Skip to main content

Advertisement

Log in

Systematic characterization of protein-DNA interactions

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Sequence-specific protein-DNA interactions (PDIs) are critical for regulating many cellular processes, including transcription, DNA replication, repair, and rearrangement. We review recent experimental advances in high-throughput technologies designed to characterize PDIs and discuss recent studies that use these tools, including ChIP-chip/seq, SELEX-based approaches, yeast one-hybrid, bacterial one-hybrid, protein binding microarray, and protein microarray. The results of these studies have challenged some long-standing concepts of PDI and provide valuable insights into the complex transcriptional regulatory networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Darnell JE Jr (2002) Transcription factors as targets for cancer therapy. Nat Rev Cancer 2:740–749

    Article  PubMed  CAS  Google Scholar 

  2. Lane D, Prentki P, Chandler M (1992) Use of gel retardation to analyze protein-nucleic acid interactions. Microbiol Rev 56:509–528

    PubMed  CAS  Google Scholar 

  3. Hampshire AJ, Rusling DA, Broughton-Head VJ, Fox KR (2007) Footprinting: a method for determining the sequence selectivity, affinity and kinetics of DNA-binding ligands. Methods 42:128–140

    Article  PubMed  CAS  Google Scholar 

  4. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  PubMed  CAS  Google Scholar 

  5. Wingender E, Dietze P, Karas H, Knuppel R (1996) TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res 24:238–241

    Article  PubMed  CAS  Google Scholar 

  6. Sandelin A, Alkema W, Engstrom P, Wasserman WW, Lenhard B (2004) JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res 32:D91–D94

    Article  PubMed  CAS  Google Scholar 

  7. Walhout AJ (2006) Unraveling transcription regulatory networks by protein-DNA and protein-protein interaction mapping. Genome Res 16:1445–1454

    Article  PubMed  CAS  Google Scholar 

  8. Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM (2009) A census of human transcription factors: function, expression and evolution. Nat Rev Genet 10:252–263

    Article  PubMed  CAS  Google Scholar 

  9. Massie CE, Mills IG (2008) ChIPping away at gene regulation. EMBO Rep 9:337–343

    Article  PubMed  CAS  Google Scholar 

  10. Iyer VR, Horak CE, Scafe CS, Botstein D, Snyder M, Brown PO (2001) Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409:533–538

    Article  PubMed  CAS  Google Scholar 

  11. Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I, Zeitlinger J, Schreiber J, Hannett N, Kanin E et al (2000) Genome-wide location and function of DNA binding proteins. Science 290:2306–2309

    Article  PubMed  CAS  Google Scholar 

  12. Wei CL, Wu Q, Vega VB, Chiu KP, Ng P, Zhang T, Shahab A, Yong HC, Fu Y, Weng Z et al (2006) A global map of p53 transcription-factor binding sites in the human genome. Cell 124:207–219

    Article  PubMed  CAS  Google Scholar 

  13. Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316:1497–1502

    Article  PubMed  CAS  Google Scholar 

  14. Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T, Euskirchen G, Bernier B, Varhol R, Delaney A et al (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4:651–657

    Article  PubMed  CAS  Google Scholar 

  15. Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford TW, Hannett NM, Tagne JB, Reynolds DB, Yoo J et al (2004) Transcriptional regulatory code of a eukaryotic genome. Nature 431:99–104

    Article  PubMed  CAS  Google Scholar 

  16. Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I et al (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298:799–804

    Article  PubMed  CAS  Google Scholar 

  17. Gordan R, Hartemink AJ, Bulyk ML (2009) Distinguishing direct versus indirect transcription factor-DNA interactions. Genome Res 19:2090–2100

    Article  PubMed  CAS  Google Scholar 

  18. Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, Reuter I, Chekmenev D, Krull M, Hornischer K et al (2006) TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res 34:D108–D110

    Article  PubMed  CAS  Google Scholar 

  19. Roulet E, Busso S, Camargo AA, Simpson AJ, Mermod N, Bucher P (2002) High-throughput SELEX SAGE method for quantitative modeling of transcription-factor binding sites. Nat Biotechnol 20:831–835

    PubMed  CAS  Google Scholar 

  20. Jolma A, Kivioja T, Toivonen J, Cheng L, Wei G, Enge M, Taipale M, Vaquerizas JM, Yan J, Sillanpaa MJ et al (2010) Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities. Genome Res 20:861–873

    Article  PubMed  CAS  Google Scholar 

  21. Bulyk ML, Huang X, Choo Y, Church GM (2001) Exploring the DNA-binding specificities of zinc fingers with DNA microarrays. Proc Natl Acad Sci USA 98:7158–7163

    Article  PubMed  CAS  Google Scholar 

  22. Warren CL, Kratochvil NC, Hauschild KE, Foister S, Brezinski ML, Dervan PB, Phillips GN Jr, Ansari AZ (2006) Defining the sequence-recognition profile of DNA-binding molecules. Proc Natl Acad Sci USA 103:867–872

    Article  PubMed  CAS  Google Scholar 

  23. Berger MF, Philippakis AA, Qureshi AM, He FS, Estep PW 3rd, Bulyk ML (2006) Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities. Nat Biotechnol 24:1429–1435

    Article  PubMed  CAS  Google Scholar 

  24. Berger MF, Badis G, Gehrke AR, Talukder S, Philippakis AA, Pena-Castillo L, Alleyne TM, Mnaimneh S, Botvinnik OB, Chan ET et al (2008) Variation in homeodomain DNA binding revealed by high-resolution analysis of sequence preferences. Cell 133:1266–1276

    Article  PubMed  CAS  Google Scholar 

  25. Badis G, Chan ET, van Bakel H, Pena-Castillo L, Tillo D, Tsui K, Carlson CD, Gossett AJ, Hasinoff MJ, Warren CL et al (2008) A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleosome exclusion at promoters. Mol Cell 32:878–887

    Article  PubMed  CAS  Google Scholar 

  26. Zhu C, Byers KJ, McCord RP, Shi Z, Berger MF, Newburger DE, Saulrieta K, Smith Z, Shah MV, Radhakrishnan M et al (2009) High-resolution DNA-binding specificity analysis of yeast transcription factors. Genome Res 19:556–566

    Article  PubMed  CAS  Google Scholar 

  27. Badis G, Berger MF, Philippakis AA, Talukder S, Gehrke AR, Jaeger SA, Chan ET, Metzler G, Vedenko A, Chen X et al (2009) Diversity and complexity in DNA recognition by transcription factors. Science 324:1720–1723

    Article  PubMed  CAS  Google Scholar 

  28. Chen CY, Schwartz RJ (1995) Identification of novel DNA binding targets and regulatory domains of a murine tinman homeodomain factor, nkx-2.5. J Biol Chem 270:15628–15633

    Article  PubMed  CAS  Google Scholar 

  29. Yokoe H, Anholt RR (1993) Molecular cloning of olfactomedin, an extracellular matrix protein specific to olfactory neuroepithelium. Proc Natl Acad Sci USA 90:4655–4659

    Article  PubMed  CAS  Google Scholar 

  30. Li JJ, Herskowitz I (1993) Isolation of ORC6, a component of the yeast origin recognition complex by a one-hybrid system. Science 262:1870–1874

    Article  PubMed  CAS  Google Scholar 

  31. Reece-Hoyes JS, Deplancke B, Barrasa MI, Hatzold J, Smit RB, Arda HE, Pope PA, Gaudet J, Conradt B, Walhout AJ (2009) The C. elegans Snail homolog CES-1 can activate gene expression in vivo and share targets with bHLH transcription factors. Nucleic Acids Res 37:3689–3698

    Article  PubMed  CAS  Google Scholar 

  32. Zeng J, Yan J, Wang T, Mosbrook-Davis D, Dolan KT, Christensen R, Stormo GD, Haussler D, Lathrop RH, Brachmann RK et al (2008) Genome wide screens in yeast to identify potential binding sites and target genes of DNA-binding proteins. Nucleic Acids Res 36:e8

    Article  PubMed  Google Scholar 

  33. Deplancke B, Dupuy D, Vidal M, Walhout AJ (2004) A gateway-compatible yeast one-hybrid system. Genome Res 14:2093–2101

    Article  PubMed  CAS  Google Scholar 

  34. Deplancke B, Mukhopadhyay A, Ao W, Elewa AM, Grove CA, Martinez NJ, Sequerra R, Doucette-Stamm L, Reece-Hoyes JS, Hope IA et al (2006) A gene-centered C. elegans protein-DNA interaction network. Cell 125:1193–1205

    Article  PubMed  CAS  Google Scholar 

  35. Meng X, Brodsky MH, Wolfe SA (2005) A bacterial one-hybrid system for determining the DNA-binding specificity of transcription factors. Nat Biotechnol 23:988–994

    Article  PubMed  CAS  Google Scholar 

  36. Noyes MB, Christensen RG, Wakabayashi A, Stormo GD, Brodsky MH, Wolfe SA (2008) Analysis of homeodomain specificities allows the family-wide prediction of preferred recognition sites. Cell 133:1277–1289

    Article  PubMed  CAS  Google Scholar 

  37. Chen CS, Zhu H (2006) Protein microarrays. Biotechniques 40:423, 425, 427 passim

  38. Tao SC, Chen CS, Zhu H (2007) Applications of protein microarray technology. Comb Chem High Throughput Screen 10:706–718

    Article  PubMed  CAS  Google Scholar 

  39. Zhu J, Gopinath K, Murali A, Yi G, Hayward SD, Zhu H, Kao C (2007) RNA-binding proteins that inhibit RNA virus infection. Proc Natl Acad Sci USA 104:3129–3134

    Article  PubMed  CAS  Google Scholar 

  40. Tao SC, Li Y, Zhou J, Qian J, Schnaar RL, Zhang Y, Goldstein IJ, Zhu H, Schneck JP (2008) Lectin microarrays identify cell-specific and functionally significant cell surface glycan markers. Glycobiology 18:761–769

    Article  PubMed  CAS  Google Scholar 

  41. Hu S, Xie Z, Onishi A, Yu X, Jiang L, Lin J, Rho HS, Woodard C, Wang H, Jeong JS et al (2009) Profiling the human protein-DNA interactome reveals ERK2 as a transcriptional repressor of interferon signaling. Cell 139:610–622

    Article  PubMed  CAS  Google Scholar 

  42. Zhu J, Liao G, Shan L, Zhang J, Chen MR, Hayward GS, Hayward SD, Desai P, Zhu H (2009) Protein array identification of substrates of the Epstein-Barr virus protein kinase BGLF4. J Virol 83:5219–5231

    Article  PubMed  CAS  Google Scholar 

  43. Chen H, Hewison M, Adams JS (2006) Functional characterization of heterogeneous nuclear ribonuclear protein C1/C2 in vitamin D resistance: a novel response element-binding protein. J Biol Chem 281:39114–39120

    Article  PubMed  CAS  Google Scholar 

  44. Hall DA, Zhu H, Zhu X, Royce T, Gerstein M, Snyder M (2004) Regulation of gene expression by a metabolic enzyme. Science 306:482–484

    Article  PubMed  CAS  Google Scholar 

  45. Ho SW, Jona G, Chen CT, Johnston M, Snyder M (2006) Linking DNA-binding proteins to their recognition sequences by using protein microarrays. Proc Natl Acad Sci USA 103:9940–9945

    Article  PubMed  CAS  Google Scholar 

  46. Ptacek J, Devgan G, Michaud G, Zhu H, Zhu X, Fasolo J, Guo H, Jona G, Breitkreutz A, Sopko R et al (2005) Global analysis of protein phosphorylation in yeast. Nature 438:679–684

    Article  PubMed  CAS  Google Scholar 

  47. Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T et al (2001) Global analysis of protein activities using proteome chips. Science 293:2101–2105

    Article  PubMed  CAS  Google Scholar 

  48. Lin J, Xie Z, Zhu H, Qian J (2010) Understanding protein phosphorylation on a systems level. Brief Funct Genomics 9:32–42

    Article  PubMed  CAS  Google Scholar 

  49. Gong W, He K, Covington M, Dinesh-Kumar SP, Snyder M, Harmer SL, Zhu YX, Deng XW (2008) The development of protein microarrays and their applications in DNA-protein and protein-protein interaction analyses of Arabidopsis transcription factors. Mol Plant 1:27–41

    Article  PubMed  CAS  Google Scholar 

  50. Elemento O, Slonim N, Tavazoie S (2007) A universal framework for regulatory element discovery across all genomes and data types. Mol Cell 28:337–350

    Article  PubMed  CAS  Google Scholar 

  51. Elemento O, Tavazoie S (2005) Fast and systematic genome-wide discovery of conserved regulatory elements using a non-alignment based approach. Genome Biol 6:R18

    Article  PubMed  Google Scholar 

  52. Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K, Lander ES, Kellis M (2005) Systematic discovery of regulatory motifs in human promoters and 3’ UTRs by comparison of several mammals. Nature 434:338–345

    Article  PubMed  CAS  Google Scholar 

  53. Xie X, Mikkelsen TS, Gnirke A, Lindblad-Toh K, Kellis M, Lander ES (2007) Systematic discovery of regulatory motifs in conserved regions of the human genome, including thousands of CTCF insulator sites. Proc Natl Acad Sci USA 104:7145–7150

    Article  PubMed  CAS  Google Scholar 

  54. Yu X, Lin J, Zack DJ, Qian J (2006) Computational analysis of tissue-specific combinatorial gene regulation: predicting interaction between transcription factors in human tissues. Nucleic Acids Res 34:4925–4936

    Article  PubMed  CAS  Google Scholar 

  55. Xie Z, Hu S, Blackshaw S, Zhu H, Qian J (2010) hPDI: a database of experimental human protein–DNA interactions. Bioinformatics 26(2):287–289

    Google Scholar 

  56. Kissinger CR, Liu BS, Martin-Blanco E, Kornberg TB, Pabo CO (1990) Crystal structure of an engrailed homeodomain-DNA complex at 2.8 A resolution: a framework for understanding homeodomain-DNA interactions. Cell 63:579–590

    Article  PubMed  CAS  Google Scholar 

  57. Wolberger C, Vershon AK, Liu B, Johnson AD, Pabo CO (1991) Crystal structure of a MAT alpha 2 homeodomain-operator complex suggests a general model for homeodomain-DNA interactions. Cell 67:517–528

    Article  PubMed  CAS  Google Scholar 

  58. Affolter M, Slattery M, Mann RS (2008) A lexicon for homeodomain-DNA recognition. Cell 133:1133–1135

    Article  PubMed  CAS  Google Scholar 

  59. Treisman J, Gonczy P, Vashishtha M, Harris E, Desplan C (1989) A single amino acid can determine the DNA binding specificity of homeodomain proteins. Cell 59:553–562

    Article  PubMed  CAS  Google Scholar 

  60. Wolfe SA, Grant RA, Elrod-Erickson M, Pabo CO (2001) Beyond the “recognition code”: structures of two Cys2His2 zinc finger/TATA box complexes. Structure 9:717–723

    Article  PubMed  CAS  Google Scholar 

  61. Dioum EM, Wauson EM, Cobb MH (2009) MAP-ping unconventional protein-DNA interactions. Cell 139:462–463

    Article  PubMed  CAS  Google Scholar 

  62. Casci T (2009) Gene expression: regulators hidden in human proteome. Nat Rev Genet 10:820

    CAS  Google Scholar 

  63. Gancedo C, Flores CL (2008) Moonlighting proteins in yeasts. Microbiol Mol Biol Rev 72:197–210

    Article  PubMed  CAS  Google Scholar 

  64. Huberts DHEW, van der Klei IJ (2010) Moonlighting proteins: an intriguing mode of multitasking. Biochim Biophys Acta Mol Cell Res 1803:520–525

    Article  CAS  Google Scholar 

  65. Carroll JS, Liu XS, Brodsky AS, Li W, Meyer CA, Szary AJ, Eeckhoute J, Shao W, Hestermann EV, Geistlinger TR et al (2005) Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122:33–43

    Article  PubMed  CAS  Google Scholar 

  66. Carr A, Biggin MD (1999) A comparison of in vivo and in vitro DNA-binding specificities suggests a new model for homeoprotein DNA binding in Drosophila embryos. Embo J 18:1598–1608

    Article  PubMed  CAS  Google Scholar 

  67. Wei GH, Badis G, Berger MF, Kivioja T, Palin K, Enge M, Bonke M, Jolma A, Varjosalo M, Gehrke AR et al (2010) Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo. Embo J 29:2147–2160

    Article  PubMed  CAS  Google Scholar 

  68. Horie-Inoue K, Takayama K, Bono HU, Ouchi Y, Okazaki Y, Inoue S (2006) Identification of novel steroid target genes through the combination of bioinformatics and functional analysis of hormone response elements. Biochem Biophys Res Commun 339:99–106

    Article  PubMed  CAS  Google Scholar 

  69. Rosenfeld MG, Glass CK (2001) Coregulator codes of transcriptional regulation by nuclear receptors. J Biol Chem 276:36865–36868

    Article  PubMed  CAS  Google Scholar 

  70. Simpson RT (1990) Nucleosome positioning can affect the function of a cis-acting DNA element in vivo. Nature 343:387–389

    Article  PubMed  CAS  Google Scholar 

  71. Hallikas OK, Aaltonen JM, von Koskull H, Lindberg LA, Valmu L, Kalkkinen N, Wahlstrom T, Kataoka H, Andersson L, Lindholm D et al (2006) Identification of antibodies against HAI-1 and integrin alpha6beta4 as immunohistochemical markers of human villous cytotrophoblast. J Histochem Cytochem 54:745–752

    Article  PubMed  CAS  Google Scholar 

  72. Fordyce PM, Gerber D, Tran D, Zheng J, Li H, DeRisi JL, Quake SR (2010) De novo identification and biophysical characterization of transcription-factor binding sites with microfluidic affinity analysis. Nat Biotechnol 28:970–975

    Article  PubMed  CAS  Google Scholar 

  73. Ptashne M, Gann A (2002) Genes and signals. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  74. Carlson CD, Warren CL, Hauschild KE, Ozers MS, Qadir N, Bhimsaria D, Lee Y, Cerrina F, Ansari AZ (2010) Specificity landscapes of DNA binding molecules elucidate biological function. Proc Natl Acad Sci USA 107:4544–4549

    Article  PubMed  CAS  Google Scholar 

  75. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  76. Rohs R, Jin X, West SM, Joshi R, Honig B, Mann RS (2010) Origins of specificity in protein-DNA recognition. Annu Rev Biochem 79:233–269

    Article  PubMed  CAS  Google Scholar 

  77. Portales-Casamar E, Thongjuea S, Kwon AT, Arenillas D, Zhao X, Valen E, Yusuf D, Lenhard B, Wasserman WW, Sandelin A (2010) JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles. Nucleic Acids Res 38:D105–D110

    Article  PubMed  CAS  Google Scholar 

  78. Newburger DE, Bulyk ML (2009) UniPROBE: an online database of protein binding microarray data on protein-DNA interactions. Nucleic Acids Res 37:D77–D82

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to NIH for funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Z., Hu, S., Qian, J. et al. Systematic characterization of protein-DNA interactions. Cell. Mol. Life Sci. 68, 1657–1668 (2011). https://doi.org/10.1007/s00018-010-0617-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0617-y

Keywords

Navigation