Skip to main content

Advertisement

Log in

The PDZ2 domain of zonula occludens-1 and -2 is a phosphoinositide binding domain

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Zonula occludens proteins (ZO) are postsynaptic density protein-95 discs large-zonula occludens (PDZ) domain-containing proteins that play a fundamental role in the assembly of tight junctions and establishment of cell polarity. Here, we show that the second PDZ domain of ZO-1 and ZO-2 binds phosphoinositides (PtdInsP) and we identified critical residues involved in the interaction. Furthermore, peptide and PtdInsP binding of ZO PDZ2 domains are mutually exclusive. Although lipid binding does not seem to be required for plasma membrane localisation of ZO-1, phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P 2) binding to the PDZ2 domain of ZO-2 regulates ZO-2 recruitment to nuclear speckles. Knockdown of ZO-2 expression disrupts speckle morphology, indicating that ZO-2 might play an active role in formation and stabilisation of these subnuclear structures. This study shows for the first time that ZO isoforms bind PtdInsPs and offers an alternative regulatory mechanism for the formation and stabilisation of protein complexes in the nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cho W (2006) Building signaling complexes at the membrane. Sci STKE, e7

  2. Overduin M, Cheever ML, Kutateladze TG (2001) Signaling with phosphoinositides: better than binary. Mol Interv 1:150–159

    CAS  PubMed  Google Scholar 

  3. Hammond GR, Schiavo G (2007) Polyphosphoinositol lipids: under-PPInning synaptic function in health and disease. Dev Neurobiol 67:1232–1247

    Article  CAS  PubMed  Google Scholar 

  4. Wymann MP, Schneiter R (2008) Lipid signalling in disease. Nat Rev Mol Cell Biol 9:162–176

    Article  CAS  PubMed  Google Scholar 

  5. Hammond G, Thomas CL, Schiavo G (2004) Nuclear phosphoinositides and their functions. Curr Top Microbiol Immunol 282:177–206

    CAS  PubMed  Google Scholar 

  6. Payrastre B, Missy K, Giuriato S, Bodin S, Plantavid M, Gratacap M (2001) Phosphoinositides: key players in cell signalling, in time and space. Cell Signal 13:377–387

    Article  CAS  PubMed  Google Scholar 

  7. Toker A (2002) Phosphoinositides and signal transduction. Cell Mol Life Sci 59:761–779

    Article  CAS  PubMed  Google Scholar 

  8. Gassama-Diagne A, Yu W, ter Beest M, Martin-Belmonte F, Kierbel A, Engel J, Mostov K (2006) Phosphatidylinositol-3, 4, 5-trisphosphate regulates the formation of the basolateral plasma membrane in epithelial cells. Nat Cell Biol 8:963–970

    Article  CAS  PubMed  Google Scholar 

  9. Martin-Belmonte F, Mostov K (2008) Regulation of cell polarity during epithelial morphogenesis. Curr Opin Cell Biol 20:227–234

    Article  CAS  PubMed  Google Scholar 

  10. Matter K, Balda MS (2007) Epithelial tight junctions, gene expression and nucleo-junctional interplay. J Cell Sci 120:1505–1511

    Article  CAS  PubMed  Google Scholar 

  11. Aijaz S, Balda MS, Matter K (2006) Tight junctions: molecular architecture and function. Int Rev Cytol 248:261–298

    Article  CAS  PubMed  Google Scholar 

  12. Schneeberger EE, Lynch RD (2004) The tight junction: a multifunctional complex. Am J Physiol Cell Physiol 286:C1213–C1228

    Article  CAS  PubMed  Google Scholar 

  13. Ebnet K (2008) Organization of multiprotein complexes at cell–cell junctions. Histochem Cell Biol 130:1–20

    Article  CAS  PubMed  Google Scholar 

  14. Islas S, Vega J, Ponce L, Gonzalez-Mariscal L (2002) Nuclear localization of the tight junction protein ZO-2 in epithelial cells. Exp Cell Res 274:138–148

    Article  CAS  PubMed  Google Scholar 

  15. Traweger A, Fuchs R, Krizbai IA, Weiger TM, Bauer HC, Bauer H (2003) The tight junction protein ZO-2 localizes to the nucleus and interacts with the heterogeneous nuclear ribonucleoprotein scaffold attachment factor-B. J Biol Chem 278:2692–2700

    Article  CAS  PubMed  Google Scholar 

  16. Gottardi CJ, Arpin M, Fanning AS, Louvard D (1996) The junction-associated protein, zonula occludens-1, localizes to the nucleus before the maturation and during the remodeling of cell–cell contacts. Proc Natl Acad Sci USA 93:10779–10784

    Article  CAS  PubMed  Google Scholar 

  17. Gonzalez-Mariscal L, Ponce A, Alarcon L, Jaramillo BE (2006) The tight junction protein ZO-2 has several functional nuclear export signals. Exp Cell Res 312:3323–3335

    Article  CAS  PubMed  Google Scholar 

  18. Jaramillo BE, Ponce A, Moreno J, Betanzos A, Huerta M, Lopez-Bayghen E, Gonzalez-Mariscal L (2004) Characterization of the tight junction protein ZO-2 localized at the nucleus of epithelial cells. Exp Cell Res 297:247–258

    Article  CAS  PubMed  Google Scholar 

  19. Betanzos A, Huerta M, Lopez-Bayghen E, Azuara E, Amerena J, Gonzalez-Mariscal L (2004) The tight junction protein ZO-2 associates with Jun, Fos and C/EBP transcription factors in epithelial cells. Exp Cell Res 292:51–66

    Article  CAS  PubMed  Google Scholar 

  20. Kavanagh E, Buchert M, Tsapara A, Choquet A, Balda MS, Hollande F, Matter K (2006) Functional interaction between the ZO-1-interacting transcription factor ZONAB/DbpA and the RNA processing factor symplekin. J Cell Sci 119:5098–5105

    Article  CAS  PubMed  Google Scholar 

  21. Huang HY, Li R, Sun Q, Wang J, Zhou P, Han H, Zhang WH (2002) LIM protein KyoT2 interacts with human tight junction protein ZO-2-i3. Yi Chuan Xue Bao 29:953–958

    PubMed  Google Scholar 

  22. Huerta M, Munoz R, Tapia R, Soto-Reyes E, Ramirez L, Recillas-Targa F, Gonzalez-Mariscal L, Lopez-Bayghen E (2007) Cyclin D1 is transcriptionally down-regulated by ZO-2 via an E box and the transcription factor c-Myc. Mol Biol Cell 18:4826–4836

    Article  CAS  PubMed  Google Scholar 

  23. Wu H, Feng W, Chen J, Chan LN, Huang S, Zhang M (2007) PDZ domains of Par-3 as potential phosphoinositide signaling integrators. Mol Cell 28:886–898

    Article  CAS  PubMed  Google Scholar 

  24. Zimmermann P, Meerschaert K, Reekmans G, Leenaerts I, Small JV, Vandekerckhove J, David G, Gettemans J (2002) PIP(2)-PDZ domain binding controls the association of syntenin with the plasma membrane. Mol Cell 9:1215–1225

    Article  CAS  PubMed  Google Scholar 

  25. Kates M (1986) Techniques of lipidology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  26. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  27. Hammond GR, Dove SK, Nicol A, Pinxteren JA, Zicha D, Schiavo G (2006) Elimination of plasma membrane phosphatidylinositol (4, 5)-bisphosphate is required for exocytosis from mast cells. J Cell Sci 119:2084–2094

    Article  CAS  PubMed  Google Scholar 

  28. Hammond GR, Schiavo G, Irvine RF (2009) Immunocytochemical techniques reveal multiple, distinct cellular pools of PtdIns4P and PtdIns(4,5)P 2. Biochem J (in press)

  29. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  CAS  PubMed  Google Scholar 

  30. Manna D, Albanese A, Park WS, Cho W (2007) Mechanistic basis of differential cellular responses of phosphatidylinositol 3, 4-bisphosphate- and phosphatidylinositol 3, 4, 5-trisphosphate-binding pleckstrin homology domains. J Biol Chem 282:32093–32105

    Article  CAS  PubMed  Google Scholar 

  31. Rusten TE, Stenmark H (2006) Analyzing phosphoinositides and their interacting proteins. Nat Methods 3:251–258

    Article  CAS  PubMed  Google Scholar 

  32. Varnai P, Balla T (1998) Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. J Cell Biol 143:501–510

    Article  CAS  PubMed  Google Scholar 

  33. Fanning AS, Lye MF, Anderson JM, Lavie A (2007) Domain swapping within PDZ2 is responsible for dimerization of ZO proteins. J Biol Chem 282:37710–37716

    Article  CAS  PubMed  Google Scholar 

  34. Giepmans BN, Verlaan I, Moolenaar WH (2001) Connexin-43 interactions with ZO-1 and alpha- and beta-tubulin. Cell Commun Adhes 8:219–223

    Article  CAS  PubMed  Google Scholar 

  35. Chen J, Pan L, Wei Z, Zhao Y, Zhang M (2008) Domain-swapped dimerization of ZO-1 PDZ2 generates specific and regulatory connexin43-binding sites. EMBO J 27:2113–2123

    Article  CAS  PubMed  Google Scholar 

  36. Flores CE, Li X, Bennett MV, Nagy JI, Pereda AE (2008) Interaction between connexin35 and zonula occludens-1 and its potential role in the regulation of electrical synapses. Proc Natl Acad Sci USA 105:12545–12550

    Article  CAS  PubMed  Google Scholar 

  37. Nourry C, Grant SG, Borg JP (2003) PDZ domain proteins: plug and play! Sci STKE, RE7

  38. Mortier E, Wuytens G, Leenaerts I, Hannes F, Heung MY, Degeest G, David G, Zimmermann P (2005) Nuclear speckles and nucleoli targeting by PIP2-PDZ domain interactions. EMBO J 24:2556–2565

    Article  CAS  PubMed  Google Scholar 

  39. Osborne SL, Thomas CL, Gschmeissner S, Schiavo G (2001) Nuclear PtdIns(4, 5)P 2 assembles in a mitotically regulated particle involved in pre-mRNA splicing. J Cell Sci 114:2501–2511

    CAS  PubMed  Google Scholar 

  40. Hernandez S, Chavez MB, Gonzalez-Mariscal L (2007) ZO-2 silencing in epithelial cells perturbs the gate and fence function of tight junctions and leads to an atypical monolayer architecture. Exp Cell Res 313:1533–1547

    Article  CAS  PubMed  Google Scholar 

  41. Xu J, Kausalya PJ, Phua DC, Ali SM, Hossain Z, Hunziker W (2008) Early embryonic lethality of mice lacking ZO-2, but Not ZO-3, reveals critical and nonredundant roles for individual zonula occludens proteins in mammalian development. Mol Cell Biol 28:1669–1678

    Article  CAS  PubMed  Google Scholar 

  42. Kachel N, Erdmann KS, Kremer W, Wolff P, Gronwald W, Heumann R, Kalbitzer HR (2003) Structure determination and ligand interactions of the PDZ2b domain of PTP-Bas (hPTP1E): splicing-induced modulation of ligand specificity. J Mol Biol 334:143–155

    Article  CAS  PubMed  Google Scholar 

  43. Cho W, Stahelin RV (2005) Membrane–protein interactions in cell signaling and membrane trafficking. Annu Rev Biophys Biomol Struct 34:119–151

    Article  CAS  PubMed  Google Scholar 

  44. Bunce MW, Bergendahl K, Anderson RA (2006) Nuclear PI(4, 5)P(2): a new place for an old signal. Biochim Biophys Acta 1761:560–569

    CAS  PubMed  Google Scholar 

  45. Reichert M, Muller T, Hunziker W (2000) The PDZ domains of zonula occludens-1 induce an epithelial to mesenchymal transition of Madin–Darby canine kidney I cells. Evidence for a role of beta-catenin/Tcf/Lef signaling. J Biol Chem 275:9492–9500

    Article  CAS  PubMed  Google Scholar 

  46. Fanning AS, Little BP, Rahner C, Utepbergenov D, Walther Z, Anderson JM (2007) The unique-5 and -6 motifs of ZO-1 regulate tight junction strand localization and scaffolding properties. Mol Biol Cell 18:721–731

    Article  CAS  PubMed  Google Scholar 

  47. van Zeijl L, Ponsioen B, Giepmans BN, Ariaens A, Postma FR, Varnai P, Balla T, Divecha N, Jalink K, Moolenaar WH (2007) Regulation of connexin43 gap junctional communication by phosphatidylinositol 4, 5-bisphosphate. J Cell Biol 177:881–891

    Article  PubMed  Google Scholar 

  48. Tapia R, Huerta M, Islas S, vila-Flores A, Lopez-Bayghen E, Weiske J, Huber O, Gonzalez-Mariscal L (2009) Zona occludens-2 inhibits cyclin D1 expression and cell proliferation and exhibits changes in localization along the cell cycle. Mol Biol Cell 20:1102–1117

    Article  CAS  PubMed  Google Scholar 

  49. Harris BZ, Lim WA (2001) Mechanism and role of PDZ domains in signaling complex assembly. J Cell Sci 114:3219–3231

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. E. Mortier for helpful discussions during the course of this project and Dr. L. Van Troys and Dr. G. Hammond for useful advice on the lipid stainings. This work was supported by the Fund for Scientific Research-Flanders (FWO-Vlaanderen), the Concerted Actions Programme of Ghent University (GOA), the Interuniversity attraction poles (IUAP06), the Human Frontier Science Program (HFSP), a NIH grant (GM68849) (for W.C.), and the Catalyst Award from Chicago Biomedical Consortium (for W.C. and H.L.). K.M. was supported by a Postdoctoral Fellowship of the Fund for Scientific Research-Flanders (Belgium) (FWO-Vlaanderen). E.R. is supported by a fellowship from the research council of Ghent University (BOF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Gettemans.

Additional information

K. Meerschaert, M. P. Tun and E. Remue contributed equally to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2009_156_MOESM1_ESM.pdf

Supplementary Figure S1. ELISA PtdInsP binding assay with PDZ domains 1-3 of ZO-2. Each well of a ‘PIP specificity’ microtiter plate (Echelon Biosciences) was overlaid with GST, GST- PH-PLC-d1 (positive control) and GST-ZO2 PDZ1-3 at a final concentration of 10 nM. Data represent means ± STDEV (n = 3). A.U. = absorbance unit (PDF 39 kb)

18_2009_156_MOESM2_ESM.pdf

Supplementary Figure S2. Gel filtration chromatography of GST-ZO1-PDZ2 (red line). Molecular weight standards (blue line) include blue dextran, immunoglobin G (IgG; 150 kDa), bovine serum albumin (BSA; 67 kDa) and ovalbumin (43 kDa). 100 nM to 5 µM GST-ZO1-PDZ2 (and GST-ZO2-PDZ2) showed the same elution pattern. The estimated molecular weight of the protein was 78 kDa, which approximates that of the GST-ZO1-PDZ2 dimer (PDF 42 kb)

18_2009_156_MOESM3_ESM.pdf

Supplementary material 3Supplementary Figure S3. A) PtdInsP selectivity of ZO-2 PDZ2 determined by kinetic SPR measurements. 1 µM of protein was added to POPC/POPE/POPS/PtdInsP (37:40:20:3) vesicles containing 7 different PtdInsPs. (B) Effects of mutations of basic residues on binding of the ZO-2 PDZ2 to POPC/POPE/POPS/PtdIns(4,5)P 2 (37:40:20:3) vesicles measured by kinetic SPR analysis. Protein concentrations were kept at 1 µM. Kd values were determined by equilibrium SPR analysis as shown in Figure 2B and 2C and listed in Table II. (PDF 79 kb)

18_2009_156_MOESM4_ESM.pdf

Supplementary Figure S4. Expression of wild-type and mutant ZO constructs in MDCK cells. (A) Expression of various GFP-tagged ZO-1 mutants defective in lipid and/or peptide binding does not affect plasma membrane localisation of ZO-1. (B) Similar experiments for ZO-2. WT=wild type. Scale bar = 10µm. (PDF 641 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meerschaert, K., Tun, M.P., Remue, E. et al. The PDZ2 domain of zonula occludens-1 and -2 is a phosphoinositide binding domain. Cell. Mol. Life Sci. 66, 3951–3966 (2009). https://doi.org/10.1007/s00018-009-0156-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0156-6

Keywords

Navigation