Skip to main content

Spider Transcriptomes from Venom Glands: Molecular Diversity of Ion Channel Toxins and Antimicrobial Peptide Transcripts

  • Reference work entry
  • First Online:
Spider Venoms

Part of the book series: Toxinology ((TOXI))

  • 1078 Accesses

Abstract

The technological transformations that expand our knowledge of molecular biology in the 1980s brought us various novel techniques and methods for gene isolation and characterization. Research groups from all over the world began publishing the first scientific reports concerning transcripts and genes of several spider species. Sophisticated techniques and methods for specific and random cDNA library screening and the discovery of several expressed sequence tags (ESTs) enabled transcriptome analysis, opening up new paths for investigation of poisonous and venomous animals and their venom components.

The transcriptomics allowed to report novel spider peptide toxin sequences, an important scientific advancement that arrived together with several new scientific protagonists interested in exploring novel venom compounds, such as proteomics. Even though the effort in the search and research of spider venom components, transcripts and genes, has been significant, it has been lower compared to the total number of molecules that is thought to be present in the spider venom glands according to a conservative estimate of >9 million bioactive peptides (ca. 45 thousand spider species with 200 components per venom).

This chapter addresses the transcriptome analysis in spider venom glands using Sanger and next-generation sequencing approaches. The emphasis is put on transcripts that encode for expressed peptide toxins, which affect ion channels and expressed peptide toxins, which act as antimicrobial agents. This manuscript aims to provide general information to strengthen the knowledge on the diversity of transcripts, gene families, and the research of expressed spider compounds derived from their venom glands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Catterall WA, Cestele S, Yarov-Yarovoy V, Yu FH, Konoki K, Scheuer T. Voltage-gated ions channels and gating modifier toxins. Toxicon. 2007;49:124–41.

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Zhao L, Jiang L, Meng E, Zhang Y, Xiong X, Liang S. Transcriptome analysis revealed novel possible venom components and cellular processes of the tarantula Chilobrachys jingzhao venom gland. Toxicon. 2008a;52:794–806.

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Deng M, He Q, Meng E, Jiang L, Liao Z, Rong M, Liang S. Molecular diversity and evolution of cysteine knot toxins of the tarantula Chilobrachys jingzhao. Cell Mol Life Sci. 2008b;65:2431–44.

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Luo F, Feng J, Yang W, Zeng D, Zhao R, Cao Z, Liu M, Li W, Jiang L, Wu Y. Genomic and structural characterization of Kunitz-type peptide LmKTT-1a highlights diversity and evolution of scorpion potassium channel toxins. PLoS One. 2013;8(4):e60201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi S-J, Parent R, Guillaume C, Deregnaucourt C, Delarbre C, Ojcius DM, et al. Isolation and characterization of Psalmopeotoxin I and II: two novel antimalarial peptides from the venom of the tarantula Psalmopoeus cambridgei. FEBS Lett. 2004;572(1–3):109–17.

    Article  CAS  PubMed  Google Scholar 

  • Chung EH, Lee KS, Han JH, Sohn HD, Jin BR. Communication: analysis of expressed sequence tags of the spider, Araneus ventricosus. Int J Industr Entomol. 2001;3(2):191–9.

    Google Scholar 

  • Clarke TH, Garb JE, Hayashi CY, Haney RA, Lancaster AK, Corbett S, Ayoub NA. Multi-tissue transcriptomics of the black widow spider reveals expansions, co-options, and functional processes of the silk gland gene toolkit. BMC Genomics. 2014;15:365.

    Article  PubMed  PubMed Central  Google Scholar 

  • Clarke TH, Garb JE, Hayashi CY, Arensburger P, Ayoub NA. Spider transcriptomes identify ancient large-scale gene duplication event potentially important in silk gland evolution. Genome Biol Evol. 2015;7(7):1856–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corzo G, Escoubas P. Pharmacologically active spider peptide toxins. Cell Mol Life Sci. 2003;60:2409–26.

    Article  CAS  PubMed  Google Scholar 

  • Diao J, Lin Y, Tang J, Liang S. cDNA sequence analysis of seven peptide toxins from the spider Selenocosmia huwena. Toxicon. 2003;42(7):715–23.

    Article  CAS  PubMed  Google Scholar 

  • Diego-García E, Peigneur S, Waelkens E, Debaveye S, Tytgat J. Venom components from Citharischius crawshayi spider (Family Theraphosidae): exploring transcriptome, venomics, and function. Cell Mol Life Sci. 2010;67:2799–813.

    Article  PubMed  Google Scholar 

  • Duan Z, Cao R, Jiang L, Liang S. A combined de novo protein sequencing and cDNA library to the venomic analysis of Chinese spider Araneus ventricosus. J Proteomics. 2013;78:416–27.

    Article  CAS  PubMed  Google Scholar 

  • Dubovskii PV, Vassilevski AA, Samsonova OV, Egorova NS, Kozlov SA, Feofanov AV, et al. Novel lynx spider toxin shares common molecular architecture with defense peptides from frog skin. FEBS J. 2011;278(22):4382–93.

    Article  CAS  PubMed  Google Scholar 

  • Fernandes-Pedrosa MF, Junqueira-de-Azevedo IL, Gonçalves-de-Andrade RM, Kobashi LS, Almeida DD, Ho PL, Tambourgi DV. Transcriptome analysis of Loxosceles laeta (Araneae, Sicariidae) spider venomous gland using expressed sequence tags. BMC Genomics. 2008;9:279.

    Article  PubMed Central  Google Scholar 

  • Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JD, King GF, Nevalainen TJ, Norman JA, Lewis RJ, Norton RS, Renjifo C, de la Vega RC. The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu Rev Genomics Hum Genet. 2009;10:483–511.

    Article  CAS  PubMed  Google Scholar 

  • Goldin AL. Resurgence of sodium channel research. Annu Rev Physiol. 2001;63:871–94.

    Article  CAS  PubMed  Google Scholar 

  • Gremski LH, da Silveira RB, Chaim OM, Probst CM, Ferrer VP, Nowatzki J, Weinschutz HC, Madeira HM, Gremski W, Nader HB, Senff-Ribeiro A, Veiga SS. A novel expression profile of the Loxosceles intermedia spider venomous gland revealed by transcriptome analysis. Mol Biosyst. 2010;6:2403–16.

    Article  CAS  PubMed  Google Scholar 

  • Haney RA, Ayoub NA, Clarke TH, Hayashi CY, Garb JE. Dramatic expansion of the black widow toxin arsenal uncovered by multi-tissue transcriptomics and venom proteomics. BMC Genomics. 2014;15:366.

    Article  PubMed  PubMed Central  Google Scholar 

  • He Q, Duan Z, Yu Y, Liu Z, Liu Z, Liang S. The venom gland transcriptome of Latrodectus tredecimguttatus revealed by deep sequencing and cDNA library analysis. PLoS One. 2013;8(11):e81357.

    Article  PubMed  PubMed Central  Google Scholar 

  • Herzig V, Wood DLA, Newell F, Chaumeil PA, Kaas Q, Binford GJ, Nicholson GM, Gorse D, King GF. ArachnoServer 2.0, an updated online resource for spider toxin sequences and structures. Nuclei Acids Res. 2011;39:D653–7. http://www.arachnoserver.org/mainMenu.html.

    Article  CAS  Google Scholar 

  • Jan LY, Jan YN. Potassium channels and their evolving gate. Nature. 1994;371:119–22.

    Article  CAS  PubMed  Google Scholar 

  • Jeffares DC, Penkett CJ, Bahler J. Rapidly regulated genes are intron poor. Trends Genet. 2008;24:375–8.

    Article  CAS  PubMed  Google Scholar 

  • Jenssen H, Hamill P, Hancock REW. Peptide antimicrobial agents. Clin Microbiol Rev. 2006;19(3):491–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang L, Peng L, Chen J, Zhang Y, Xiong X, Liang S. Molecular diversification based on analysis of expressed sequence tags from the venom glands of the Chinese bird spider Ornithoctonus huwena. Toxicon. 2008a;51(8):1479–89.

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Chen J, Peng L, Zhang Y, Xiong X, Liang S. Genomic organization and cloning of novel genes encoding toxin-like peptides of three superfamilies from the spider Ornithoctonus huwena. Peptides. 2008b;29(10):1679–84.

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Zhang D, Zhang Y, Peng L, Chen J, Liang S. Venomics of the spider Ornithoctonus huwena based on transcriptomic versus proteomic analysis. Comparative Biochemistry and Physiology, Part D 5. 2010;81–88.

    Google Scholar 

  • Jiang L, Liu C, Duan Z, Deng M, Tang X, Liang S. Transcriptome analysis of venom glands from a single fishing spider Dolomedes mizhoanus. Toxicon. 2013;73:23–32.

    Article  CAS  PubMed  Google Scholar 

  • Jung HJ, Kim PI, Lee SK, Lee CW, Eu Y-J, Lee DG, Earm Y-E, Kim JI. Lipid membrane interaction and antimicrobial activity of GsMTx-4, an inhibitor of mechanosensitive channel. Biochem Bioph Res Co. 2006;340(2):633–8.

    Article  CAS  Google Scholar 

  • Kimura T, Ono S, Kubo T. Molecular cloning and sequence analysis of cDNA encoding toxin-like peptides from the venom glands of tarantula Grammostola rosea. Int J Pept. 2012; Article ID 731293.

    Google Scholar 

  • King GF, Hardy MC. Spider-venom peptides: structure, pharmacology, and potential for control of insect pests. Annu Rev Entomol. 2013;58(1):475–96.

    Article  CAS  PubMed  Google Scholar 

  • King GF, Gentz MC, Escoubas P, Nicholson GM. A rational nomenclature for naming peptide toxins from spiders and other venomous animals. Toxicon. 2008;52(2):264–76.

    Article  CAS  PubMed  Google Scholar 

  • Kiyatkin NI, Dulubova IE, Chekhovskaya IA, Grishin EV. Cloning and structure of cDNA encoding α–latrotoxin from black widow spider venom. FEBS J. 1990;270(1, 2):127–31.

    Article  CAS  Google Scholar 

  • Klint JK, Senff S, Rupasinghe DB, Er SY, Herzig V, Nicholson GM, et al. Spider-venom peptides that target voltage-gated sodium channels: pharmacological tools and potential therapeutic leads. Toxicon. 2012;60(4):478–91.

    Article  CAS  PubMed  Google Scholar 

  • Kozlov SA, Grishin EV. The universal algorithm of maturation for secretory and excretory protein precursors. Toxicon. 2007;49:721–6.

    Article  CAS  PubMed  Google Scholar 

  • Kozlov S, Malyavka A, McCutchen B, Lu A, Schepers E, Herrmann R, et al. A novel strategy for the identification of toxinlike structures in spider venom. Proteins Struct Funct Bioinf. 2005;59(1):131–40.

    Article  CAS  Google Scholar 

  • Kozlov SA, Vassilevski AA, Feofanov AV, Surovoy AY, Karpunin DV, Grishin EV. Latarcins, antimicrobial and cytolytic peptides from the venom of the spider Lachesana tarabaevi (Zodariidae) that exemplify biomolecular diversity. J Biol Chem. 2006;281(30):20983–92.

    Article  CAS  PubMed  Google Scholar 

  • Kozlov SA, Lazarev VN, Kostryukova ES, Selezneva OV, Ospanova EA, Alexeev DG, Govorun VM, Grishin EV. Comprehensive analysis of the venom gland transcriptome of the spider Dolomedes fimbriatus. Sci Data. 2014;1:140023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krapcho KJ, Kral Jr RM, Vanwagenen BC, Eppler KG, Morgan TK. Characterization and cloning of insecticidal peptides from the primitive weaving spider Diguetia canities. Insect Biochem Mol Biol. 1995;25(9):991–1000.

    Article  CAS  PubMed  Google Scholar 

  • Mouhat S, Andreotti N, Jouirou B, Sebatier JM. Animal toxins acting on voltage-gated potassium channels. Curr Pharm Des. 2008;14:2503–18.

    Article  CAS  PubMed  Google Scholar 

  • Nicholson GM, Little MJ, Birinyi-Strachan LC. Structure and function of δ-atracotoxins: lethal neurotoxins targeting the voltage-gated sodium channel. Toxicon. 2004;43(5):587–99.

    Article  CAS  PubMed  Google Scholar 

  • Ostrow KL, Mammoser A, Suchyna T, Sachs F, Oswald R, Kubo S, Chino N, Gottlieb PA. cDNA sequence and in vitro folding of GsMTx4, a specific peptide inhibitor of mechanosensitive channels. Toxicon. 2003;42(3):263–74.

    Article  CAS  PubMed  Google Scholar 

  • Pineda SS, Wilson D, Mattick JS, King GF. The lethal toxin from Australian funnel-web spiders is encoded by an intronless gene. PLoS One. 2012;7(8):e43699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao P, Zuo X-P, Chai Z-F, Ji Y-H. The cDNA and genomic DNA organization of a novel toxin SHT-I from spider Ornithoctonus huwena. Acta Biochim Biophys Sin. 2004;36(10):656–60.

    Article  CAS  PubMed  Google Scholar 

  • Redaelli E, Cassulini RR, Silva DF, Clement H, Schiavon E, Zamudio FZ, Odell G, Arcangeli A, Clare JJ, Alagón A, de la Vega RC, Possani LD, Wanke E. Target promiscuity and heterogeneous effects of tarantula venom peptides affecting Na+ and K+ ion channels. J Biol Chem. 2010;285(6):4130–42.

    Article  CAS  PubMed  Google Scholar 

  • Sachkova MY, Slavokhotova AA, Grishin EV, Vassilevski AA. Genes and evolution of two-domain toxins from lynx spider venom. FEBS Lett. 2014;588:740–54.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Flores A, Abreu-Goodger C. Apractical guide to sequencing genomes and transcriptomes. Curr Top Med Chem. 2014;14(3):398–406.

    Article  CAS  PubMed  Google Scholar 

  • Satake H, Villegas E, Oshiro N, Terada K, Shinada T, Corzo G. Rapid and efficient identification of cysteine-rich peptides by random screening of a venom gland cDNA library from the hexathelid spider Macrothele gigas. Toxicon. 2004;44:149–56.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz EF, Diego-García E, Rodríguez de la Vega RC, Possani LD. Transcriptome analysis of the venom gland of the Mexican scorpion Hadrurus gertschi (Arachnida: Scorpiones). BMC Genomics. 2007;8:119.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shieh CC, Coghlan M, Sullivan JP, Gopalakrishnan M. Potassium channels: molecular defects, diseases, and therapeutic opportunities. Pharmacol Rev. 2000;52(4):557–94.

    CAS  PubMed  Google Scholar 

  • Suchyna TM, Johnson JH, Hamer K, Leykam JF, Gage DA, Clemo HF, et al. Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. J Gen Physiol. 2000;115(5):583–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swartz KJ, MacKinnon R. Hanatoxin modifies the gating of a voltage-dependent K+ channel through multiple binding sites. Neuron. 1997;18(4):665–73.

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Zhang Y, Hu W, Xu D, Tao H, Yang X, Li Y, Jiang L, Liang S. Molecular diversification of peptide toxins from the tarantula Haplopelma hainanum (Ornithoctonus hainana) venom based on transcriptomic, peptidomic, and genomic analyses. J Proteome Res. 2010;9(5):2550–64.

    Article  CAS  PubMed  Google Scholar 

  • Undheim EA, Sunagar K, Herzig V, Kely L, Low DH, Jackson TN, Jones A, Kurniawan N, King GF, Ali SA, Antunes A, Ruder T, Fry BG. A proteomics and transcriptomics investigation of the venom from the barychelid spider Trittame loki (brush-foot trapdoor). Toxins. 2013;5(12):2488–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vassilevski AA, Kozlov SA, Samsonova OV, Egorova NS, Karpunin DV, Pluzhnikov KA, et al. Cyto-insectotoxins, a novel class of cytolytic and insecticidal peptides from spider venom. Biochem J. 2008;411(3):687–96.

    Article  CAS  PubMed  Google Scholar 

  • Vassilevski AA, Kozlov SA, Ghishin EV. Molecular diversity of spider venom. Biochemistry (Mosc). 2009;49:211–74.

    Google Scholar 

  • Wan H, Lee KS, Kim BY, Zou FM, Yoon HJ, Je YH, Li J, Jin BR. A spider-derived kunitz-type serine protease inhibitor that acts as a plasmin inhibitor and an elastase inhibitor. PLoS One. 2013;8(1):e53343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong ES, Hardy MC, Wood D, Bailey T, King GF. SVM-Based prediction of propeptide cleavage sites in spider toxins identifies toxin innovation in an Australian tarantula. PLoS One. 2013;8(7):e66279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Spider Catalog. Natural History Museum Bern. World Spider Catalog version 16.5. 2015; [updated 2015 July; cited 2015 July]. Available from: http://wsc.nmbe.ch.

  • Yuan C, Yang S, Liao Z, Liang S. Effects and mechanism of Chinese tarantula toxins on the Kv2.1 potassium channels. Biochem. Biophys. Res. Biochem Biophys Res Commun. 2007;352:799–804.

    Article  CAS  PubMed  Google Scholar 

  • Yuan CH, He QY, Peng K, Diao JB, Jiang LP, Tang X, Liang SP. Discovery of a distinct superfamily of Kunitz-type toxins (KTT) from tarantulas. PLoS One. 2008;3(10):e3414.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415(6870):389–95.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Chen J, Tang X, Wang F, Jiang L, Xiong X, Wang M, Rong M, Liu Z, Liang S. Transcriptome analysis of the venom glands of the Chinese wolf spider Lycosa singoriensis. Zoology. 2010;113:10–8.

    Article  PubMed  Google Scholar 

  • Zhang Y, Huang Y, He Q, Liu J, Luo J, Zhu L, Lu S, Huang P, Chen X, Zeng X, Liang S. Toxin diversity revealed by a transcriptomics study of Ornithoctonus huwena. PLoS One. 2014;9(6):e100682.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Liu C, Tan H, Wang H, Jiang Y, Liang S, Zhang F, Liu Z. A survey of the venom of the spider Lycosa vittata by biochemical, pharmacological and transcriptomic analyses. Toxicon. 2015;In Press, Available online 8 May 2015.

    Google Scholar 

  • Zhao H, Kong Y, Wang H, Yan T, Feng F, Bian J, et al. A defensin-like antimicrobial peptide from the venoms of spider, Ornithoctonus hainana. J Pept Sci. 2011;17(7):540–4.

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Darbon H, Dyason K, Verdonck F, Tytgat J. Evolutionary origin of inhibitor cystine knot peptides. FASEB J. 2003;17(12):1765–7.

    CAS  PubMed  Google Scholar 

  • Zobel-Thropp PA, Thomas EZ, David CL, Breci LA, Binford GJ. Plectreurys tristis venome: a proteomic and transcriptomic analysis. J Venom Res. 2014;5:33–44.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elia Diego-García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht (outside the USA)

About this entry

Cite this entry

Diego-García, E., Cologna, C.T., Cassoli, J.S., Corzo, G. (2016). Spider Transcriptomes from Venom Glands: Molecular Diversity of Ion Channel Toxins and Antimicrobial Peptide Transcripts. In: Gopalakrishnakone, P., Corzo, G., de Lima, M., Diego-García, E. (eds) Spider Venoms. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6389-0_17

Download citation

Publish with us

Policies and ethics