Skip to main content
Log in

The persistence of T cell memory

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

T cell memory is a crucial feature of the adaptive immune system in the defense against pathogens. During the last years, numerous studies have focused their efforts on uncovering the signals, inflammatory cues, and extracellular factors that support memory differentiation. This research is beginning to decipher the complex gene network that controls memory programming. However, how the different signals, that a T cell receives during the process of differentiation, interplay to trigger memory programming is still poorly defined. In this review, we focus on the most recent advances in the field and discuss how T cell receptor signaling and inflammation control CD8 memory differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

APC:

Antigen presenting cell

Bcl- or BCL:

B-cell lymphoma/leukemia

Blimp-1:

Transcriptional repressor B-lymphocyte-induced maturation protein 1

BTLA:

B- and T-lymphocyte attenuator

DC:

Dendritic cell

ERK:

Extracellular signal-regulated kinases

GABPα:

GA-binding protein α

Gfi-1:

Growth factor independence 1

GSK3:

Glycogen synthase kinase 3

HP:

Homeostatic proliferation

Id2:

DNA-binding protein inhibitor 2

IFN:

Interferon

IKK:

IκB kinase

IL-:

Interleukin

ITAM:

Immunoreceptor tyrosine-based activation motif

JAK:

Janus protein tyrosine kinase

JNK:

c-Jun N-terminal kinase

KLRG1:

Killer cell lectin-like receptor subfamily G member 1

L.m.:

Listeria monocytogenes

LAT:

Linker for activation of T cells

Lck:

Leukocyte-specific protein tyrosine kinase

LCMV:

Lymphocytic choriomeningitis virus

LKLF:

Lung Krüppel-like factor

MALT-1:

Mucosa-associated lymphoid tissue lymphoma translocation protein 1

MAPK:

Mitogen-activated protein kinase

Mcl-1:

Myeloid cell leukemia sequence 1

MEKK:

Mammalian mitogen-activated protein kinase kinase kinase

MHC:

Major histocompatibility complex

MPECs:

Memory precursor effector cells

mTOR:

Mammalian target of rapamycin

NF-AT:

Nuclear factor of activated T cells

NF-κB:

Nuclear factor κ-light-chain-enhancer of activated B cells

NIK:

NF-κB-inducing kinase

NK cells:

Natural killer cells

p-MHC:

Peptide-MHC complex

PI3K:

Phosphoinositide 3-kinase

PKCθ:

Protein kinase C θ

Rsk:

Ribosomal s6 kinase

SLECs:

Short-lived effector cells

SLP-76:

SH2 domain containing leukocyte protein of 76 kDa

Spi-2A:

Serine protease inhibitor 2A

STAT:

Signal transducers and activator of transcription

TAK-1:

TGF-beta activated kinase 1

TCF-1:

T-cell factor/lymphoid enhancer factor 1

TCM :

Central memory T cell

TCR:

T cell receptor

TEM :

Effector memory T cell

TH :

T helper cell

TLR:

Toll-like receptor

TNF-α:

Tumor necrosis factor

TNFR:

Tumor necrosis factor receptor

TRAF-6:

TNF receptor-associated factor-6

XBP-1:

X-box-binding protein 1

ZAP-70:

Zeta-chain-associated protein kinase 70

References

  1. Jabbari A, Harty JT (2006) Secondary memory CD8+ T cells are more protective but slower to acquire a central-memory phenotype. J Exp Med 203:919–932

    Article  PubMed  CAS  Google Scholar 

  2. Masopust D, Ha S-J, Vezys V, Ahmed R (2006) Stimulation history dictates memory CD8 T cell phenotype: implications for prime-boost vaccination. J Immunol 177:831–839

    PubMed  CAS  Google Scholar 

  3. Sandau MM, Kohlmeier JE, Woodland DL, Jameson SC (2010) IL-15 regulates both quantitative and qualitative features of the memory CD8 T cell pool. J Immunol 184:35–44

    Article  PubMed  CAS  Google Scholar 

  4. Surh CD, Sprent J (2008) Homeostasis of naive and memory T cells. Immunity 29:848–862

    Article  PubMed  CAS  Google Scholar 

  5. Williams MA, Bevan MJ (2007) Effector and memory CTL differentiation. Annu Rev Immunol 25:171–192

    Article  PubMed  CAS  Google Scholar 

  6. Sun JC, Williams MA, Bevan MJ (2004) CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection. Nat Immunol 5:927–933

    Article  PubMed  CAS  Google Scholar 

  7. Whitmire JK, Asano MS, Kaech SM, Sarkar S, Hannum LG, Shlomchik MJ, Ahmed R (2009) Requirement of B cells for generating CD4+ T cell memory. J Immunol 182:1868–1876

    Article  PubMed  CAS  Google Scholar 

  8. Shen H, Whitmire JK, Fan X, Shedlock DJ, Kaech SM, Ahmed R (2003) A specific role for B cells in the generation of CD8 T cell memory by recombinant Listeria monocytogenes. J Immunol 170:1443–1451

    PubMed  CAS  Google Scholar 

  9. Jameson SC, Masopust D (2009) Diversity in T cell memory: an embarrassment of riches. Immunity 31:859–871

    Article  PubMed  CAS  Google Scholar 

  10. Badovinac VP, Haring JS, Harty JT (2007) Initial T cell receptor transgenic cell precursor frequency dictates critical aspects of the CD8(+) T cell response to infection. Immunity 26:827–841

    Article  PubMed  CAS  Google Scholar 

  11. Hataye J, Moon JJ, Khoruts A, Reilly C, Jenkins MK (2006) Naive and memory CD4+ T cell survival controlled by clonal abundance. Science 312:114–116

    Article  PubMed  CAS  Google Scholar 

  12. Sallusto F, Lanzavecchia A (2009) Heterogeneity of CD4+ memory T cells: functional modules for tailored immunity. Eur J Immunol 39:2076–2082

    Article  PubMed  CAS  Google Scholar 

  13. Macleod M, Clambey E, Kappler J, Marrack P (2009) CD4 memory T cells: what are they and what can they do? Semin Immunol 21:53–61

    Article  PubMed  CAS  Google Scholar 

  14. Blair DA, Lefrancois L (2007) Increased competition for antigen during priming negatively impacts the generation of memory CD4 T cells. Proc Natl Acad Sci USA 104:15045–15050

    Article  PubMed  CAS  Google Scholar 

  15. Sallusto F, Geginat J, Lanzavecchia A (2004) Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol 22:745–763

    Article  PubMed  CAS  Google Scholar 

  16. Lefrancois L (2006) Development, trafficking, and function of memory T-cell subsets. Immunol Rev 211:93–103

    Article  PubMed  CAS  Google Scholar 

  17. Acosta-Rodriguez EV, Rivino L, Geginat J, Jarrossay D, Gattorno M, Lanzavecchia A, Sallusto F, Napolitani G (2007) Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 8:639–646

    Article  PubMed  CAS  Google Scholar 

  18. Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B, Parente E, Filì L, Ferri S, Frosali F, Giudici F, Romagnani P, Parronchi P, Tonelli F, Maggi E, Romagnani S (2007) Phenotypic and functional features of human Th17 cells. J Exp Med 204:1849–1861

    Article  PubMed  CAS  Google Scholar 

  19. Foulds KE, Shen H (2006) Clonal competition inhibits the proliferation and differentiation of adoptively transferred TCR transgenic CD4 T cells in response to infection. J Immunol 176:3037–3043

    PubMed  CAS  Google Scholar 

  20. Celli S, Lemaître F, Bousso P (2007) Real-time manipulation of T cell-dendritic cell interactions in vivo reveals the importance of prolonged contacts for CD4+ T cell activation. Immunity 27:625–634

    Article  PubMed  CAS  Google Scholar 

  21. Mempel TR, Henrickson SE, Von Andrian UH (2004) T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427:154–159

    Article  PubMed  CAS  Google Scholar 

  22. Purton JF, Tan JT, Rubinstein MP, Kim DM, Sprent J, Surh CD (2007) Antiviral CD4+ memory T cells are IL-15 dependent. J Exp Med 204:951–961

    Article  PubMed  CAS  Google Scholar 

  23. Cho BK, Rao VP, Ge Q, Eisen HN, Chen J (2000) Homeostasis-stimulated proliferation drives naive T cells to differentiate directly into memory T cells. J Exp Med 192:549–556

    Article  PubMed  CAS  Google Scholar 

  24. Goldrath AW, Luckey CJ, Park R, Benoist C, Mathis D (2004) The molecular program induced in T cells undergoing homeostatic proliferation. Proc Natl Acad Sci USA 101:16885–16890

    Article  PubMed  CAS  Google Scholar 

  25. Hamilton SE, Wolkers MC, Schoenberger SP, Jameson SC (2006) The generation of protective memory-like CD8+ T cells during homeostatic proliferation requires CD4+ T cells. Nat Immunol 7:475–481

    Article  PubMed  CAS  Google Scholar 

  26. Hamilton SE, Jameson SC (2008) The nature of the lymphopenic environment dictates protective function of homeostatic-memory CD8+ T cells. Proc Natl Acad Sci USA 105:18484–18489

    Article  PubMed  Google Scholar 

  27. Cheung KP, Yang E, Goldrath AW (2009) Memory-like CD8+ T cells generated during homeostatic proliferation defer to antigen-experienced memory cells. J Immunol 183:3364–3372

    Article  PubMed  CAS  Google Scholar 

  28. Prlic M, Blazar BR, Khoruts A, Zell T, Jameson SC (2001) Homeostatic expansion occurs independently of costimulatory signals. J Immunol 167:5664–5668

    PubMed  CAS  Google Scholar 

  29. Krieg C, Boyman O, Fu Y-X, Kaye J (2007) B and T lymphocyte attenuator regulates CD8+ T cell-intrinsic homeostasis and memory cell generation. Nat Immunol 8:162–171

    Article  PubMed  CAS  Google Scholar 

  30. Liu Y, Zheng P (2007) CD24: a genetic checkpoint in T cell homeostasis and autoimmune diseases. Trends Immunol 28:315–320

    Article  PubMed  CAS  Google Scholar 

  31. Kieper WC, Tan JT, Bondi-Boyd B, Gapin L, Sprent J, Ceredig R, Surh CD (2002) Overexpression of interleukin (IL)-7 leads to IL-15-independent generation of memory phenotype CD8+ T cells. J Exp Med 195:1533–1539

    Article  PubMed  CAS  Google Scholar 

  32. Rubinstein MP, Lind NA, Purton JF, Filippou P, Best JA, McGhee PA, Surh CD, Goldrath AW (2008) IL-7 and IL-15 differentially regulate CD8+ T-cell subsets during contraction of the immune response. Blood 112:3704–3712

    Article  PubMed  CAS  Google Scholar 

  33. Seddon B, Zamoyska R (2002) TCR and IL-7 receptor signals can operate independently or synergize to promote lymphopenia-induced expansion of naive T cells. J Immunol 169:3752–3759

    PubMed  CAS  Google Scholar 

  34. Surh CD, Sprent J (2005) Regulation of mature T cell homeostasis. Semin Immunol 17:183–191

    Article  PubMed  CAS  Google Scholar 

  35. Schmidt-Supprian M, Tian J, Ji H, Terhorst C, Bhan AK, Grant EP, Pasparakis M, Casola S, Coyle AJ, Rajewsky K (2004) I kappa B kinase 2 deficiency in T cells leads to defects in priming, B cell help, germinal center reactions, and homeostatic expansion. J Immunol 173:1612–1619

    PubMed  CAS  Google Scholar 

  36. Schmidt-Supprian M, Courtois G, Tian J, Coyle AJ, Israël A, Rajewsky K, Pasparakis M (2003) Mature T cells depend on signaling through the IKK complex. Immunity 19:377–389

    Article  PubMed  CAS  Google Scholar 

  37. Ishimaru N, Kishimoto H, Hayashi Y, Sprent J (2006) Regulation of naive T cell function by the NF-kappaB2 pathway. Nat Immunol 7:763–772

    Article  PubMed  CAS  Google Scholar 

  38. Sriskantharajah S, Belich MP, Papoutsopoulou S, Janzen J, Tybulewicz V, Seddon B, Ley SC (2009) Proteolysis of NF-kappaB1 p105 is essential for T cell antigen receptor-induced proliferation. Nat Immunol 10:38–47

    Article  PubMed  CAS  Google Scholar 

  39. Teixeiro E, Daniels MA, Hamilton SE, Schrum AG, Bragado R, Jameson SC, Palmer E (2009) Different T cell receptor signals determine CD8+ memory versus effector development. Science 323:502–505

    Article  PubMed  CAS  Google Scholar 

  40. Wang X, Chang X, Facchinetti V, Zhuang Y, Su B (2009) MEKK3 is essential for lymphopenia-induced T cell proliferation and survival. J Immunol 182:3597–3608

    Article  PubMed  CAS  Google Scholar 

  41. Lin J-X, Spolski R, Leonard WJ (2008) Critical role for Rsk2 in T-lymphocyte activation. Blood 111:525–533

    Article  PubMed  CAS  Google Scholar 

  42. Shinohara H, Yamasaki S, Maeda S, Saito T, Kurosaki T (2009) Regulation of NF-kappaB-dependent T cell activation and development by MEKK3. Int Immunol 21:393–401

    Article  PubMed  CAS  Google Scholar 

  43. Schouten GJ, Vertegaal AC, Whiteside ST, Israel A, Toebes M, Dorsman JC, van der Eb AJ, Zantema A (1997) IkappaB alpha is a target for the mitogen-activated 90 kDa ribosomal S6 kinase. EMBO J 16:3133–3144

    Article  PubMed  CAS  Google Scholar 

  44. Epstein MM, Di Rosa F, Jankovic D, Sher A, Matzinger P (1995) Successful T cell priming in B cell-deficient mice. J Exp Med 182:915–922

    Article  PubMed  CAS  Google Scholar 

  45. Janssen EM, Lemmens EE, Wolfe T, Christen U, von Herrath MG, Schoenberger SP (2003) CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421:852–856

    Article  PubMed  CAS  Google Scholar 

  46. Shedlock DJ, Whitmire JK, Tan J, MacDonald AS, Ahmed R, Shen H (2003) Role of CD4 T cell help and costimulation in CD8 T cell responses during Listeria monocytogenes infection. J Immunol 170:2053–2063

    PubMed  CAS  Google Scholar 

  47. Sun JC, Bevan MJ (2003) Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 300:339–342

    Article  PubMed  CAS  Google Scholar 

  48. Nakanishi Y, Lu B, Gerard C, Iwasaki A (2009) CD8(+) T lymphocyte mobilization to virus-infected tissue requires CD4(+) T-cell help. Nature 462:510–513

    Article  PubMed  CAS  Google Scholar 

  49. Sun JC, Bevan MJ (2004) Cutting edge: long-lived CD8 memory and protective immunity in the absence of CD40 expression on CD8 T cells. J Immunol 172:3385–3389

    PubMed  CAS  Google Scholar 

  50. Williams MA, Tyznik AJ, Bevan MJ (2006) Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature 441:890–893

    Article  PubMed  CAS  Google Scholar 

  51. Obar JJ, Molloy MJ, Jellison ER, Stoklasek TA, Zhang W, Usherwood EJ, Lefrancois L (2010) CD4+ T cell regulation of CD25 expression controls development of short-lived effector CD8+ T cells in primary and secondary responses. Proc Natl Acad Sci USA 107:193–198

    Article  PubMed  Google Scholar 

  52. Leignadier J, Hardy M-P, Cloutier M, Rooney J, Labrecque N (2008) Memory T-lymphocyte survival does not require T-cell receptor expression. Proc Natl Acad Sci USA 105:20440–20445

    Article  PubMed  Google Scholar 

  53. van Stipdonk MJ, Hardenberg G, Bijker MS, Lemmens EE, Droin NM, Green DR, Schoenberger SP (2003) Dynamic programming of CD8+ T lymphocyte responses. Nat Immunol. 4:361–365

    Article  PubMed  CAS  Google Scholar 

  54. van Stipdonk MJ, Lemmens EE, Schoenberger SP (2001) Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat Immunol. 2:423–429

    PubMed  Google Scholar 

  55. Masopust D, Kaech SM, Wherry EJ, Ahmed R (2004) The role of programming in memory T-cell development. Curr Opin Immunol 16:217–225

    Article  PubMed  CAS  Google Scholar 

  56. Kaech SM, Tan JT, Wherry EJ, Konieczny BT, Surh CD, Ahmed R (2003) Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat Immunol 4:1191–1198

    Article  PubMed  CAS  Google Scholar 

  57. Lauvau G, Vijh S, Kong P, Horng T, Kerksiek K, Serbina N, Tuma RA, Pamer EG (2001) Priming of memory but not effector CD8 T cells by a killed bacterial vaccine. Science 294:1735–1739

    Article  PubMed  CAS  Google Scholar 

  58. Badovinac VP, Harty JT (2007) Manipulating the rate of memory CD8+ T cell generation after acute infection. J Immunol 179:53–63

    PubMed  CAS  Google Scholar 

  59. Ho IC and Glimcher LH (2002) Transcription: tantalizing times for T cells. Cell 109 (Suppl):S109–120

    Google Scholar 

  60. Pearce EL, Mullen AC, Martins GA, Krawczyk CM, Hutchins AS, Zediak VP, Banica M, DiCioccio CB, Gross DA, Mao C-A, Shen H, Cereb N, Yang SY, Lindsten T, Rossant J, Hunter CA, Reiner SL (2003) Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science 302:1041–1043

    Article  PubMed  CAS  Google Scholar 

  61. Intlekofer AM, Takemoto N, Wherry EJ, Longworth SA, Northrup JT, Palanivel VR, Mullen AC, Gasink CR, Kaech SM, Miller JD, Gapin L, Ryan K, Russ AP, Lindsten T, Orange JS, Goldrath AW, Ahmed R, Reiner SL (2005) Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat Immunol 6:1236–1244

    Article  PubMed  CAS  Google Scholar 

  62. Takemoto N, Intlekofer AM, Northrup JT, Wherry EJ, Reiner SL (2006) Cutting Edge: IL-12 inversely regulates T-bet and eomesodermin expression during pathogen-induced CD8+ T cell differentiation. J Immunol 177:7515–7519

    PubMed  CAS  Google Scholar 

  63. Intlekofer AM, Takemoto N, Kao C, Banerjee A, Schambach F, Northrop JK, Shen H, Wherry EJ, Reiner SL (2007) Requirement for T-bet in the aberrant differentiation of unhelped memory CD8+ T cells. J Exp Med 204:2015–2021

    Article  PubMed  CAS  Google Scholar 

  64. Pearce EL, Shen H (2007) Generation of CD8 T cell memory is regulated by IL-12. J Immunol 179:2074–2081

    PubMed  CAS  Google Scholar 

  65. Joshi NS, Cui W, Chandele A, Lee HK, Urso DR, Hagman J, Gapin L, Kaech SM (2007) Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor. Immunity 27:281–295

    Article  PubMed  CAS  Google Scholar 

  66. Martins GA, Cimmino L, Shapiro-Shelef M, Szabolcs M, Herron A, Magnusdottir E, Calame K (2006) Transcriptional repressor Blimp-1 regulates T cell homeostasis and function. Nat Immunol 7:457–465

    Article  PubMed  CAS  Google Scholar 

  67. Kallies A, Xin A, Belz GT, Nutt SL (2009) Blimp-1 transcription factor is required for the differentiation of effector CD8(+) T cells and memory responses. Immunity 31:283–295

    Article  PubMed  CAS  Google Scholar 

  68. Rutishauser RL, Martins GA, Kalachikov S, Chandele A, Parish IA, Meffre E, Jacob J, Calame K, Kaech SM (2009) Transcriptional repressor Blimp-1 promotes CD8(+) T cell terminal differentiation and represses the acquisition of central memory T cell properties. Immunity 31:296–308

    Article  PubMed  CAS  Google Scholar 

  69. Kamimura D, Bevan MJ (2008) Endoplasmic reticulum stress regulator XBP-1 contributes to effector CD8+ T cell differentiation during acute infection. J Immunol 181:5433–5441

    PubMed  CAS  Google Scholar 

  70. Ichii H, Sakamoto A, Kuroda Y, Tokuhisa T (2004) Bcl6 acts as an amplifier for the generation and proliferative capacity of central memory CD8+ T cells. J Immunol 173:883–891

    PubMed  CAS  Google Scholar 

  71. Ichii H, Sakamoto A, Hatano M, Okada S, Toyama H, Taki S, Arima M, Kuroda Y, Tokuhisa T (2002) Role for Bcl-6 in the generation and maintenance of memory CD8+ T cells. Nat Immunol 3:558–563

    Article  PubMed  CAS  Google Scholar 

  72. Manders PM, Hunter PJ, Telaranta AI, Carr JM, Marshall JL, Carrasco M, Murakami Y, Palmowski MJ, Cerundolo V, Kaech SM, Ahmed R, Fearon DT (2005) BCL6b mediates the enhanced magnitude of the secondary response of memory CD8+ T lymphocytes. Proc Natl Acad Sci USA 102:7418–7425

    Article  PubMed  CAS  Google Scholar 

  73. Cannarile MA, Lind NA, Rivera R, Sheridan AD, Camfield KA, Wu BB, Cheung KP, Ding Z, Goldrath AW (2006) Transcriptional regulator Id2 mediates CD8+ T cell immunity. Nat Immunol 7:1317–1325

    Article  PubMed  CAS  Google Scholar 

  74. D’Cruz LM, Rubinstein MP, Goldrath AW (2009) Surviving the crash: transitioning from effector to memory CD8+ T cell. Semin Immunol 21:92–98

    Article  PubMed  CAS  Google Scholar 

  75. Heffner M, Fearon DT (2007) Loss of T cell receptor-induced Bmi-1 in the KLRG1(+) senescent CD8(+) T lymphocyte. Proc Natl Acad Sci USA 104:13414–13419

    Article  PubMed  CAS  Google Scholar 

  76. Nakayama T, Yamashita M (2009) Critical role of the Polycomb and Trithorax complexes in the maintenance of CD4 T cell memory. Semin Immunol 21:78–83

    Article  PubMed  CAS  Google Scholar 

  77. Liu N, Phillips T, Zhang M, Wang Y, Opferman JT, Shah R, Ashton-Rickardt PG (2004) Serine protease inhibitor 2A is a protective factor for memory T cell development. Nat Immunol 5:919–926

    Article  PubMed  CAS  Google Scholar 

  78. Schober SL, Kuo CT, Schluns KS, Lefrancois L, Leiden JM, Jameson SC (1999) Expression of the transcription factor lung Krüppel-like factor is regulated by cytokines and correlates with survival of memory T cells in vitro and in vivo. J Immunol 163:3662–3667

    PubMed  CAS  Google Scholar 

  79. Setoguchi R, Taniuchi I, Bevan MJ (2009) ThPOK derepression is required for robust CD8 T cell responses to viral infection. J Immunol 183:4467–4474

    Article  PubMed  CAS  Google Scholar 

  80. Sun JC, Lehar SM, Bevan MJ (2006) Augmented IL-7 signaling during viral infection drives greater expansion of effector T cells but does not enhance memory. J Immunol 177:4458–4463

    PubMed  CAS  Google Scholar 

  81. Chandele A, Joshi NS, Zhu J, Paul WE, Leonard WJ, Kaech SM (2008) Formation of IL-7Ralphahigh and IL-7Ralphalow CD8 T cells during infection is regulated by the opposing functions of GABPalpha and Gfi-1. J Immunol 180:5309–5319

    PubMed  CAS  Google Scholar 

  82. Araki Y, Fann M, Wersto R, Weng N (2008) Histone acetylation facilitates rapid and robust memory CD8 T cell response through differential expression of effector molecules (eomesodermin and its targets: perforin and granzyme B). J Immunol 180:8102–8108

    PubMed  CAS  Google Scholar 

  83. Araki Y, Wang Z, Zang C, Wood WH, Schones D, Cui K, Roh T-Y, Lhotsky B, Wersto RP, Peng W, Becker KG, Zhao K, Weng NP (2009) Genome-wide analysis of histone methylation reveals chromatin state-based regulation of gene transcription and function of memory CD8+ T cells. Immunity 30:912–925

    Article  PubMed  CAS  Google Scholar 

  84. Williams MA, Ravkov EV, Bevan MJ (2008) Rapid culling of the CD4+ T cell repertoire in the transition from effector to memory. Immunity 28:533–545

    Article  PubMed  CAS  Google Scholar 

  85. Sarkar S, Teichgräber V, Kalia V, Polley A, Masopust D, Harrington LE, Ahmed R, Wherry EJ (2007) Strength of stimulus and clonal competition impact the rate of memory CD8 T cell differentiation. J Immunol 179:6704–6714

    PubMed  CAS  Google Scholar 

  86. Williams M, Bevan M (2004) Shortening the infectious period does not alter expansion of CD8 T cells but diminishes their capacity to differentiate into memory cells. J Immunol 173:6694

    PubMed  CAS  Google Scholar 

  87. Prlic M, Hernandez-Hoyos G, Bevan MJ (2006) Duration of the initial TCR stimulus controls the magnitude but not functionality of the CD8+ T cell response. J Exp Med 203:2135–2143

    Article  PubMed  CAS  Google Scholar 

  88. Gourley TS, Wherry EJ, Masopust D, Ahmed R (2004) Generation and maintenance of immunological memory. Semin Immunol 16:323–333

    Article  PubMed  CAS  Google Scholar 

  89. Kaech SM, Wherry EJ (2007) Heterogeneity and cell-fate decisions in effector and memory CD8+ T cell differentiation during viral infection. Immunity 27:393–405

    Article  PubMed  CAS  Google Scholar 

  90. Prlic M, Williams MA, Bevan MJ (2007) Requirements for CD8 T-cell priming, memory generation and maintenance. Curr Opin Immunol 19:315–319

    Article  PubMed  CAS  Google Scholar 

  91. Wherry EJ, Blattman JN, Ahmed R (2005) Low CD8 T-cell proliferative potential and high viral load limit the effectiveness of therapeutic vaccination. J Virol 79:8960–8968

    Article  PubMed  CAS  Google Scholar 

  92. Wherry EJ, Blattman JN, Murali-Krishna K, van der Most R, Ahmed R (2003) Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J Virol 77:4911–4927

    Article  PubMed  CAS  Google Scholar 

  93. Sarkar S, Kalia V, Haining W, Konieczny B, Subramaniam S, Ahmed R (2008) Functional and genomic profiling of effector CD8 T cell subsets with distinct memory fates. J Exp Med 205:625–640

    Article  PubMed  CAS  Google Scholar 

  94. Malherbe L, Hausl C, Teyton L, McHeyzer-Williams MG (2004) Clonal selection of helper T cells is determined by an affinity threshold with no further skewing of TCR-binding properties. Immunity 21:669–679

    Article  PubMed  CAS  Google Scholar 

  95. Savage PA, Boniface JJ, Davis MM (1999) A kinetic basis for T cell receptor repertoire selection during an immune response. Immunity 10:485–492

    Article  PubMed  CAS  Google Scholar 

  96. Kedzierska K, Day EB, Pi J, Heard SB, Doherty PC, Turner SJ, Perlman S (2006) Quantification of repertoire diversity of influenza-specific epitopes with predominant public or private TCR usage. J Immunol 177:6705–6712

    PubMed  CAS  Google Scholar 

  97. Kedzierska K, Venturi V, Field K, Davenport M, Turner SJ, Doherty PC (2006) Early establishment of diverse T cell receptor profiles for influenza-specific CD8(+)CD62L(hi) memory T cells. Proc Natl Acad Sci USA 103:9184–9189

    Article  PubMed  CAS  Google Scholar 

  98. Zehn D, Lee SY, Bevan MJ (2009) Complete but curtailed T-cell response to very low-affinity antigen. Nature 458:211–214

    Article  PubMed  CAS  Google Scholar 

  99. Lauvau G, Vijh S, Kong P, Horng T, Kerksiek K, Serbina N, Tuma RA, Pamer EG (2001) Priming of memory but not effector CD8 T cells by a killed bacterial vaccine. Science 294:1735–1739

    Article  PubMed  CAS  Google Scholar 

  100. Badovinac VP, Porter BB, Harty JT (2004) CD8+ T cell contraction is controlled by early inflammation. Nat Immunol 5:809–817

    Article  PubMed  CAS  Google Scholar 

  101. Turner SJ, Diaz G, Cross R, Doherty PC (2003) Analysis of clonotype distribution and persistence for an influenza virus-specific CD8+ T cell response. Immunity 18:549–559

    Article  PubMed  CAS  Google Scholar 

  102. Smith-Garvin JE, Koretzky GA, Jordan MS (2009) T cell activation. Annu Rev Immunol 27:591–619

    Article  PubMed  CAS  Google Scholar 

  103. Tewari K, Walent J, Svaren J, Zamoyska R, Suresh M (2006) Differential requirement for Lck during primary and memory CD8+ T cell responses. Proc Natl Acad Sci USA 103:16388–16393

    Article  PubMed  CAS  Google Scholar 

  104. Hayden M, West A, Ghosh S (2006) NF-kappaB and the immune response. Oncogene 25:6758–6780

    Article  PubMed  CAS  Google Scholar 

  105. Pearce EL, Walsh MC, Cejas PJ, Harms GM, Shen H, Wang LS, Jones RG, Choi Y (2009) Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460:103–107

    Article  PubMed  CAS  Google Scholar 

  106. D’Souza WN, Chang C-F, Fischer AM, Li M, Hedrick SM (2008) The Erk2 MAPK regulates CD8 T cell proliferation and survival. J Immunol 181:7617–7629

    PubMed  Google Scholar 

  107. Rincón M, Davis RJ (2009) Regulation of the immune response by stress-activated protein kinases. Immunol Rev 228:212–224

    Article  PubMed  Google Scholar 

  108. Arbour N, Naniche D, Homann D, Davis RJ, Flavell RA, Oldstone MBA (2002) c-Jun NH(2)-terminal kinase (JNK)1 and JNK2 signaling pathways have divergent roles in CD8(+) T cell-mediated antiviral immunity. J Exp Med 195:801–810

    Article  PubMed  CAS  Google Scholar 

  109. Gao Y, Tao J, Li MO, Zhang D, Chi H, Henegariu O, Kaech SM, Davis RJ, Flavell RA, Yin Z (2005) JNK1 is essential for CD8+ T cell-mediated tumor immune surveillance. J Immunol 175:5783–5789

    PubMed  CAS  Google Scholar 

  110. Merritt C, Enslen H, Diehl N, Conze D, Davis RJ, Rincón M (2000) Activation of p38 mitogen-activated protein kinase in vivo selectively induces apoptosis of CD8(+) but not CD4(+) T cells. Mol Cell Biol 20:936–946

    Article  PubMed  CAS  Google Scholar 

  111. Laplante M, Sabatini DM (2009) mTOR signaling at a glance. J Cell Sci 122:3589–3594

    Article  PubMed  CAS  Google Scholar 

  112. Araki K, Turner AP, Shaffer VO, Gangappa S, Keller SA, Bachmann MF, Larsen CP, Ahmed R (2009) mTOR regulates memory CD8 T-cell differentiation. Nature 460:108–112

    Article  PubMed  CAS  Google Scholar 

  113. Rao RR, Li Q, Odunsi K, Shrikant PA (2010) The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and eomesodermin. Immunity 32:67–78

    Article  PubMed  CAS  Google Scholar 

  114. Gattinoni L, Zhong X-S, Palmer DC, Ji Y, Hinrichs CS, Yu Z, Wrzesinski C, Boni A, Cassard L, Garvin LM, Paulos CM, Muranski P, Restifo NP (2009) Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat Med 15:808–813

    Article  PubMed  CAS  Google Scholar 

  115. Zhao D-M, Yu S, Zhou X, Haring JS, Held W, Badovinac VP, Harty JT, Xue H-H (2010) Constitutive activation of Wnt signaling favors generation of memory CD8 T cells. J Immunol 184:1191–1199

    Article  PubMed  CAS  Google Scholar 

  116. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ, Ahmed R (2006) Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439:682–687

    Article  PubMed  CAS  Google Scholar 

  117. Mousavi SF, Soroosh P, Takahashi T, Yoshikai Y, Shen H, Lefrançois L, Borst J, Sugamura K, Ishii N (2008) OX40 costimulatory signals potentiate the memory commitment of effector CD8+ T cells. J Immunol 181:5990–6001

    PubMed  CAS  Google Scholar 

  118. Yokosuka T, Kobayashi W, Sakata-Sogawa K, Takamatsu M, Hashimoto-Tane A, Dustin ML, Tokunaga M, Saito T (2008) Spatiotemporal regulation of T cell costimulation by TCR-CD28 microclusters and protein kinase C theta translocation. Immunity 29:589–601

    Article  PubMed  CAS  Google Scholar 

  119. Curtsinger JM, Schmidt CS, Mondino A, Lins DC, Kedl RM, Jenkins MK, Mescher MF (1999) Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells. J Immunol 162:3256–3262

    PubMed  CAS  Google Scholar 

  120. Xiao Z, Casey KA, Jameson SC, Curtsinger JM, Mescher MF (2009) Programming for CD8 T cell memory development requires IL-12 or type I IFN. J Immunol 182:2786–2794

    Article  PubMed  CAS  Google Scholar 

  121. Agarwal P, Raghavan A, Nandiwada SL, Curtsinger JM, Bohjanen PR, Mueller DL, Mescher MF (2009) Gene regulation and chromatin remodeling by IL-12 and type I IFN in programming for CD8 T cell effector function and memory. J Immunol 183:1695–1704

    Article  PubMed  CAS  Google Scholar 

  122. Schulz E, Mariani L, Radbruch A, Höfer T (2009) Sequential polarization and imprinting of type 1 T helper lymphocytes by interferon-gamma and interleukin-12. Immunity 30:673–683

    Article  PubMed  CAS  Google Scholar 

  123. Platanias LC (2005) Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5:375–386

    Article  PubMed  CAS  Google Scholar 

  124. Pipkin ME, Sacks JA, Cruz-Guilloty F, Lichtenheld MG, Bevan MJ, Rao A (2010) Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells. Immunity 32:79–90

    Article  PubMed  CAS  Google Scholar 

  125. Kalia V, Sarkar S, Subramaniam S, Haining WN, Smith KA, Ahmed R (2010) Prolonged interleukin-2Ralpha expression on virus-specific CD8(+) T cells favors terminal-effector differentiation in vivo. Immunity 32:91–103

    Article  PubMed  CAS  Google Scholar 

  126. Harty JT, Badovinac VP (2008) Shaping and reshaping CD8+ T-cell memory. Nat Rev Immunol 8:107–119

    Article  PubMed  CAS  Google Scholar 

  127. Cui W, Joshi NS, Jiang A, Kaech SM (2009) Effects of signal 3 during CD8 T cell priming: bystander production of IL-12 enhances effector T cell expansion but promotes terminal differentiation. Vaccine 27:2177–2187

    Article  PubMed  CAS  Google Scholar 

  128. Pham NL, Badovinac VP, Harty JT (2009) A default pathway of memory CD8 T cell differentiation after dendritic cell immunization is deflected by encounter with inflammatory cytokines during antigen-driven proliferation. J Immunol 183:2337–2348

    Article  PubMed  CAS  Google Scholar 

  129. Joshi NS, Kaech SM (2008) Effector CD8 T cell development: a balancing act between memory cell potential and terminal differentiation. J Immunol 180:1309–1315

    PubMed  CAS  Google Scholar 

  130. Stemberger C, Neuenhahn M, Gebhardt FE, Schiemann M, Buchholz VR, Busch DH (2009) Stem cell-like plasticity of naive and distinct memory CD8 + T cell subsets. Semin Immunol 21:62–68

    Article  PubMed  CAS  Google Scholar 

  131. Parish IA, Kaech SM (2009) Diversity in CD8(+) T cell differentiation. Curr Opin Immunol 21:291–297

    Article  PubMed  CAS  Google Scholar 

  132. Bannard O, Kraman M, Fearon D (2009) Pathways of memory CD8+ T-cell development. Eur J Immunol 39:2083–2087

    Article  PubMed  CAS  Google Scholar 

  133. Ahmed R, Bevan MJ, Reiner SL, Fearon DT (2009) The precursors of memory: models and controversies. Nat Rev Immunol 9:662–668

    Article  PubMed  CAS  Google Scholar 

  134. Wherry EJ, Teichgraber V, Becker TC, Masopust D, Kaech SM, Antia R, von Andrian UH, Ahmed R (2003) Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol 4:225–234

    Article  PubMed  CAS  Google Scholar 

  135. Kaech SM, Hemby S, Kersh E, Ahmed R (2002) Molecular and functional profiling of memory CD8 T cell differentiation. Cell 111:837–851

    Article  PubMed  CAS  Google Scholar 

  136. Badovinac VP, Messingham KA, Jabbari A, Haring JS, Harty JT (2005) Accelerated CD8+ T-cell memory and prime-boost response after dendritic-cell vaccination. Nat Med 11:748–756

    Article  PubMed  CAS  Google Scholar 

  137. D’Souza WN, Hedrick SM (2006) Cutting edge: latecomer CD8 T cells are imprinted with a unique differentiation program. J Immunol 177:777–781

    PubMed  Google Scholar 

  138. Lanzavecchia A, Sallusto F (2002) Progressive differentiation and selection of the fittest in the immune response. Nat Rev Immunol 2:982–987

    Article  PubMed  CAS  Google Scholar 

  139. Wong P, Lara-Tejero M, Ploss A, Leiner I, Pamer EG (2004) Rapid development of T cell memory. J Immunol 172:7239–7245

    PubMed  CAS  Google Scholar 

  140. Busch DH, Kerksiek KM, Pamer EG (2000) Differing roles of inflammation and antigen in T cell proliferation and memory generation. J Immunol 164:4063–4070

    PubMed  CAS  Google Scholar 

  141. Chang JT, Palanivel VR, Kinjyo I, Schambach F, Intlekofer AM, Banerjee A, Longworth SA, Vinup KE, Mrass P, Oliaro J, Killeen N, Orange JS, Russell SM, Weninger W, Reiner SL (2007) Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science 315:1687–1691

    Article  PubMed  CAS  Google Scholar 

  142. Bannard O, Kraman M, Fearon DT (2009) Secondary replicative function of CD8+ T cells that had developed an effector phenotype. Science 323:505–509

    Article  PubMed  CAS  Google Scholar 

  143. Stemberger C, Huster KM, Koffler M, Anderl F, Schiemann M, Wagner H, Busch DH (2007) A single naive CD8+ T cell precursor can develop into diverse effector and memory subsets. Immunity 27:985–997

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the University of Missouri Mission Enhancement Fund for supporting our work. We thank Karin Knudson, Cody Cunningham, and William Olson for interesting discussions and Dr. Ed Palmer for his support. We apologize to all authors we could not cite because of space restrictions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma Teixeiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daniels, M.A., Teixeiro, E. The persistence of T cell memory. Cell. Mol. Life Sci. 67, 2863–2878 (2010). https://doi.org/10.1007/s00018-010-0362-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0362-2

Keywords

Navigation