Skip to main content

Advertisement

Log in

Increased induction of antitumor response by exosomes derived from interleukin-2 gene-modified tumor cells

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Tumor-derived exosomes (TEX) have been proposed as a new kind of cancer vaccine; however, their in vivo antitumor effects are not satisfactory. In order to further improve the efficacy of vaccination with TEX, we investigated whether interleukin-2 (IL-2) genetic modification of tumor cells can make IL-2 presence in the exosomes, thus increasing antitumor effects of the TEX.

Methods

E.G7-OVA tumor cells expressing Ovalbumin (OVA) as a tumor model antigen were used to prepare TEX by serial centrifugation and sucrose gradients ultracentrifugation. To demonstrate their antitumor effects, IL-2-containing exosomes (Exo/IL-2) were injected subcutaneously into C57BL/C mice: either bearing tumor or followed by tumor inoculation.

Results

We found IL-2 within those exosomes as detected by both ELISA and Western blot. Vaccination with these Exo/IL-2 could induce antigen-specific Th1-polarized immune response and Cytotoxic T lymphocytes (CTL) more efficiently, resulting in more significant inhibition of tumor growth. CD8+ T cells are the main effector cells, however, CD4+ T cells, and NK cells are also involved in the induction of antitumor response of this approach.

Conclusions

Our results demonstrate that IL-2 genetic modification of tumor cells can make the TEX contain IL-2 with the increased antitumor effects, representing a promising way of exosome-based tumor vaccine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CTL:

Cytotoxic T lymphocytes

DC:

Dendritic cells

DEX:

DC-derived exosomes

Exo:

Conventional exosomes

Exo/IL-2:

IL-2-containing exosomes

HSP:

Heat shock protein

IFN-γ:

Interferin-γ

IL-2:

Interleukin 2

MHC:

Major histocompatibility complex

OVA:

Ovalbumin

TEX:

Tumor-derived exosomes

References

  • Atkins MB, Regan M, McDermott D (2004) Update on the role of interleukin 2 and other cytokines in the treatment of patients with stage IV renal carcinoma. Clin Cancer Res 10(18):6342S–6346S

    Article  PubMed  CAS  Google Scholar 

  • Bykovskaja SN, Buffo MJ, Bunker M, Zhang H, Majors A, Herbert M, Lokshin A, Levitt ML, Jaja A, Scalise D, Kosiban D, Evans C, Marks S, Shogan J (1998) Interleukin-2-induces development of denditric cells from cord blood CD34+ cells. J Leukoc Biol 63:620–630

    PubMed  CAS  Google Scholar 

  • Cao X, Zhang W, He L, Xie Z, Ma S, Tao Q, Yu Y, Hamada H, Wang J (1998) Lymphotactin gene-modified bone marrow dendritic cells act as more potent adjuvants for peptide delivery to induce specific antitumor immunity. J Immunol 161:6238–6244

    PubMed  CAS  Google Scholar 

  • Cao X, Zhang W, Wan T, Yu Y, Wang J (1999a) Enhanced antitumor immune responses of IL-2 gene-modified tumor vaccine by combination with IL-1 and low dose cyclophosphamide. J Exp Clin Cancer Res 18(2):173–179

    CAS  Google Scholar 

  • Cao X, Wang Q, Ju D, Tao Q, Wang J (1999b) Efficient induction of local and systemic antitumor immune response by liposome-mediated intratumoral co-transfer of interleukin-2 gene and interleukin-6 gene. J Exp Clin Cancer Res 18(2):191–199

    CAS  Google Scholar 

  • Chaput N, Schartz NE, Andre F, Taieb J, Novault S, Bonnaventure P, Aubert N, Bernard J, Lemonnier F, Merad M, Adema G, Adams M, Ferrantini M, Carpentier AF, Escudier B, Tursz T, Angevin E, Zitvogel L (2004) Exosomes as potent cell-free peptide-based vaccine. II. Exosomes in CpG ODN adjuvants efficiently prime naive Tc1 lymphocytes leading to tumor rejection. J Immunol 172:2137–2146

    PubMed  CAS  Google Scholar 

  • Dai S, Wan T, Wang B, Zhou X, Xiu F, Chen T, Wu Y, Cao X (2005) More efficient induction of HLA-A*0201-restricted and CEA-specific CTL response by immunization with exosomes prepared from heat-stressed CEA-positive tumour cells. Clin Cancer Res 11(20):7554–7563

    Article  PubMed  CAS  Google Scholar 

  • Eklund JW, Kuzel TM (2005) Interleukin-2 in the treatment of renal cell carcinoma and malignant melanoma. Cancer Treat Res 126:263–287

    Article  PubMed  Google Scholar 

  • Escudier B, Dorval T, Chaput N, Andre F, Caby MP, Novault S, Flament C, Leboulaire C, Borg C, Amigorena S, Boccaccio C, Bonnerot C, Dhellin O, Movassagh M, Piperno S, Robert C, Serra V, Valente N, Le Pecq JB, Spatz A, Lantz O, Tursz T, Angevin E, Zitvogel L (2005) Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of the first phase I clinical trial. J Transl Med 3(1):10

    Article  PubMed  CAS  Google Scholar 

  • Fukao T, Koyasu S (2000) Expression of functional IL-2 receptors on mature splenic dendritic cells. Eur J Immunol 30:1453–1457

    Article  PubMed  CAS  Google Scholar 

  • Gastpar R, Gehrmann M, Bausero MA, Asea A, Gross C, Schroeder JA, Multhoff G (2005) Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res 65(12):5238–5247

    Article  PubMed  CAS  Google Scholar 

  • Granucci F, Andrews DM, Degli-Esposti MA, Ricciardi-Castagnoli P (2002) IL-2 mediates adjuvant effect of dendritic cells. Trends Immunol 23:169–171

    Article  PubMed  CAS  Google Scholar 

  • Hsu DH, Paz P, Villaflor G, Rivas A, Mehta-Damani A, Angevin E, Zitvogel L, Le Pecq JB (2003) Exosomes as a tumor vaccine: enhancing potency through direct loading of antigenic peptides. J Immunother 26:440–450

    Article  PubMed  CAS  Google Scholar 

  • Johnston D, Reynolds SR, Bystryn JC (2005) Interleukin-2/liposomes potentiate immune responses to a soluble protein cancer vaccine in mice. Cancer Immunol Immunother 54(9):1–8

    Google Scholar 

  • Li D, Ronson B, Guo M, Liu S, Bishop JS, Van Echo DA, O’Malley BW Jr (2002) Interleukin 2 gene transfer prevents NKG2D suppression and enhances antitumor efficacy in combination with cisplatin for head and neck squamous cell cancer. Cancer Res 62:4023–4028

    PubMed  CAS  Google Scholar 

  • Massa C, Melani C, Colombo MP (2005) Chaperon and adjuvant activity of hsp70: different natural killer requirement for cross-priming of chaperoned and bystander antigens. Cancer Res 65(17):7942–7949

    PubMed  CAS  Google Scholar 

  • Morelli AE, Larregina AT, Shufesky WJ, Sullivan ML, Stolz DB, Papworth GD, Zahorchak AF, Logar AJ, Wang Z, Watkins SC, Falo LD Jr, Thomson AW (2004) Endocytosis, intracellular sorting and processing of exosomes by dendritic cells. Blood 104:3257–3266

    Article  PubMed  CAS  Google Scholar 

  • Morse MA, Garst J, Osada T, Khan S, Hobeika A, Clay TM, Valente N, Shreeniwas R, Sutton MA, Delcayre A, Hsu DH, Le Pecq JB, Lyerly HK (2005) A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med 3(1):9

    Article  PubMed  CAS  Google Scholar 

  • Overwijk WW, Theoret MR, Restifo NP (2000) The future of interleukin-2: enhancing therapeutic anticancer vaccines. Cancer J Sci Am 6(Suppl 1):S76–S80

    PubMed  Google Scholar 

  • Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, Geuze HJ (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183(3):1161–1172

    Article  PubMed  CAS  Google Scholar 

  • Shimizu K, Fields RC, Giedlin M, Mule JJ (1999) Systemic administration of interleukin 2 enhances the therapeutic efficacy of dendritic cell-based tumor vaccines. Proc Natl Acad Sci USA 96:2268–2273

    Article  PubMed  CAS  Google Scholar 

  • Shurin MR, Lu L, Kalinski P, Stewart-Akers AM, Lotze MT (1999) Th1/Th2 balance in cancer, transplantation and pregnancy. Springer Semin Immunopathol 21(3):339–359

    Article  PubMed  CAS  Google Scholar 

  • Taieb J, Chaput N, Zitvogel L (2005) Dendritic cell-derived exosomes as cell-free peptide-based vaccines. Crit Rev Immunol 25(3):215–223

    Article  PubMed  CAS  Google Scholar 

  • Thery C, Zitvogel L, Amigorena S (2002a) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569–579

    CAS  Google Scholar 

  • Thery C, Duban L, Segura E, Veron P, Lantz O, Amigorena S (2002b) Indirect activation of naive CD4+ T cells by dendritic cell-derived exosomes. Nat Immunol 3(12):1156–1162

    Article  CAS  Google Scholar 

  • Tsan MF, Gao B (2004) Cytokine function of heat shock proteins. Am J Physiol Cell Physiol 286(4):C739–C744

    Article  PubMed  CAS  Google Scholar 

  • Wan T, Zhou X, Chen G, An H, Chen T, Zhang W, Liu S, Jiang Y, Yang F, Wu Y, Cao X (2005) Novel heat shock protein Hsp70L1 activates dendritic cells and acts as a Th1 polarizing adjuvant. Blood 103(5):1747–1754

    Article  CAS  Google Scholar 

  • Wolfers J, Lozier A, Raposo G, Regnault A, Thery C, Masurier C, Flament C, Pouzieux S, Faure F, Tursz T, Angevin E, Amigorena S, Zitvogel L (2001) Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 7:297–303

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Wan T, Zhou X, Wang B, Yang F, Li N, Chen G, Dai S, Liu S, Zhang M, Cao X (2005) Hsp70-like protein 1 fusion protein enhances induction of carcinoembryonic antigen-specific CD8+ CTL response by dendritic cell vaccine. Cancer Res 65(11):4947–4954

    Article  PubMed  CAS  Google Scholar 

  • Xia D, Zhang W, Zheng S, Wang J, Pan JP, Wang Q, Zhang LH, Hamada H, Cao X (2002) Lymphotactin cotransfection enhances the therapeutic efficacy of dendritic cells genetically modified with melanoma antigen gp100. Gene Ther 9(9):592–601

    Article  PubMed  CAS  Google Scholar 

  • Xiu F, Cao X (2004) Exosomes in the immune response and tolerance. J Microbiol Immunol 2(4):231–236

    Google Scholar 

  • Xiu F, Yang Y, Cai Z, Wang J, Cao X (2004) Isolation and characterization of exosomes derived from tumor cells genetically expressing model antigen. J Microbiol Immunol 2(4):278–285

    Google Scholar 

  • Yu P, Fu Y (2006) Tumor-infiltrating T lymphocytes: friends or foes? Lab Invest 86(3):231–245

    Article  PubMed  CAS  Google Scholar 

  • Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, Ricciardi-Castagnoli P, Raposo G, Amigorena S (1998) Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med 4:594–600

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (30328011, 30490240, 30121002) and the National Key Basic Research Program of China (2001CB510002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuetao Cao.

Additional information

The first two authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Xiu, F., Cai, Z. et al. Increased induction of antitumor response by exosomes derived from interleukin-2 gene-modified tumor cells. J Cancer Res Clin Oncol 133, 389–399 (2007). https://doi.org/10.1007/s00432-006-0184-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-006-0184-7

Keywords

Navigation