Skip to main content
Log in

Venom components from Citharischius crawshayi spider (Family Theraphosidae): exploring transcriptome, venomics, and function

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Despite strong efforts, knowledge about the composition of the venom of many spider species remains very limited. This work is the first report of transcriptome and venom analysis of the African spider Citharischius crawshayi. We used combined protocols of transcriptomics, venomics, and biological assays to characterize the venom and genes expressed in venom glands. A cDNA library of the venom glands was constructed and used to generate expressed sequence tags (ESTs). Sequence comparisons from 236 ESTs revealed interesting and unique sequences, corresponding to toxin-like and other components. Mass spectrometrical analysis of venom fractions showed more than 600 molecular masses, some of which showed toxic activity on crickets and modulated sodium currents in DmNav1 and Nav1.6 channels as expressed in Xenopus oocytes. Taken together, our results may contribute to a better understanding of the cellular processes involved in the transcriptome and help us to discover new components from spider venom glands with therapeutic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Clone Cic:

Nucleotide or amino acid sequence deduced from cDNA library from venom glands of spider C. crawshayi

Fraction Cic:

Fraction from HPLC separation of venom from spider C. crawshayi

EST:

Expressed sequence tags

ICK:

Inhibitor cystine knot-motif

TFA:

Trifluoroacetic acid

MALDI-TOF/TOF:

Matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometer

References

  1. Platnick NI (2009) The world spider catalog, version 9.0. In: Merrett P, Cameron HD (eds) American Museum of Natural History, New York. Online at http://research.amnh.org/entomology/spiders/catalog/index.html

  2. Corzo G, Escoubas P (2003) Pharmacologically active spider peptides toxins. Cell Mol Life Sci 60:2409–2426

    Article  CAS  PubMed  Google Scholar 

  3. Escoubas P, King GF (2009) Venomics as a drug discovery platform. Expert Rev Proteomics 6:221–224

    Article  CAS  PubMed  Google Scholar 

  4. Escoubas P, Sollod B, King GF (2006) Venom landscapes: mining the complexity of spider venoms via a combined cDNA and mass spectrometric approach. Toxicon 47:650–663

    Article  CAS  PubMed  Google Scholar 

  5. Wood DL, Miljenovic T, Cai S, Raven RJ, Kass Q, Escoubas P, Herzig V, Wilson D, King GF (2009) ArachnoServer: a database of protein toxin from spiders. BMC Genomics 10:375. doi:10.1186/1471-2164-10-375

    Article  PubMed  Google Scholar 

  6. Escoubas P, Chamot-Rooke J, Stöcklin R, Whiteley BJ, Corzo G, Genet R, Nakajima T (1999) A comparison of matrix-assisted laser desorption/ionization time-of-flight and liquid chromatography electrospray ionization mass spectrometry methods for the analysis of crude tarantula venoms in the Pterinochilus group. Rapid Commun Mass Spectrom 13:1861–1868

    Article  CAS  PubMed  Google Scholar 

  7. Machado LF, Laugesen S, Botelho ED, Ricart CA, Fontes W, Barbaro KC, Roepstorff P, Sousa MV (2005) Proteome analysis of brown spider venom: identification of loxnecrogin isoforms in Loxosceles gaucho venom. Proteomics 5:2167–2176

    Article  CAS  PubMed  Google Scholar 

  8. Guette C, Legros C, Tournois G, Goyffon M, Célérier ML (2006) Peptide profiling by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry of the Lasiodora parahybana tarantula venom gland. Toxicon 47:640–649

    Article  CAS  PubMed  Google Scholar 

  9. Liao Z, Cao J, Li S, Yan X, Hu W, He Q, Chen J, Tang J, Xie J, Liang S (2007) Proteomic and peptidomic analysis of the venom from Chinese tarantula Chilobrachys jingzhao. Proteomics 7:1892–1907

    Article  CAS  PubMed  Google Scholar 

  10. Yuan C, Jin Q, Tang X, Hu W, Cao R, Yang S, Xiong J, Xie C, Xie J, Liang S (2007) Proteomic and peptidomic characterization of the venom from the Chinese bird spider, Ornithoctonus huwena Wang. J Proteome Res 6:2792–2801

    Article  CAS  PubMed  Google Scholar 

  11. Gentz MC, Jones A, Clement H, King GF (2009) Comparison of the peptidome and insecticidal activity of venom from a taxonomically diverse group of theraphosid spiders. Toxicon 53:496–502

    Article  CAS  PubMed  Google Scholar 

  12. Chen J, Deng M, He Q, Meng E, Jiang L, Liao Z, Rong M, Liang (2008) Molecular diversity and evolution of cystine knot toxins of the tarantula Chilobrachys jingzhao. Cell Mol Life Sci 65:2431–44

  13. Chen J, Zhao L, Jiang L, Meng E, Zhang Y, Xiong X, Liang S (2008) Transcriptome analysis revealed novel possible venom components and cellular processes of the tarantula Chilobrachys jingzhao venom gland. Toxicon 52:794–806

    Article  CAS  PubMed  Google Scholar 

  14. MdeF Fernandes-Pedrosa, IdeL Junqueira-de-Azevedo, Gonçalves-de-Andrade RM, Kobashi LS, Almeida DD, Ho PL, Tambourgi DV (2008) Transcriptome analysis of Loxosceles laeta (Araneae, Sicariidae) spider venomous gland using expressed sequence tags. BMC Genomics 12:279. doi:10.1186/1471-2164-9-279

    Google Scholar 

  15. Jiang L, Peng L, Chen J, Zhang Y, Xiong X, Liang S (2008) Molecular diversification based on analysis of expressed sequence tags from the venom glands of the Chinese bird spider Ornithoctonus huwena. Toxicon 51:1479–1489

    Article  CAS  PubMed  Google Scholar 

  16. Zhu J, Sun Y, Zhao FQ, Yu J, Craig R, Hu S (2009) Analysis of tarantula skeletal muscle protein sequences and identification of transcriptional isoforms. BMC Genomics 10:117. doi:10.1186/1471-2164-10-117

    Article  PubMed  Google Scholar 

  17. Zhang Y, Chen J, Tang X, Wang F, Jiang L, Xiong X, Wang M, Rong M, Liu Z, Liang S (2009) Transcriptome analysis of the venom glands of the Chinese wolf spider Lycosa singoriensis. Zoology. doi:10.1016/j.zool.2009.04.001

  18. Sollod BL, Wilson D, Zhaxybayeva O, Gogarten JP, Drinkwater R, King GF (2005) Were arachnids the first to use combinatorial peptide libraries? Peptides 26:131–139

    Article  CAS  PubMed  Google Scholar 

  19. Bradbury AF, Finnie MD, Smyth DG (1982) Mechanism of C-terminal amide formation by pituitary enzymes. Nature 298:686–688

    Article  CAS  PubMed  Google Scholar 

  20. Newcomb R, Szoke B, Palma A, Wang G, Chen X, Hopkins W, Cong R, Miller J, Urge L, Tarczy-Hornoch K, Loo JA, Dooley DJ, Nadasdi L, Tsien RW, Lemos J, Miljanich G (1998) Selective peptide antagonist of the class E calcium channel from the venom of the tarantula Hysterocrates gigas. Biochemistry 37:15353–15362

    Article  CAS  PubMed  Google Scholar 

  21. Bosmans F, Rash L, Zhu S, Diochot S, Lazdunski M, Escoubas P, Tytgat J (2006) Four novel tarantula toxins as selective modulators of voltage-gated sodium channel subtypes. Mol Pharmacol 69:419–429

    Article  CAS  PubMed  Google Scholar 

  22. Liao Z, Yuan C, Deng M, Li J, Chen J, Yang Y, Hu W, Liang S (2006) Solution structure and functional characterization of jingzhaotoxin-XI: a novel gating modifier of both potassium and sodium channels. Biochemistry 45:15591–15600

    Article  CAS  PubMed  Google Scholar 

  23. Corzo G, Diego-García E, Clement H, Peigneur S, Odell G, Tytgat J, Possani LD, Alagón A (2008) An insecticidal peptide from the theraposid Brachypelma smithi spider venom reveals common molecular features among spider species from different genera. Peptides 29:1901–1908

    Article  CAS  PubMed  Google Scholar 

  24. Corzo G, Bernard C, Clement H, Villegas E, Bosmans F, Tytgat J, Possani LD, Darbon H, Alagón A (2009) Insecticidal peptides from the theraposid spider Brachypelma albiceps: an NMR-based model of Ba2. Biochim Biophys Acta 1794:1190–1196

    CAS  PubMed  Google Scholar 

  25. Gauldie J, Hanson JM, Rumjanek FD, Shipolini RA, Vernon CA (1976) The peptide components of bee venom. Eur J Biochem 61:369–376

    Article  CAS  PubMed  Google Scholar 

  26. Sperstad SV, Haug T, Vasskog T, Stensvåg K (2009) Hyastatin, a glycine-rich multidomain antimicrobial peptide isolated from the spider crab (Hyas araneus) hemocytes. Mol Immunol 46:2604–2612

    Article  CAS  PubMed  Google Scholar 

  27. Shahbazian MD, Grunstein M (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76:75–100

    Article  CAS  PubMed  Google Scholar 

  28. Vink CJ, Hedin M, Bodner MR, Maddison WP, Hayashi CY, Garb JE (2008) Actin 5C, a promising nuclear gene for spider phylogenetics. Mol Phylogenet Evol 48:377–382

    Article  CAS  PubMed  Google Scholar 

  29. Escoubas P (2006) Molecular diversification in spider venoms: a web of combinatorial peptide libraries. Mol Divers 4:545–554

    Article  Google Scholar 

  30. Pimenta AM, Stöcklin R, Favreau P, Bougis PE, Martin-Eauclaire MF (2001) Moving pieces in a proteomic puzzle: mass fingerprinting of toxic fractions from the venom of Tityus serrulatus (Scorpiones, Buthidae). Rapid Commun Mass Spectrom 15:1562–1572

    Article  CAS  PubMed  Google Scholar 

  31. Batista CV, Román-González SA, Salas-Castillo SP, Zamudio FZ, Gómez-Lagunas F, Possani LD (2007) Proteomic analysis of the venom from the scorpion Tityus stigmurus: biochemical and physiological comparison with other Tityus species. Comp Biochem Physiol C Toxicol Pharmacol 146:147–157

    Article  CAS  PubMed  Google Scholar 

  32. Escoubas P, Rash L (2004) Tarantulas: eight-legged pharmacists and combinatorial chemists. Toxicon 43:555–574

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Thomas Vandendriessche for the technical assistance on the milking of spiders. This work was supported in part by grants K.U. Leuven (OT/05/64), G.330.06 from the Fund for Scientific Research (FWO)-Flanders and Belgian Federal Science Policy IAP, P6/31 (Interuniversity attraction Poles Program- Belgian State- Belgian Science Policy) and Postdoctoral Research Fellowship from K.U. Leuven to EDG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Tytgat.

Additional information

The gene sequences reported in this paper have been submitted to GenBank, the accession numbers corresponding GU170865 to GU170901.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diego-García, E., Peigneur, S., Waelkens, E. et al. Venom components from Citharischius crawshayi spider (Family Theraphosidae): exploring transcriptome, venomics, and function. Cell. Mol. Life Sci. 67, 2799–2813 (2010). https://doi.org/10.1007/s00018-010-0359-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0359-x

Keywords

Navigation