Skip to main content

Advertisement

Log in

MAPK/ERK1/2 signaling mediates endothelial-like differentiation of immature DCs in the microenvironment of esophageal squamous cell carcinoma

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Endothelial-like differentiation of dendritic cells (DCs) is a new phenomenon, and the mechanism is still elusive. Here, we show that the tumor microenvironment derived from the human esophageal squamous cell carcinoma (ESCC) cell line EC9706 can induce immature DCs (iDCs) differentiate toward endothelial cells, and become endothelial-like cells, but it has no obvious influence on mature DCs. During the course of endothelial-like differentiation of iDCs, a sustained activation of mitogen-activated protein kinase/extracelluar signal-regulated kinase1/2 (MAPK/ERK1/2) and cAMP response element-binding protein (CREB) was detected. Incubation of iDCs with MEK phosphorylation inhibitor PD98059 blocked the MAPK/ERK1/2 and CREB phosphorylation as well as the endothelial-like differentiation of iDCs. Inhibition of vascular endothelial growth factor-A (VEGF-A) in the microenvironment with its antibody blocked the endothelial-like differentiation and the phosphorylation of MAPK/ERK1/2 and CREB. These data suggest that MAPK/ERK1/2 signaling pathway activated by VEGF-A could mediate endothelial-like differentiation of iDCs in the ESCC microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yang Y, Xiu F, Cai Z, Wang J, Wang Q, Fu Y, Cao X (2007) Increased induction of antitumor response by exosomes derived from interleukin-2 gene-modified tumor cells. J Cancer Res Clin Oncol 133:389–399. doi:10.1007/s00432-006-0184-7

    Article  PubMed  Google Scholar 

  2. Sbiera S, Wortmann S, Fassnacht M (2008) Dendritic cell based immunotherapy-a promising therapeutic approach for endocrine malignancies. Horm Metab Res 40:89–98. doi:10.1055/s-2007-1022549

    Article  CAS  PubMed  Google Scholar 

  3. Muthana M, Fairburn B, Mirza S, Slack LK, Hopkinson K, Pockley AG (2006) Identification of a rat bone marrow-derived dendritic cell population which secretes both IL-10 and IL-12: evidence against a reciprocal relationship between IL-10 and IL-12 secretion. Immunobiology 211:391–402. doi:10.1016/j.imbio.2006.02.001

    Article  CAS  PubMed  Google Scholar 

  4. Frenzel H, Pries R, Brocks CP, Jabs WJ, Wittkopf N, Wollenberg B (2007) Decreased migration of myeloid dendritic cells through increased levels of C-reactive protein. Anticancer Res 27:4111–4115

    CAS  PubMed  Google Scholar 

  5. Conejo-Garcia JR, Benencia F, Courreges MC, Kang E, Mohamed-Hadley A, Buckanovich RJ, Holtz DO, Jenkins A, Na H, Zhang L, Wagner DS, Katsaros D, Caroll R, Coukos G (2004) Tumor-infiltrating dendritic cell precursors recruited by a beta-defensin contribute to vasculogenesis under the influence of Vegf-A. Nat Med 10:950–958. doi:10.1038/nm1097

    Article  CAS  PubMed  Google Scholar 

  6. Gottfried E, Kreutz M, Haffner S, Holler E, Iacobelli M, Andreesen R, Eissner G (2007) Differentiation of human tumour-associated dendritic cells into endothelial-like cells: an alternative pathway of tumour angiogenesis. Scand J Immunol 65:329–335. doi:10.1111/j.1365-3083.2007.01903.x

    Article  CAS  PubMed  Google Scholar 

  7. Stavridis MP, Lunn JS, Collins BJ, Storey KG (2007) A discrete period of FGF-induced Erk1/2 signalling is required for vertebrate neural specification. Development 134:2889–2894. doi:10.1242/dev.02858

    Article  CAS  PubMed  Google Scholar 

  8. Moon BS, Yoon JY, Kim MY, Lee SH, Choi T, Choi KY (2009) Bone morphogenetic protein 4 stimulates neuronal differentiation of neuronal stem cells through the ERK pathway. Exp Mol Med 41:116–125. doi:10.3858/emm.2009.41.2.014

    Article  CAS  PubMed  Google Scholar 

  9. Xu J, Liu X, Jiang Y, Chu L, Hao H, Liua Z, Verfaillie C, Zweier J, Gupta K, Liu Z (2008) MAPK/ERK signalling mediates VEGF-induced bone marrow stem cell differentiation into endothelial cell. J Cell Mol Med 12:2395–2406. doi:10.1111/j.1582-4934.2008.00266.x

    Article  CAS  PubMed  Google Scholar 

  10. Sharma M, Hanchate NK, Tyagi RK, Sharma P (2007) Cyclin dependent kinase 5 (Cdk5)-mediated inhibition of the MAP kinase pathway results in CREB down regulation and apoptosis in PC12 cells. Biochem Biophys Res Commun 358:379–384. doi:10.1016/j.bbrc.2007.04.149

    Article  CAS  PubMed  Google Scholar 

  11. Choi HJ, Park YG, Kim CH (2007) Lactosylceramide alpha2, 3-sialyltrans ferase is induced via a PKC/ERK/CREB-dependent pathway in K562 human leukemia cells. Mol Cells 23:138–144

    CAS  PubMed  Google Scholar 

  12. Sun P, Watanabe H, Takano K, Yokoyama T, Fujisawa J, Endo T (2006) Sustained activation of M-Ras induced by nerve growth factor is essential for neuronal differentiation of PC12 cells. Genes Cells 11:1097–1113. doi:10.1111/j.1365-2443.2006.01002.x

    Article  CAS  PubMed  Google Scholar 

  13. Rita M, Young I, Cigal Melinda (2006) Tumor skewing of CD34 + cell differentiation from a dendritic cell pathway into endothelial cells. Cancer Immunol Immunother 55:558–568. doi:10.1007/s00262-005-0036-3

    Article  Google Scholar 

  14. Müftüoğlu TM, Köksal N, Ozkutlu D (2000) Evaluation of phagocytic function of macrophages in rats after partial splenectomy. J Am Coll Surg 191:668–671. doi:10.1016/S1072-7515(00)00739-0

    Article  PubMed  Google Scholar 

  15. Aranguren XL, Luttun A, Clavel C, Moreno C, Abizanda G, Barajas MA, B Pelacho, Uriz M, Arana M, Echavarri A, Soriano M, Andreu EJ, Merino J, Garcia-Verdugo JM, Verfaillie CM, Prosper F (2007) In vitro and in vivo arterial differentiation of human multipotent adult progenitor cells. Blood 109:2634–2642. doi:10.1182/blood-2006-06-030411

    Article  CAS  PubMed  Google Scholar 

  16. Li Z, Wu JC, Sheikh AY, Kraft D, Cao F, Xie X, Patel M, Gambhir SS, Robbins RC, Cooke JP, Wu JC (2007) Differentiation, survival, and function of embryonic stem cell derived endothelial cells for ischemic heart disease. Circulation 116:46–54. doi:10.1161/CIRCULATIONAHA.106.680561

    Google Scholar 

  17. Ramos JW (2008) The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells. Int J Biochem Cell Biol 40:2707–2719. doi:10.1016/j.biocel.2008.04.009

    Article  CAS  PubMed  Google Scholar 

  18. Ebner HL, Blatzer M, Nawaz M, Krumschnabel G (2007) Activation and nuclear translocation of ERK in response to ligand-dependent and- independent stimuli in liver and gill cells from rainbow trout. J Exp Biol 210:1036–1045. doi:10.1242/jeb.02719

    Article  CAS  PubMed  Google Scholar 

  19. Hirashima M (2009) Regulation of endothelial cell differentiation and arterial specification by VEGF and Notch signaling. Anat Sci Int 84:95–101. doi:10.1007/s12565-009-0026-1

    Article  CAS  PubMed  Google Scholar 

  20. Rius J, Martínez-González J, Crespo J, Badimon L (2006) NOR-1 is involved in VEGF-induced endothelial cell growth. Atherosclerosis 184:276–282. doi:10.1016/j.atherosclerosis.2005.04.008

    Article  CAS  PubMed  Google Scholar 

  21. Zhang M, Tang H, Guo Z, An H, Zhu X, Song W, Guo J, Huang X, Chen T, Wang J, Cao X (2004) Splenic stroma drives mature dendritic cells to differentiate into regulatory dendritic cells. Nat Immunol 5:1124–1133. doi:10.1038/ni1130

    Article  CAS  PubMed  Google Scholar 

  22. Tang H, Guo Z, Zhang M, Wang J, Chen G, Cao X (2006) Endothelial stroma programs hematopoietic stem cells to differentiate into regulatory dendritic cells through IL-10. Blood 108:1189–1197. doi:10.1182/blood-2006-01-007187

    Article  CAS  PubMed  Google Scholar 

  23. Zhao Y, Glesne D, Huberman E (2003) A human peripheral blood monocyte-derived subset acts as pluripotent stem cells. Proc Natl Acad Sci USA 100:2426–2431. doi:10.1073/pnas.0536882100

    Article  CAS  PubMed  Google Scholar 

  24. Fernandez Pujol B, Lucibello FC, Zuzarte M, Lütjens P, Müller R, Havemann K (2001) Dendritic cells derived from peripheral monocytes express endothelial markers and in the presence of angiogenic growth factors differentiate into endothelial-like cells. Eur J Cell Biol 80:99–110

    Article  CAS  PubMed  Google Scholar 

  25. Silvano S, Marco R, Elena R, Stefania M, Marco P (2007) Dendritic cell-endothelial cell cross-talk in angiogenesis. Trends Immunol 28:385–392. doi:10.1016/j.it.2007.07.006

    Article  Google Scholar 

  26. Svensson M, Kaye PM (2006) Stromal-cell regulation of dendritic cell differentiation and function. Trends Immunol 27:580–587. doi:10.1016/j.it.2006.10.006

    Article  CAS  PubMed  Google Scholar 

  27. Randolph GJ, Beaulieu S, Lebecque S, Steinman RM, Muller WA (1998) Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science 282:480–483. doi:10.1126/science.282.5388.480

    Article  CAS  PubMed  Google Scholar 

  28. Harraz M, Jiao C, Hanlon HD, Hartley RS, Schatteman GC (2001) CD34-blood-derived human endothelial cell progenitors. Stem Cells 19:304–312. doi:10.1634/stemcells.19-4-304

    Article  CAS  PubMed  Google Scholar 

  29. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA, Rafii S (2000) Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95:952–958

    CAS  PubMed  Google Scholar 

  30. Choi J, Enis DR, Koh KP, Shiao SL, Pober JS (2004) T lymphocyte–endothelial cell interactions. Annu Rev Immunol 22:683–709. doi:10.1146/annurev.immunol.22.012703.104639

    Article  CAS  PubMed  Google Scholar 

  31. Coukos G, Benencia F, Buckanovich RJ, Conejo-Garcia JR (2005) The role of dendritic cell precursors in tumour vasculogenesis. Br J Cancer 92:1182–1187. doi:10.1038/sj.bjc.6602476

    Article  CAS  PubMed  Google Scholar 

  32. Coukos G, Conejo-Garcia JR, Buckanovich R, Benencia F (2007) Vascular leukocytes: a population with angiogenic and immunosuppressive properties highly represented in ovarian cancer. Adv Exp Med Biol 590:185–193. doi:10.1007/978-0-387-34814-8

    Article  PubMed  Google Scholar 

  33. Yang H, Xia Y, Lu SQ, Soong TW, Feng ZW (2008) Basic fibroblast growth factor-induced neuronal differentiation of mouse bone marrow stromal cells requires FGFR-1, MAPK/ERK, and transcription factor AP-1. J Biol Chem 283:5287–5295. doi:10.1074/jbc.M706917200

    Article  CAS  PubMed  Google Scholar 

  34. Younes-Rapozo V, Felgueiras LO, Viana NL, Fierro IM, Barja-Fidalgo C, Manhães AC, Barradas PC (2009) A role for the MAPK/ERK pathway in oligodendroglial differentiation in vitro: stage specific effects on cell branching. Int J Dev Neurosci 27:757–768. doi:10.1016/j.ijdevneu.2009.08.014

    Article  CAS  PubMed  Google Scholar 

  35. Kornasio R, Riederer I, Butler-Browne G, Mouly V, Uni Z, Halevy O (2009) Beta-hydroxy-beta-methylbutyrate (HMB) stimulates myogenic cell proliferation, differentiation and survival via the MAPK/ERK and PI3K/Akt pathways. Biochim Biophys Acta 1793:755–763. doi:10.1016/j.bbamcr.2008.12.017

    Article  CAS  PubMed  Google Scholar 

  36. Kandilci A, Grosveld GC (2005) SET-induced calcium signaling and MAPK/ERK pathway activation mediate dendritic cell-like differentiation of U937 cells. Leukemia 19:1439–1445. doi:10.1038/sj.leu.2403826

    Article  CAS  PubMed  Google Scholar 

  37. Crompton T, Gilmour KC, Owen MJ (1996) The MAP kinase pathway controls differentiation from double-negative to double-positive thymocyte. Cell 86:243–251. doi:10.1016/S0092-8674(00)80096-3

    Article  CAS  PubMed  Google Scholar 

  38. Lee HT, Chang YC, Tu YF, Huang CC (2009) VEGF-A/VEGFR-2 signaling leading to cAMP response element-binding protein phosphorylation is a shared pathway underlying the protective effect of preconditioning on neurons and endothelial cells. J Neurosci 29:4356–4368. doi:10.1523/JNEUROSCI.5497-08.2009

    Article  CAS  PubMed  Google Scholar 

  39. Hamdollah Zadeh MA, Glass CA, Magnussen A, Hancox JC, Bates DO (2008) VEGF-mediated elevated intracellular calcium and angiogenesis in human microvascular endothelial cells in vitro are inhibited by dominant negative TRPC6. Microcirculation 15:605–614. doi:10.1080/10739680802220323

    Article  CAS  PubMed  Google Scholar 

  40. Pick M, Azzola L, Mossman A, Stanley EG, Elefanty AG (2007) Differentiation of human embryonic stem cells in serum free medium reveals distinct roles for BMP4, VEGF, SCF and FGF2 in hematopoiesis. Stem Cells 25:2206–2214. doi:10.1634/stemcells.2006-0713

    Article  CAS  PubMed  Google Scholar 

  41. Rufaihah AJ, Haider HK, Heng BC, Ye L, Toh WS, Tian XF, Lu K, Sim EK, Cao T (2007) Directing endothelial differentiation of human embryonic stem cells via transduction with an adenoviral vector expressing the VEGF(165) gene. J Gene Med 9:452–461. doi:10.1002/jgm.1034

    Article  CAS  PubMed  Google Scholar 

  42. Ellis LM, Hicklin DJ (2008) VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer 8:579–591. doi:10.1038/nrc2403

    Article  CAS  PubMed  Google Scholar 

  43. Gonzalez FJ, Vicioso L, Alvarez M, Sevilla I, Marques E, Gallego E, Alonso L, Matilla A, Alba E (2007) Association between VEGF expression in tumour-associated macrophages and elevated serum VEGF levels in primary colorectal cancer patients. Cancer Biomark 3:325–333

    CAS  PubMed  Google Scholar 

  44. Li JL, Harris AL (2009) Crosstalk of VEGF and Notch pathways in tumour angiogenesis: therapeutic implications. Front Biosci 14:3094–3110. doi:10.2741/4038

    Article  CAS  PubMed  Google Scholar 

  45. Hendriksen EM, Span PN, Schuuring J, Peters JP, Sweep FC, van der Kogel AJ, Bussink J (2009) Angiogenesis, hypoxia and VEGF expression during tumour growth in a human xenograft tumour model. Microvasc Res 77:96–103. doi:10.1016/j.mvr.2008.11.002

    Article  CAS  PubMed  Google Scholar 

  46. Tallquist MD, Soriano P, Klinghoffer RA (1999) Growth factor signaling pathways in vascular development. Oncogene 18:7917–7932

    Article  CAS  PubMed  Google Scholar 

  47. Kumar R, Knick VB, Rudolph SK, Johnson JH, Crosby RM, Crouthamel MC, Hopper TM, Miller CG, Harrington LE, Onori JA, Mullin RJ, Gilmer TM, Truesdale AT, Epperly AH, Boloor A, Stafford JA, Luttrell DK, Cheung M (2007) Pharmacokinetic-pharmacodynamic correlation from mouse to human with pazopanib, a multikinase angiogenesis inhibitor with potent antitumor and antiangiogenic activity. Mol Cancer Ther 6:2012–2021. doi:10.1158/1535-7163.MCT-07-0193

    Article  CAS  PubMed  Google Scholar 

  48. Dikov MM, Ohm JE, Ray N, Tchekneva EE, Burlison J, Moghanaki D, Nadaf S, Carbone DP (2005) Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation. J Immunol 174:215–222

    CAS  PubMed  Google Scholar 

  49. Conejo-Garcia JR, Buckanovich RJ, Benencia F, Courreges MC, Rubin SC, Carroll RG, Coukos G (2005) Vascular leukocytes contribute to tumor vascularization. Blood 105:679–681. doi:10.1182/blood-2004-05-1906

    Article  CAS  PubMed  Google Scholar 

  50. Rehman J, Li J, Orschell CM, March KL (2003) Peripheral blood ‘endothelial progenitor cells’ are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107:1164–1169. doi:10.1161/01.CIR.0000058702.69484.A0

    Article  PubMed  Google Scholar 

  51. Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM (2002) Origin of endothelial progenitors in human postnatal bone marrow. J Clin Investig 109:337–346. doi:10.1172/JCI14327

    CAS  PubMed  Google Scholar 

  52. Riboldi E, Musso T, Moroni E, Urbinati C, Bernasconi S, Rusnati M, Adorini L, Presta M, Sozzani S (2005) Cutting edge: proangiogenic properties of alternatively activated dendritic cells. J Immunol 175:2788–2792

    CAS  PubMed  Google Scholar 

  53. Vermi W, Facchetti F, Riboldi E, Heine H, Scutera S, Stornello S, Ravarino D, Cappello P, Giovarelli M, Badolato R, Zucca M, Gentili F, Chilosi M, Doglioni C, Ponzi AN, Sozzani S, Musso T (2006) Role of dendritic cell-derived CXCL13 in the pathogenesis of Bartonella henselae B-rich granuloma. Blood 107:454–462. doi:10.1182/blood-2005-04-1342

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science and Technology Research Key Project of the Ministry of Education (No. 207150) and the Natural Science Foundation of the Henan Province of China (No. 20060011 and 2008A310018). We would like to express our thanks to the staff of the Open Laboratory of the Key Discipline of Molecular Medicine of the Henan Province and the Electron Microscopy Research Center of the Hebei Medical University for their helpful technical support, and thanks to Dr. Ziyou Cui and peer reviewers for critically reading the manuscript and giving good suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziming Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, J., Zhao, J., Liu, K. et al. MAPK/ERK1/2 signaling mediates endothelial-like differentiation of immature DCs in the microenvironment of esophageal squamous cell carcinoma. Cell. Mol. Life Sci. 67, 2091–2106 (2010). https://doi.org/10.1007/s00018-010-0316-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0316-8

Keywords

Navigation