden J, Michiels J (2005) Defence of Rhizobium etli bacteroids against oxidative stress involves a complexly regulated atypical 2-Cys peroxiredoxin. Mol Microbiol 55:1207–1221

    PubMed  CAS  Google Scholar 

  62. Wood ZA, Schröder E, Robin Harris J, Poole LB (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28:32–40

    PubMed  CAS  Google Scholar 

  63. Oke V, Long SR (1999) Bacterial genes induced within the nodule during the rhizobium–legume symbiosis. Mol Microbiol 32:837–849

    PubMed  CAS  Google Scholar 

  64. Redondo FJ, De la Pena TC, Morcillo CN, Lucas MM, Pueyo JJ (2009) Overexpression of flavodoxin in bacteroids induces changes in antioxidant metabolism leading to delayed senescence and starch accumulation in alfalfa root nodules. Plant Physiol 149:1166–1178

    PubMed  CAS  Google Scholar 

  65. Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 61:192–208

    PubMed  CAS  Google Scholar 

  66. Ardissone S, Frendo P, Laurenti E, Jantschko W, Obinger C, Puppo A, Ferrari RP (2004) Purification and physical-chemical characterization of the three hydroperoxidases from the symbiotic bacterium Sinorhizobium meliloti. Biochemistry 43:12692–12699

    PubMed  CAS  Google Scholar 

  67. Davies BW, Walker GC (2007) Disruption of sitA compromises Sinorhizobium meliloti for manganese uptake required for protection against oxidative stress. J Bacteriol 189:2101–2109

    PubMed  CAS  Google Scholar 

  68. Meade HM, Long SR, Ruvkun GB, Brown SE, Ausubel FM (1982) Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol 149:114–122

    PubMed  CAS  Google Scholar 

  69. Finan TM, Hartweig E, LeMieux K, Bergman K, Walker GC, Signer ER (1984) General transduction in Rhizobium meliloti. J Bacteriol 159:120–124

    PubMed  CAS  Google Scholar 

  70. Wais RJ, Wells DH, Long SR (2007) Analysis of differences between Sinorhizobium meliloti 1021 and 2011 strains using the host calcium spiking response. Mol Plant Microbe Interact 15:1245–1252

    Google Scholar 

  71. Yorgey P, Lee J, Kördel J, Vivas E, Warner P, Jebaratnam D, Kolter R (1994) Posttranslational modifications in microcin B17 define an additional class of DNA gyrase inhibitor. Proc Natl Acad Sci USA 91:4519–4523

    PubMed  CAS  Google Scholar 

  72. Ichige A, Walker GC (1997) Genetic analysis of the Rhizobium meliloti bacA gene: functional interchangeability with the Escherichia coli sbmA gene and phenotypes of mutants. J Bacteriol 179:209–216

    PubMed  CAS  Google Scholar 

  73. Marlow VL, Haag AF, Kobayashi H, Fletcher V, Scocchi M, Walker GC, Ferguson GP (2009) Essential role for the BacA protein in the uptake of a truncated eukaryotic peptide in Sinorhizobium meliloti. J Bacteriol 191:1519–1527

    PubMed  CAS  Google Scholar 

  74. LeVier K, Phillips RW, Grippe VK, Roop RM II, Walker GC (2000) Similar requirements of a plant symbiont and a mammalian pathogen for prolonged intracellular survival. Science 287:2492–2493

    PubMed  CAS  Google Scholar 

  75. Domenech P, Kobayashi H, LeVier K, Walker GC, Barry CE III (2009) BacA, an ABC transporter involved in maintenance of chronic murine infections with Mycobacterium tuberculosis. J Bacteriol 191:477–485

    PubMed  CAS  Google Scholar 

  76. Tan X-J, Cheng Y, Li Y-X, Li Y-G, Zhou J-C (2009) BacA is indispensable for successful MesorhizobiumAstragalus symbiosis. Appl Microbiol Biotechnol 84:519–526

    PubMed  CAS  Google Scholar 

  77. Karunakaran R, Haag AF, East AK, Ramachandran VK, Prell J, James EK, Scocchi M, Ferguson GP, Poole PS (2010) BacA is essential for bacteroid development in nodules of Galegoid, but not Phaseoloid, legumes. J Bacteriol 192:2920–2928

    PubMed  CAS  Google Scholar 

  78. Maruya J, Saeki K (2010) The bacA gene homologue, mlr7400, in Mesorhizobium loti MAFF303099 is dispensable for symbiosis with Lotus japonicus but partially capable of supporting the symbiotic function of bacA in Sinorhizobium meliloti. Plant Cell Physiol 51:1443–1452

    PubMed  CAS  Google Scholar 

  79. Wojciechowski MF, Lavin M, Sanderson MJ (2004) A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family. Am J Bot 91:1846–1862

    CAS  PubMed  Google Scholar 

  80. LeVier K, Walker GC (2001) Genetic analysis of the Sinorhizobium meliloti BacA protein: differential effects of mutations on phenotypes. J Bacteriol 183:6444–6453

    PubMed  CAS  Google Scholar 

  81. Ferguson GP, Roop Ii RM, Walker GC (2002) Deficiency of a Sinorhizobium meliloti bacA mutant in alfalfa symbiosis correlates with alteration of the cell envelope. J Bacteriol 184:5625–5632

    PubMed  CAS  Google Scholar 

  82. Ferguson GP, Jansen A, Marlow VL, Walker GC (2006) BacA-mediated bleomycin sensitivity in Sinorhizobium meliloti is independent of the unusual Lipid A modification. J Bacteriol 188:3143–3148

    PubMed  CAS  Google Scholar 

  83. Ferguson G, Datta A, Carlson R, Walker G (2005) Importance of unusually modified lipid A in Sinorhizobium stress resistance and legume symbiosis. Mol Microbiol 56:68–80

    PubMed  CAS  Google Scholar 

  84. Ferguson GP, Datta A, Baumgartner J, Roop RM, Carlson RW, Walker GC (2004) Similarity to peroxisomal-membrane protein family reveals that Sinorhizobium and Brucella BacA affect lipid-A fatty acids. Proc Natl Acad Sci USA 101:5012–5017

    PubMed  CAS  Google Scholar 

  85. Valianpour F, Selhorst JJM, van Lint LEM, van Gennip AH, Wanders RJA, Kemp S (2003) Analysis of very long-chain fatty acids using electrospray ionization mass spectrometry. Mol Genet Metab 79:189–196

    PubMed  CAS  Google Scholar 

  86. Kobayashi H, Sunako M, Hayashi M, Murooka Y (2001) DNA synthesis and fragmentation in bacteroids during Astragalus sinicus root nodule development. Biosci Biotechnol Biochem 65:510–515

    PubMed  CAS  Google Scholar 

  87. Young JP, Crossman L, Johnston A, Thomson N, Ghazoui Z, Hull K, Wexler M, Curson A, Todd J, Poole P, Mauchline T, East A, Quail M, Churcher C, Arrowsmith C, Cherevach I, Chillingworth T, Clarke K, Cronin A, Davis P, Fraser A, Hance Z, Hauser H, Jagels K, Moule S, Mungall K, Norbertczak H, Rabbinowitsch E, Sanders M, Simmonds M, Whitehead S, Parkhill J (2006) The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7:R34

    PubMed  Google Scholar 

  88. Mergaert P, Nikovics K, Kelemen Z, Maunoury N, Vaubert D, Kondorosi A, Kondorosi E (2003) A novel family in Medicago truncatula consisting of more than 300 nodule-specific genes coding for small, secreted polypeptides with conserved cysteine motifs. Plant Physiol 132:161–173

    PubMed  CAS  Google Scholar 

  89. Alunni B, Kevei Z, Redondo-Nieto M, Kondorosi A, Mergaert P, Kondorosi E (2007) Genomic organization and evolutionary insights on GRP and NCR genes, two large nodule-specific gene families in Medicago truncatula. Mol Plant Microbe Interact 20:1138–1148

    PubMed  CAS  Google Scholar 

  90. Wang D, Griffitts J, Starker C, Fedorova E, Limpens E, Ivanov S, Bisseling T, Long S (2010) A nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis. Science 327:1126–1129

    PubMed  CAS  Google Scholar 

  91. Oono R, Schmitt I, Sprent JI, Denison RF (2010) Multiple evolutionary origins of legume traits leading to extreme rhizobial differentiation. New Phytol 187:508–520

    PubMed  CAS  Google Scholar 

  92. Alvarez-Martinez CE, Christie PJ (2009) Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 73:775–808

    PubMed  CAS  Google Scholar 

  93. Block A, Li G, Fu ZQ, Alfano JR (2008) Phytopathogen type III effector weaponry and their plant targets. Curr Opin Plant Biol 11:396–403

    PubMed  CAS  Google Scholar 

  94. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    PubMed  CAS  Google Scholar 

  95. Abramovitch RB, Anderson JC, Martin GB (2006) Bacterial elicitation and evasion of plant innate immunity. Nat Rev Mol Cell Biol 7:601–611

    PubMed  CAS  Google Scholar 

  96. Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host–microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    PubMed  CAS  Google Scholar 

  97. Fauvart M, Michiels J (2008) Rhizobial secreted proteins as determinants of host specificity in the rhizobium–legume symbiosis. FEMS Microbiol Lett 285:1–9

    PubMed  CAS  Google Scholar 

  98. Downie JA (2010) The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol Rev 34:150–170

    PubMed  CAS  Google Scholar 

  99. Marie C, Deakin WJ, Viprey V, Kopciñska J, Golinowski W, Krishnan HB, Perret X, Broughton WJ (2003) Characterization of Nops, nodulation outer proteins, secreted via the type III secretion system of NGR234. Mol Plant Microbe Interact 16:743–751

    PubMed  CAS  Google Scholar 

  100. Sullivan JT, Trzebiatowski JR, Cruickshank RW, Gouzy J, Brown SD, Elliot RM, Fleetwood DJ, McCallum NG, Rossbach U, Stuart GS, Weaver JE, Webby RJ, De Bruijn FJ, Ronson CW (2002) Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. J Bacteriol 184:3086–3095

    PubMed  CAS  Google Scholar 

  101. Okazaki S, Okabe S, Higashi M, Shimoda Y, Sato S, Tabata S, Hashiguchi M, Akashi R, Göttfert M, Saeki K (2010) Identification and functional analysis of type III effector proteins in Mesorhizobium loti. Mol Plant Microbe Interact 23:223–234

    PubMed  CAS  Google Scholar 

  102. Hubber A, Vergunst AC, Sullivan JT, Hooykaas PJJ, Ronson CW (2004) Symbiotic phenotypes and translocated effector proteins of the Mesorhizobium loti strain R7A VirB/D4 type IV secretion system. Mol Microbiol 54:561–574

    PubMed  CAS  Google Scholar 

  103. Hubber AM, Sullivan JT, Ronson CW (2007) Symbiosis-induced cascade regulation of the Mesorhizobium loti R7A VirB/D4 type IV secretion system. Mol Plant Microbe Interact 20:255–261

    PubMed  CAS  Google Scholar 

  104. Vergunst AC, Schrammeijer B, den Dulk-Ras A, de Vlaam CMT, Regensburg-Tuink TJG, Hooykaas PJJ (2000) VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science 290:979–982

    PubMed  CAS  Google Scholar 

  105. Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672

    PubMed  CAS  Google Scholar 

  106. Barnett MJ, Fisher RF, Jones T, Komp C, Abola AP, Barloy-Hubler F, Bowser L, Capela D, Galibert F, Gouzy J, Gurjal M, Hong A, Huizar L, Hyman RW, Kahn D, Kahn ML, Kalman S, Keating DH, Palm C, Peck MC, Surzycki R, Wells DH, Yeh K-C, Davis RW, Federspiel NA, Long SR (2001) Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid. Proc Natl Acad Sci USA 98:9883–9888

    PubMed  CAS  Google Scholar 

  107. Jones KM, Lloret J, Daniele JR, Walker GC (2007) The type IV secretion system of Sinorhizobium meliloti strain 1021 is required for conjugation but not for intracellular symbiosis. J Bacteriol 189:2133–2138

    PubMed  CAS  Google Scholar 

  108. Hussain AKMA, Jiang Q, Broughton WJ, Gresshoff PM (1999) Lotus japonicus nodulates and fixes nitrogen with the broad host range Rhizobium sp. NGR234. Plant Cell Physiol 40:894–899

    CAS  Google Scholar 

  109. Schmeisser C, Liesegang H, Krysciak D, Bakkou N, Le Quere A, Wollherr A, Heinemeyer I, Morgenstern B, Pommerening-Roser A, Flores M, Palacios R, Brenner S, Gottschalk G, Schmitz RA, Broughton WJ, Perret X, Strittmatter AW, Streit WR (2009) Rhizobium sp. strain NGR234 possesses a remarkable number of secretion systems. Appl Environ Microbiol 75:4035–4045

    PubMed  CAS  Google Scholar 

  110. Kambara K, Ardissone S, Kobayashi H, Saad MM, Schumpp O, Broughton WJ, Deakin WJ (2009) Rhizobia utilize pathogen-like effector proteins during symbiosis. Mol Microbiol 71:92–106

    PubMed  CAS  Google Scholar 

  111. Wassem R, Kobayashi H, Kambara K, Le Quéré A, Walker GC, Broughton WJ, Deakin WJ (2008) TtsI regulates symbiotic genes in Rhizobium species NGR234 by binding to tts boxes. Mol Microbiol 68:736–748

    PubMed  CAS  Google Scholar 

  112. Saad MM, Staehelin C, Broughton WJ, Deakin WJ (2008) Protein–protein interactions within type III secretion system-dependent pili of Rhizobium sp. Strain NGR234. J Bacteriol 190:750–754

    PubMed  CAS  Google Scholar 

  113. Deakin WJ, Marie C, Saad MM, Krishnan HB, Broughton WJ (2007) NopA is associated with cell surface appendages produced by the type III secretion system of Rhizobium sp. strain NGR234. Mol Plant Microbe Interact 18:499–507

    Google Scholar 

  114. Skorpil P, Saad MM, Boukli NM, Kobayashi H, Ares-Orpel F, Broughton WJ, Deakin WJ (2005) NopP, a phosphorylated effector of Rhizobium sp. strain NGR234, is a major determinant of nodulation of the tropical legumes Flemingia congesta and Tephrosia vogelii. Mol Microbiol 57:1304–1317

    PubMed  CAS  Google Scholar 

  115. Saad MM, Kobayashi H, Marie C, Brown IR, Mansfield JW, Broughton WJ, Deakin WJ (2005) NopB, a type III secreted protein of Rhizobium sp. strain NGR234, is associated with pilus-like surface appendages. J Bacteriol 187:1173–1181

    PubMed  CAS  Google Scholar 

  116. Marie C, Deakin WJ, Ojanen-Reuhs T, Diallo E, Reuhs B, Broughton WJ, Perret X (2004) TtsI, a key regulator of Rhizobium species NGR234 is required for type III-dependent protein secretion and synthesis of rhamnose-rich polysaccharides. Mol Plant Microbe Interact 17:958–966

    PubMed  CAS  Google Scholar 

  117. Bartsev AV, Deakin WJ, Boukli NM, McAlvin CB, Stacey G, Malnoe P, Broughton WJ, Staehelin C (2004) NopL, an effector protein of Rhizobium sp. NGR234, thwarts activation of plant defense reactions. Plant Physiol 134:871–879

    PubMed  CAS  Google Scholar 

  118. Ausmees N, Kobayashi H, Deakin WJ, Marie C, Krishnan HB, Broughton WJ, Perret X (2004) Characterization of NopP, a type III secreted effector of Rhizobium sp. strain NGR234. J Bacteriol 186:4774–4780

    PubMed  CAS  Google Scholar 

  119. Bartsev AV, Boukli NM, Deakin WJ, Staehelin C, Broughton WJ (2003) Purification and phosphorylation of the effector protein NopL from Rhizobium sp. NGR234. FEBS Lett 554:271–274

    PubMed  CAS  Google Scholar 

  120. Marie C, Broughton WJ, Deakin WJ (2001) Rhizobium type III secretion systems: legume charmers or alarmers? Curr Opin Plant Biol 4:336–342

    PubMed  CAS  Google Scholar 

  121. Perret X, Freiberg C, Rosenthal A, Broughton WJ, Fellay R (1999) High-resolution transcriptional analysis of the symbiotic plasmid of Rhizobium sp. NGR234. Mol Microbiol 32:415–425

    PubMed  CAS  Google Scholar 

  122. Viprey V, Del Greco A, Golinowski W, Broughton WJ, Perret X (1998) Symbiotic implications of type III protein secretion machinery in Rhizobium. Mol Microbiol 28:1381–1389

    PubMed  CAS  Google Scholar 

  123. Krishnan HB (2002) NolX of Sinorhizobium fredii USDA257, a type III-secreted protein involved in host range determination, is localized in the infection threads of Cowpea (Vigna unguiculata [L.] Walp) and Soybean (Glycine max [L.] Merr.) nodules. J Bacteriol 184:831–839

    PubMed  CAS  Google Scholar 

  124. Chang W-S, Franck WL, Cytryn E, Jeong S, Joshi T, Emerich DW, Sadowsky MJ, Xu D, Stacey G (2007) An oligonucleotide microarray resource for transcriptional profiling of Bradyrhizobium japonicum. Mol Plant Microbe Interact 20:1298–1307

    PubMed  CAS  Google Scholar 

  125. Sarma AD, Emerich DW (2005) Global protein expression pattern of Bradyrhizobium japonicum bacteroids: a prelude to functional proteomics. Proteomics 5:4170–4184

    PubMed  CAS  Google Scholar 

  126. Zehner S, Schober G, Wenzel M, Lang K, Göttfert M (2008) Expression of the Bradyrhizobium japonicum type III secretion system in legume nodules and analysis of the associated tts box promoter. Mol Plant Microbe Interact 21:1087–1093

    PubMed  CAS  Google Scholar 

  127. Ibarra JA, Steele-Mortimer O (2009) Salmonella—the ultimate insider. Salmonella virulence factors that modulate intracellular survival. Cell Microbiol 11:1579–1586

    PubMed  CAS  Google Scholar 

  128. Haraga A, Ohlson MB, Miller SI (2008) Salmonellae interplay with host cells. Nat Rev Microbiol 6:53–66

    PubMed  CAS  Google Scholar 

  129. Wenzel M, Friedrich L, Göttfert M, Zehner S (2010) The type III-secreted protein NopE1 affects symbiosis and exhibits a calcium-dependent autocleavage activity. Mol Plant Microbe Interact 23:124–129

    PubMed  CAS  Google Scholar 

  130. Sory MP, Cornelis GR (1994) Translocation of a hybrid YopE-adenylate cyclase from Yersinia enterocolitica into HeLa cells. Mol Microbiol 14:583–594

    PubMed  CAS  Google Scholar 

  131. Casper-Lindley C, Dahlbeck D, Clark ET, Staskawicz BJ (2002) Direct biochemical evidence for type III secretion-dependent translocation of the AvrBs2 effector protein into plant cells. Proc Natl Acad Sci USA 99:8336–8341

    PubMed  CAS  Google Scholar 

  132. Schechter LM, Guenther J, Olcay EA, Jang S, Krishnan HB (2010) Translocation of NopP by Sinorhizobium fredii USDA257 into Vigna unguiculata root nodules. Appl Environ Microbiol 76:3758–3761

    PubMed  CAS  Google Scholar 

  133. López-Baena FJ, Monreal JA, Pérez-Montaño F, Guasch-Vidal B, Bellogín RA, Vinardell JM, Ollero FJ (2009) The absence of Nops secretion in Sinorhizobium fredii HH103 increases GmPR1 expression in Williams Soybean. Mol Plant Microbe Interact 22:1445–1454

    PubMed  Google Scholar 

  134. Brutinel ED, Yahr TL (2008) Control of gene expression by type III secretory activity. Curr Opin Microbiol 11:128–133

    PubMed  CAS  Google Scholar 

  135. Deane J, Abrusci P, Johnson S, Lea S (2010) Timing is everything: the regulation of type III secretion. Cell Mol Life Sci 67:1065–1075

    PubMed  CAS  Google Scholar 

  136. Magori S, Kawaguchi M (2009) Long-distance control of nodulation: Molecules and models. Mol Cells 27:129–134

    PubMed  CAS  Google Scholar 

  137. Oono R, Denison FR, Kiers TE (2009) Controlling the reproductive fate of rhizobia: how universal are legume sanctions? New Phytol 183:967–979

    PubMed  Google Scholar 

  138. Sachs JL, Russell JE, Lii YE, Black KC, Lopez G, Patil AS (2010) Host control over infection and proliferation of a cheater symbiont. J Evol Biol 23:1919–1927

    PubMed  CAS  Google Scholar 

  139. Marco DE, Pérez-Arnedo R, Hidalgo-Perea Á, Olivares J, Ruiz-Sainz JE, Sanjuán J (2009) A mechanistic molecular test of the plant-sanction hypothesis in legume–rhizobia mutualism. Acta Oecol 35:664–667

    Google Scholar 

  140. Marco DE, Carbajal JP, Cannas S, Pérez-Arnedo R, Hidalgo-Perea Á, Olivares J, Ruiz-Sainz JE, Sanjuán J (2009) An experimental and modelling exploration of the host-sanction hypothesis in legume–rhizobia mutualism. J Theor Biol 259:423–433

    PubMed  Google Scholar 

  141. Yang S, Tang F, Gao M, Krishnan HB, Zhu H (2010) R gene-controlled host specificity in the legume–rhizobia symbiosis. Proc Natl Acad Sci USA 107:18735–18740

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Shin Okazaki for many stimulating discussions. This work was supported in part by the Special Coordination Fund for Promoting Science and Technology and KAKENHI (Grant-in-Aid for Scientific Research) on the Priority Area “Comparative Genomics” (17018041) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

It might be noted that cloning of soybean R gene probably to counteract rhizobial T3SS effectors has been reported by Zhu and colleagues [141] during revision process of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Saeki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saeki, K. Rhizobial measures to evade host defense strategies and endogenous threats to persistent symbiotic nitrogen fixation: a focus on two legume-rhizobium model systems. Cell. Mol. Life Sci. 68, 1327–1339 (2011). https://doi.org/10.1007/s00018-011-0650-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0650-5

Keywords

Navigation