Skip to main content
Log in

Smad linker region phosphorylation in the regulation of extracellular matrix synthesis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The canonical TGF-β signalling pathway involves Smad transcription factors through direct serine phosphorylation of the carboxy termini, nuclear translocation and regulation of transcription by receptor-regulated (R)-Smad complexes. Smads can also be phosphorylated in the linker region most prominently by the action of mitogen-activated protein (MAP) kinases, which in turn have been activated by TGF-β or a multitude of other growth factors and hormones. Linker region phosphorylation can prevent nuclear translocation of Smads and inhibit TGF-β signalling, potentially leading to oncogenesis. However, some evidence has revealed that linker region phosphorylated Smads can be translocated to the nucleus where they regulate transcription particularly of the synthesis of extracellular matrix molecules. Matrix molecules such as collagen and proteoglycans are involved in diseases such a fibrosis and atherosclerosis, respectively, and the involvement of linker region phosphorylation may represent a new therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Massague J, Seoane J, Wotton D (2005) Smad transcription factors. Genes Dev 19:2783–2810

    Article  CAS  PubMed  Google Scholar 

  2. Wharton K, Derynck R (2009) TGFbeta family signaling: novel insights in development and disease. Development 136:3691–3697

    Article  CAS  PubMed  Google Scholar 

  3. Agrotis A, Kalinina N, Bobik A (2005) Transforming growth factor-beta, cell signaling and cardiovascular disorders. Curr Vasc Pharmacol 3:55–61

    Article  CAS  PubMed  Google Scholar 

  4. Evanko SP, Raines EW, Ross R, Gold LI, Wight TN (1998) Proteoglycan distribution in lesions of atherosclerosis depends on lesion severity, structural characteristics, and the proximity of platelet-derived growth factor and transforming growth factor-beta. Am J Pathol 152:533–546

    CAS  PubMed  Google Scholar 

  5. Jian B, Xu J, Connolly J, Savani RC, Narula N, Liang B, Levy RJ (2002) Serotonin mechanisms in heart valve disease I: serotonin-induced up-regulation of transforming growth factor-beta1 via G-protein signal transduction in aortic valve interstitial cells. Am J Pathol 161:2111–2121

    CAS  PubMed  Google Scholar 

  6. Padua D, Massague J (2009) Roles of TGFbeta in metastasis. Cell Res 19:89–102

    Article  CAS  PubMed  Google Scholar 

  7. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425:577–584

    Article  CAS  PubMed  Google Scholar 

  8. Massague J, Blain SW, Lo RS (2000) TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103:295–309

    Article  CAS  PubMed  Google Scholar 

  9. Heldin CH, Miyazono K, ten Dijke P (1997) TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390:465–471

    Article  CAS  PubMed  Google Scholar 

  10. Blume-Jensen P, Hunter T (2001) Oncogenic kinase signalling. Nature 411:355–365

    Article  CAS  PubMed  Google Scholar 

  11. Massague J (1998) TGF-beta signal transduction. Annu Rev Biochem 67:753–791

    Article  CAS  PubMed  Google Scholar 

  12. Hoodless PA, Haerry T, Abdollah S, Stapleton M, O’Connor MB, Attisano L, Wrana JL (1996) MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Cell 85:489–500

    Article  CAS  PubMed  Google Scholar 

  13. Li F, Zeng B, Chai Y, Cai P, Fan C, Cheng T (2009) The linker region of Smad2 mediates TGF-beta-dependent ERK2-induced collagen synthesis. Biochem Biophys Res Commun 386:289–293

    Article  CAS  PubMed  Google Scholar 

  14. Kim YK (2007) TGF-beta1 induction of p21WAF1/cip1 requires Smad-independent protein kinase C signaling pathway. Arch Pharm Res 30:739–742

    Article  CAS  PubMed  Google Scholar 

  15. Cushing MC, Mariner PD, Liao JT, Sims EA, Anseth KS (2008) Fibroblast growth factor represses Smad-mediated myofibroblast activation in aortic valvular interstitial cells. Faseb J 22:1769–1777

    Article  CAS  PubMed  Google Scholar 

  16. Tabata T, Kokura K, Ten Dijke P, Ishii S (2009) Ski co-repressor complexes maintain the basal repressed state of the TGF-beta target gene, SMAD7, via HDAC3 and PRMT5. Genes Cells 14:17–28

    Article  CAS  PubMed  Google Scholar 

  17. Huang HC, Liang Y, Cheng LJ (2004) Transforming growth factor beta 1 modulates connective tissue growth factor expression via Smad2 signaling pathway in podocyte in vitro. Zhonghua Yi Xue Za Zhi 84:574–577

    CAS  PubMed  Google Scholar 

  18. Wang G, Matsuura I, He D, Liu F (2009) Transforming growth factor-{beta}-inducible phosphorylation of Smad3. J Biol Chem 284:9663–9673

    Article  CAS  PubMed  Google Scholar 

  19. Moustakas A, Heldin CH (2009) The regulation of TGFbeta signal transduction. Development 136:3699–3714

    Article  CAS  PubMed  Google Scholar 

  20. Yang L, Moses HL (2008) Transforming growth factor beta: tumor suppressor or promoter? Are host immune cells the answer? Cancer Res 68:9107–9111

    Article  CAS  PubMed  Google Scholar 

  21. Gordon KJ, Blobe GC (2008) Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochim Biophys Acta 1782:197–228

    CAS  PubMed  Google Scholar 

  22. ten Dijke P, Arthur HM (2007) Extracellular control of TGFbeta signalling in vascular development and disease. Nat Rev Mol Cell Biol 8:857–869

    Article  CAS  PubMed  Google Scholar 

  23. Nakao A, Roijer E, Imamura T, Souchelnytskyi S, Stenman G, Heldin CH, ten Dijke P (1997) Identification of Smad2, a human Mad-related protein in the transforming growth factor beta signaling pathway. J Biol Chem 272:2896–2900

    Article  CAS  PubMed  Google Scholar 

  24. Chen RH, Chang TY (1997) Involvement of caspase family proteases in transforming growth factor-beta-induced apoptosis. Cell Growth Differ 8:821–827

    CAS  PubMed  Google Scholar 

  25. Itoh T, Takenawa T (2002) Phosphoinositide-binding domains: functional units for temporal and spatial regulation of intracellular signalling. Cell Signal 14:733–743

    Article  CAS  PubMed  Google Scholar 

  26. Simonsson M, Kanduri M, Gronroos E, Heldin CH, Ericsson J (2006) The DNA binding activities of Smad2 and Smad3 are regulated by coactivator-mediated acetylation. J Biol Chem 281:39870–39880

    Article  CAS  PubMed  Google Scholar 

  27. Inman GJ (2005) Linking Smads and transcriptional activation. Biochem J 386:e1–e3

    Article  CAS  PubMed  Google Scholar 

  28. Yoshida K, Matsuzaki K, Mori S, Tahashi Y, Yamagata H, Furukawa F, Seki T, Nishizawa M, Fujisawa J, Okazaki K (2005) Transforming growth factor-beta and platelet-derived growth factor signal via c-Jun N-terminal kinase-dependent Smad2/3 phosphorylation in rat hepatic stellate cells after acute liver injury. Am J Pathol 166:1029–1039

    CAS  PubMed  Google Scholar 

  29. Wicks SJ, Lui S, Abdel-Wahab N, Mason RM, Chantry A (2000) Inactivation of Smad-transforming growth factor beta signaling by Ca(2+)-calmodulin-dependent protein kinase II. Mol Cell Biol 20:8103–8111

    Article  CAS  PubMed  Google Scholar 

  30. Kretzschmar M, Doody J, Timokhina I, Massague J (1999) A mechanism of repression of TGFbeta/Smad signaling by oncogenic Ras. Genes Dev 13:804–816

    Article  CAS  PubMed  Google Scholar 

  31. Kretzschmar M, Doody J, Massague J (1997) Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smad1. Nature 389:618–622

    Article  CAS  PubMed  Google Scholar 

  32. Raman M, Chen W, Cobb MH (2007) Differential regulation and properties of MAPKs. Oncogene 26:3100–3112

    Article  CAS  PubMed  Google Scholar 

  33. Ivey ME, Osman N, Little PJ (2008) Endothelin-1 signalling in vascular smooth muscle: pathways controlling cellular functions associated with atherosclerosis. Atherosclerosis 199:237–247

    Article  CAS  PubMed  Google Scholar 

  34. Muslin AJ (2008) MAPK signalling in cardiovascular health and disease: molecular mechanisms and therapeutic targets. Clin Sci (Lond) 115:203–218

    Article  CAS  Google Scholar 

  35. Lee MK, Pardoux C, Hall MC, Lee PS, Warburton D, Qing J, Smith SM, Derynck R (2007) TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J 26:3957–3967

    Article  CAS  PubMed  Google Scholar 

  36. Galliher-Beckley AJ, Schiemann WP (2008) Grb2 binding to Tyr284 in TbetaR-II is essential for mammary tumor growth and metastasis stimulated by TGF-beta. Carcinogenesis 29:244–251

    Article  CAS  PubMed  Google Scholar 

  37. Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N, Taniguchi T, Nishida E, Matsumoto K (1995) Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science 270:2008–2011

    Article  CAS  PubMed  Google Scholar 

  38. Little PJ, Neylon CB, Tkachuk VA, Bobik A (1992) Endothelin-1 and endothelin-3 stimulate calcium mobilization by different mechanisms in vascular smooth muscle. Biochem Biophys Res Commun 183:694–700

    Article  CAS  PubMed  Google Scholar 

  39. Berk BC, Brock TA, Gimbrone MA Jr, Alexander RW (1987) Early agonist-mediated ionic events in cultured vascular smooth muscle cells. Calcium mobilization is associated with intracellular acidification. J Biol Chem 262:5065–5072

    CAS  PubMed  Google Scholar 

  40. Bobik A, Grooms A, Millar JA, Mitchell A, Grinpukel S (1990) Growth factor activity of endothelin on vascular smooth muscle. Am J Physiol 258:C408–C415

    CAS  PubMed  Google Scholar 

  41. Sudhir K, Wilson E, Chatterjee K, Ives HE (1993) Mechanical strain and collagen potentiate mitogenic activity of angiotensin II in rat vascular smooth muscle cells. J Clin Invest 92:3003–3007

    Article  CAS  PubMed  Google Scholar 

  42. Saito Y, Berk BC (2001) Transactivation: a novel signaling pathway from angiotensin II to tyrosine kinase receptors. J Mol Cell Cardiol 33:3–7

    Article  CAS  PubMed  Google Scholar 

  43. Daub H, Weiss FU, Wallasch C, Ullrich A (1996) Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379:557–560

    Article  CAS  PubMed  Google Scholar 

  44. Alarcon C, Zaromytidou AI, Xi Q, Gao S, Yu J, Fujisawa S, Barlas A, Miller AN, Manova-Todorova K, Macias MJ, Sapkota G, Pan D, Massague J (2009) Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways. Cell 139:757–769

    Article  CAS  PubMed  Google Scholar 

  45. Gao S, Alarcon C, Sapkota G, Rahman S, Chen PY, Goerner N, Macias MJ, Erdjument-Bromage H, Tempst P, Massague J (2009) Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-beta signaling. Mol Cell 36:457–468

    Article  CAS  PubMed  Google Scholar 

  46. Burch ML, Yang SN, Ballinger ML, Getachew R, Osman N, Little PJ (2010) TGF-β stimulates biglycan synthesis via p38 and ERK phosphorylation of the linker region of Smad 2. Cell Mol Life Sci 67(12):2077–2090

    Article  CAS  PubMed  Google Scholar 

  47. Ivey ME, Little PJ (2008) Thrombin regulates vascular smooth muscle cell proteoglycan synthesis via PAR-1 and multiple downstream signalling pathways. Thromb Res 123:288–297

    Article  CAS  PubMed  Google Scholar 

  48. Ballinger ML, Ivey ME, Osman N, Thomas WG, Little PJ (2009) Endothelin-1 activates ETA receptors on human vascular smooth muscle cells to yield proteoglycans with increased binding to LDL. Atherosclerosis 205:451–457

    Article  CAS  PubMed  Google Scholar 

  49. Ungefroren H, Lenschow W, Chen WB, Faendrich F, Kalthoff H (2003) Regulation of biglycan gene expression by transforming growth factor-beta requires MKK6-p38 mitogen-activated protein kinase signaling downstream of Smad signaling. J Biol Chem 278:11041–11049

    Article  CAS  PubMed  Google Scholar 

  50. Massague J (2003) Integration of Smad and MAPK pathways: a link and a linker revisited. Genes Dev 17:2993–2997

    Article  CAS  PubMed  Google Scholar 

  51. Itman C, Small C, Griswold M, Nagaraja AK, Matzuk MM, Brown CW, Jans DA, Loveland KL (2009) Developmentally regulated SMAD2 and SMAD3 utilization directs activin signaling outcomes. Dev Dyn 238:1688–1700

    Article  CAS  PubMed  Google Scholar 

  52. Lehmann K, Janda E, Pierreux CE, Rytomaa M, Schulze A, McMahon M, Hill CS, Beug H, Downward J (2000) Raf induces TGFbeta production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. Genes Dev 14:2610–2622

    Article  CAS  PubMed  Google Scholar 

  53. Cai L, Fritz D, Stefanovic L, Stefanovic B (2009) Coming together: liver fibrosis, collagen mRNAs and the RNA binding protein. Expert Rev Gastroenterol Hepatol 3:1–3

    Article  CAS  PubMed  Google Scholar 

  54. Ponticos M, Holmes AM, Shi-wen X, Leoni P, Khan K, Rajkumar VS, Hoyles RK, Bou-Gharios G, Black CM, Denton CP, Abraham DJ, Leask A, Lindahl GE (2009) Pivotal role of connective tissue growth factor in lung fibrosis: MAPK-dependent transcriptional activation of type I collagen. Arthritis Rheum 60:2142–2155

    Article  CAS  PubMed  Google Scholar 

  55. Van Bruaene N, Derycke L, Perez-Novo CA, Gevaert P, Holtappels G, De Ruyck N, Cuvelier C, Van Cauwenberge P, Bachert C (2009) TGF-beta signaling and collagen deposition in chronic rhinosinusitis. J Allergy Clin Immunol 124, 253–259 (259 e1–2)

    Google Scholar 

  56. Li F, Fan C, Cheng T, Jiang C, Zeng B (2009) Efficient inhibition of fibroblast proliferation and collagen expression by ERK2 siRNAs. Biochem Biophys Res Commun 382:259–263

    Article  CAS  PubMed  Google Scholar 

  57. Hayashida T, Decaestecker M, Schnaper HW (2003) Cross-talk between ERK MAP kinase and Smad signaling pathways enhances TGF-beta-dependent responses in human mesangial cells. FASEB J 17:1576–1578

    CAS  PubMed  Google Scholar 

  58. Nakashima Y, Wight TN, Sueishi K (2008) Early atherosclerosis in humans: role of diffuse intimal thickening and extracellular matrix proteoglycans. Cardiovasc Res 79:14–23

    Article  CAS  PubMed  Google Scholar 

  59. Williams KJ, Tabas I (1995) The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol 15:551–561

    CAS  PubMed  Google Scholar 

  60. Tabas I, Williams KJ, Boren J (2007) Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116:1832–1844

    Article  CAS  PubMed  Google Scholar 

  61. Little PJ, Osman N, O’Brien KD (2008) Hyperelongated biglycan: the surreptitious initiator of atherosclerosis. Curr Opin Lipidol 19:448–454

    Article  CAS  PubMed  Google Scholar 

  62. Nigro J, Dilley RJ, Little PJ (2002) Differential effects of gemfibrozil on migration, proliferation and proteoglycan production in human vascular smooth muscle cells. Atherosclerosis 162:119–129

    Article  CAS  PubMed  Google Scholar 

  63. Tannock L, Little PJ, Wight TN, Chait A (2002) Arterial smooth muscle cell proteoglycans synthesized in the presence of glucosamine demonstrate reduced binding to LDL. J Lipid Res 43:149–157

    CAS  PubMed  Google Scholar 

  64. Ballinger ML, Nigro J, Frontanilla KV, Dart AM, Little PJ (2004) Regulation of glycosaminoglycan structure and atherogenesis. Cell Mol Life Sci 61:1296–1306

    Article  CAS  PubMed  Google Scholar 

  65. Little PJ, Ballinger ML, Osman N (2007) Vascular wall proteoglycan synthesis and structure as a target for the prevention of atherosclerosis. Vasc Health Risk Manag 3:1–8

    Google Scholar 

  66. Ballinger ML, Osman N, Hashimura K, de Hann J, Jandeleit-Dahm K, Allen TJ, Tannock LR, Rutledge JC, Little PJ (2009) Imatinib inhibits vascular smooth muscle proteoglycan synthesis and reduces LDL binding in vitro and aortic lipid deposition in vivo. J Cell Mol Med 14(6):1408–1418

    Google Scholar 

  67. Finn AV, Kramer MC, Vorpahl M, Kolodgie FD, Virmani R (2009) Pharmacotherapy of coronary atherosclerosis. Expert Opin Pharmacother 10:1587–1603

    Article  CAS  PubMed  Google Scholar 

  68. Little PJ, Tannock L, Olin KL, Chait A, Wight TN (2002) Proteoglycans synthesized by arterial smooth muscle cells in the presence of transforming growth factor-beta1 exhibit increased binding to LDLs. Arterioscler Thromb Vasc Biol 22:55–60

    Article  CAS  PubMed  Google Scholar 

  69. Dadlani H, Ballinger ML, Osman N, Getachew R, Little PJ (2008) Smad and p38 MAP kinase-mediated signaling of proteoglycan synthesis in vascular smooth muscle. J Biol Chem 283:7844–7852

    Article  CAS  PubMed  Google Scholar 

  70. Watanabe H, de Caestecker MP, Yamada Y (2001) Transcriptional cross-talk between Smad, ERK1/2, and p38 mitogen-activated protein kinase pathways regulates transforming growth factor-beta-induced aggrecan gene expression in chondrogenic ATDC5 cells. J Biol Chem 276:14466–14473

    CAS  PubMed  Google Scholar 

  71. Little PJ, Ballinger ML, Burch ML, Osman N (2008) Biosynthesis of natural and hyperelongated chondroitin sulfate glycosaminoglycans: new insights into an elusive process. Open Biochem J 2:135–142

    Article  CAS  PubMed  Google Scholar 

  72. Yang SN, Burch ML, Getachew R, Ballinger ML, Osman N, Little PJ (2009) Growth factor-mediated hyper-elongation of glycosaminoglycan chains on biglycan requires transcription and translation. Arch Physiol Biochem 115:147–154

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a National Health and Medical Research Council of Australia Fellowship (P.J.L.) and a National Heart Foundation of Australia grant-in-aid (P.J.L.) and Diabetes Australia Research Trust grants (P.J.L. and N.O.). The Ph.D. program of M.L.B. generously received support through a National Heart Foundation of Australia post-graduate scholarship and a post-graduate support award from GlaxoSmithKline Australia to P.J.L. W.Z. acknowledges support from the National Natural Science Fund of China (no. 30670652; no. 30711120565; no. 30970935).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Little.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burch, M.L., Zheng, W. & Little, P.J. Smad linker region phosphorylation in the regulation of extracellular matrix synthesis. Cell. Mol. Life Sci. 68, 97–107 (2011). https://doi.org/10.1007/s00018-010-0514-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0514-4

Keywords

Navigation