Skip to main content
Log in

Reverse signaling using an inducible costimulator to enhance immunogenic function of dendritic cells

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

A costimulatory signal from an inducible costimulator (ICOS) of T cells plays a critical role in immunological homeostasis. This study shows that the interaction of ICOSIg and its ligand (ICOSL) on mouse bone marrow-derived dendritic cells (DCs) induces a p38-MAPK dependent elevation of interleukin 6 (IL-6). It also enhances phagocytosis and the antigen-presentation function of DCs in vitro, further favoring cell-mediated immunity in vivo. As seen for other types of costimulator molecules expressed in the T cells in the CD28 family, it is shown here for the first time that ICOS can also deliver reverse signals through its ligand to ICOSL-expressing cells. These reverse signals in turn transfer positive immunogenic information to bone marrow-derived DCs. Our work therefore provides new recognition of an ICOSL/ICOS signal pathway in immunity and also supplies more evidence that this ICOSL/ICOS signal pathway is a reasonable target for therapeutic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lin H, Rathmell JC, Gray GS, Thompson CB, Leiden JM, Alegre ML (1998) Cytotoxic T lymphocyte antigen 4 (CTLA4) blockade accelerates the acute rejection of cardiac allografts in CD28-deficient mice: CTLA-4 can function independently of CD28. J Exp Med 188:199–204

    Article  PubMed  CAS  Google Scholar 

  2. Fallarino F, Fields PE, Gajewski TF (1998) B7–1 engagement of cytotoxic T lymphocyte antigen 4 inhibits T-cell activation in the absence of CD28. J Exp Med 188:205–210

    Article  PubMed  CAS  Google Scholar 

  3. Grohmann U, Orabona C, Fallarino F, Vacca C, Calcinaro F, Falorni A, Candeloro P, Belladonna ML, Bianchi R, Fioretti MC, Puccetti P (2002) CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol 3:1097–1101

    Article  PubMed  CAS  Google Scholar 

  4. Fallarino F, Grohmann U, Hwang KW, Orabona C, Vacca C, Bianchi R, Belladonna ML, Fioretti MC, Alegre ML, Puccetti P (2003) Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 4:1206–1212

    Article  PubMed  CAS  Google Scholar 

  5. Munn DH, Sharma MD, Mellor AL (2004) Ligation of B7-1/B7-2 by Human CD4+ T-cells triggers indoleamine 2, 3-dioxygenase activity in dendritic cells. J Immunol 172:4100–4110

    PubMed  CAS  Google Scholar 

  6. Orabona C, Grohmann U, Belladonna ML, Fallarino F, Vacca C, Bianchi R, Bozza S, Volpi C, Salomon BL, Fioretti MC, Romani L, Puccetti P (2004) CD28 induces immunostimulatory signals in dendritic cells via CD80 and CD86. Nat Immunol 5:1134–1142

    Article  PubMed  CAS  Google Scholar 

  7. Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ (2007) The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol 8:239–245

    Article  PubMed  CAS  Google Scholar 

  8. Radhakrishnan S, Celis E, Pease LR (2005) B7-DC cross-linking restores antigen uptake and augments antigen-presenting cell function by matured dendritic cells. Proc Natl Acad Sci USA 102:11438–11443

    Article  PubMed  CAS  Google Scholar 

  9. Nguyen LT, Radhakrishnan S, Ciric B, Tamada K, Shin T, Pardoll DM, Chen L, Rodriguez M, Pease LR (2002) Cross-linking the B7 family molecule B7-DC directly activates immune functions of dendritic cells. J Exp Med 196:1393–1398

    Article  PubMed  CAS  Google Scholar 

  10. Grohmann U, Volpi C, Fallarino F, Bozza S, Bianchi R, Vacca C, Orabona C, Belladonna ML, Ayroldi E, Nocentini G, Boon L, Bistoni F, Fioretti MC, Romani L, Riccardi C, Puccetti P (2007) Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy. Nat Med 13:579–586

    Article  PubMed  CAS  Google Scholar 

  11. Yoshinaga SK, Whoriskey JS, Khare SD, Sarmiento U, Guo J, Horan T, Shih G, Zhang M, Coccia MA, Kohno T, Tafuri-Bladt A, Brankow D, Campbell P, Chang D, Chiu L, Dai T, Duncan G, Elliott GS, Hui A, McCabe SM, Scully S, Shahinian A, Shaklee CL, Van G, Mak TW, Senaldi G (1999) T-cell co-stimulation through B7RP-1 and ICOS. Nature 402:827–832

    Article  PubMed  CAS  Google Scholar 

  12. Coyle AJ, Lehar S, Lloyd C, Tian J, Delaney T, Manning S, Nguyen T, Burwell T, Schneider H, Gonzalo JA, Gosselin M, Owen LR, Rudd CE, Gutierrez-Ramos JC (2000) The CD28-related molecule ICOS is required for effective T-cell-dependent immune responses. Immunity 13:95–105

    Article  PubMed  CAS  Google Scholar 

  13. McAdam AJ, Chang TT, Lumelsky AE, Greenfield EA, Boussiotis VA, Duke-Cohan JS, Chernova T, Malenkovich N, Jabs C, Kuchroo VK (2000) Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4 + T-cells. J Immunol 165:5035–5040

    PubMed  CAS  Google Scholar 

  14. Ogasawara K, Yoshinaga SK, Lanier LL (2002) Inducible costimulator costimulates cytotoxic activity and IFN-γ production in activated murine NK cells. J Immunol 169:3676–3685

    PubMed  CAS  Google Scholar 

  15. Greenwald RJ, Freeman GJ, Sharpe AH (2005) The B7 family revisited. Annu Rev Immunol 23:515–548

    Article  PubMed  Google Scholar 

  16. Inaba K, Inaba M, Romani N, Aya H, Deguchi M, Ikehara S, Muramatsu S, Steinman RM (1992) Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176:1693–1702

    Article  PubMed  CAS  Google Scholar 

  17. Bakkour S, Sha WC (2008) Mapping of the ICOS binding surface of murine B7 h using an unbiased, cellular library of B7 h mutants created by cyclical packaging rescue. J Immunol Methods 332:151–161

    Article  PubMed  CAS  Google Scholar 

  18. Fabian D, Gong N, Vogt K, Volk HD, Pleyer U, Ritter T (2007) The influence of inducible costimulator fusion protein (ICOSIg) gene transfer on corneal allograft survival. Graefes Arch Clin Exp Ophthalmol 245:1515–1521

    Article  PubMed  CAS  Google Scholar 

  19. Afek A, Harats D, Roth A, Keren G, George J (2005) A functional role for inducible costimulator (ICOS) in atherosclerosis. Atherosclerosis 183:57–63

    Article  PubMed  CAS  Google Scholar 

  20. Matsui Y, Okamoto H, Inobe M, Jia N, Shimizu T, Akino M, Sugawara T, Tezuka K, Nakayama Y, Morimoto J (2003) Adenovirus-mediated gene transfer of ICOSIg fusion protein ameliorates ongoing experimental autoimmune myocarditis. Hum Gene Ther 14:521–532

    Article  PubMed  CAS  Google Scholar 

  21. Aicher A, Hayden LM, Brady WA, Pezzutto A, Richter G, Magaletti D, Buckwalter S, Ledbetter JA, Clark EA (2000) Characterization of human inducible costimulator ligand expression and function. J Immunol 164:4689–4696

    PubMed  CAS  Google Scholar 

  22. Shortman K, Heath WR (2001) Immunity or tolerance? That is the question for dendritic cells. Nat Immunol 2:988–989

    Article  PubMed  CAS  Google Scholar 

  23. Grohmann U, Fallarino F, Silla S, Bianchi R, Belladonna ML, Vacca C, Micheletti A, Fioretti MC, Puccetti P (2001) CD40 ligation ablates the tolerogenic potential of lymphoid dendritic cells. J Immunol 166:277–283

    PubMed  CAS  Google Scholar 

  24. Grohmann U, Bianchi R, Orabona C, Fallarino F, Vacca C, Micheletti A, Fioretti MC, Puccetti P (2003) Functional plasticity of dendritic cell subsets as mediated by CD40 versus B7 activation. J Immunol 171:2581–2587

    PubMed  CAS  Google Scholar 

  25. Grohmann U, Fallarino F, Bianchi R, Belladonna ML, Vacca C, Orabona C, Uyttenhove C, Fioretti MC, Puccetti P (2001) IL-6 inhibits the tolerogenic function of CD8 alpha + dendritic cells expressing indoleamine 2, 3-dioxygenase. J Immunol 167:708–714

    PubMed  CAS  Google Scholar 

  26. Zhang M, Tang H, Guo Z, An H, Zhu X, Song W, Guo J, Huang X, Chen T, Wang J, Cao X (2004) Splenic stroma drives mature dendritic cells to differentiate into regulatory dendritic cells. Nat Immunol 5:1124–1133

    Article  PubMed  CAS  Google Scholar 

  27. Hutloff A, Dittrich AM, Beier KC, Eljaschewitsch B, Kraft R, Anagnostopoulos I, Kroczek RA (1999) ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397:263–266

    Article  PubMed  CAS  Google Scholar 

  28. Villegas EN, Lieberman LA, Mason N, Blass SL, Zediak VP, Peach R, Horan T, Yoshinaga S, Hunter CA (2002) A role for inducible costimulator protein in the CD28-independent mechanism of resistance to Toxoplasma gondii. J Immunol 169:937–943

    PubMed  CAS  Google Scholar 

  29. McAdam AJ, Chang TT, Lumelsky AE, Greenfield EA, Boussiotis VA, Duke-Cohan JS, Chernova T, Malenkovich N, Jabs C, Kuchroo VK, Ling V, Collins M, Sharpe AH (2000) Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4+ T-cells. J Immunol 165:5035–5040

    PubMed  CAS  Google Scholar 

  30. Greenwald RJ, McAdam AJ, Van der Woude D, Satoskar AR, Sharpe AH (2002) Cutting edge: inducible costimulator protein regulates both Th1 and Th2 responses to cutaneous leishmaniasis. J Immunol 168:991–995

    PubMed  CAS  Google Scholar 

  31. Mahajan S, Cervera A, MacLeod M, Fillatreau S, Perona-Wright G, Meek S, Smith A, MacDonald A, Gray D (2007) The role of ICOS in the development of CD4 T-cell help and the reactivation of memory T-cells. Eur J Immunol 37:1796–1808

    Article  PubMed  CAS  Google Scholar 

  32. Castelli L, Comi C, Chiocchetti A, Nicola S, Mesturini R, Giordano M, D’Alfonso S, Cerutti E, Galimberti D, Fenoglio C, Tesser F, Yagi J, Rojo JM, Perla F, Leone M, Scarpini E, Monaco F, Dianzani U (2007) ICOS gene haplotypes correlate with IL10 secretion and multiple sclerosis evolution. J Neuroimmunol 186:193–198

    Article  PubMed  CAS  Google Scholar 

  33. Rottman JB, Smith T, Tonra JR, Ganley K, Bloom T, Silva R, Pierce B, Gutierrez-Ramos JC, Ozkaynak E, Coyle AJ (2001) The costimulatory molecule ICOS plays an important role in the immunopathogenesis of EAE. Nat Immunol 2:605–611

    Article  PubMed  CAS  Google Scholar 

  34. Ansari MJ, Fiorina P, Dada S, Guleria I, Ueno T, Yuan X, Trikudanathan S, Smith RN, Freeman G, Sayegh MH (2008) Role of ICOS pathway in autoimmune and alloimmune responses in NOD mice. Clin Immunol 126:140–147

    Article  PubMed  CAS  Google Scholar 

  35. Katsumata Y, Harigai M, Sugiura T, Kawamoto M, Kawaguchi Y, Matsumoto Y, Kohyama K, Soejima M, Kamatani N, Hara M (2007) Attenuation of experimental autoimmune myositis by blocking ICOS–ICOS ligand interaction. J Immunol 179:3772–3779

    PubMed  CAS  Google Scholar 

  36. Sporici RA, Beswick RL, von Allmen C, Rumbley CA, Hayden LM, Ledbetter JA, Perrin PJ (2001) ICOS ligand costimulation is required for T-cell encephalitogenicity. Clin Immunol 100:277–288

    Article  PubMed  CAS  Google Scholar 

  37. Rutitzky LI, Ozkaynak E, Rottman JB, Stadecker MJ (2003) Disruption of the ICOS-B7RP-1 costimulatory pathway leads to enhanced hepatic immunopathology and increased γ interferon production by CD4 T-cells in murine schistosomiasis. Infect Immun 71:4040–4044

    Article  PubMed  CAS  Google Scholar 

  38. Mittrücker HW, Kursar M, Köhler A, Yanagihara D, Yoshinaga SK, Kaufmann SH (2002) Inducible costimulator protein controls the protective T-cell response against Listeria monocytogenes. J Immunol 169:5813–5817

    PubMed  Google Scholar 

  39. Nanji SA, Hancock WW, Anderson CC, Adams AB, Luo B, Pawlick RL, Wang L, Coyle AJ, Larsen CP, Shapiro AM (2004) Multiple combination therapies involving blockade of ICOS/B7RP-1 costimulation facilitate long-term islet allograft survival. Am J Transplant 4:526–536

    Article  PubMed  CAS  Google Scholar 

  40. Salama AD, Yuan X, Nayer A, Chandraker A, Inobe M, Uede T, Sayegh MH (2003) Interaction between ICOS-B7RP1 and B7-CD28 costimulatory pathways in alloimmune responses in vivo. Am J Transplant 3:390–395

    Article  PubMed  CAS  Google Scholar 

  41. Ozkaynak E, Gao W, Shemmeri N, Wang C, Gutierrez-Ramos JC, Amaral J, Qin S, Rottman JB, Coyle AJ, Hancock WW (2001) Importance of ICOS-B7RP-1 costimulation in acute and chronic allograft rejection. Nat Immunol 2:591–596

    Article  PubMed  CAS  Google Scholar 

  42. Gotsman I, Grabie N, Gupta R, Dacosta R, MacConmara M, Lederer J, Sukhova G, Witztum JL, Sharpe AH, Lichtman AH (2006) Impaired regulatory T-cell response and enhanced atherosclerosis in the absence of inducible costimulatory molecule. Circulation 114:2047–2055

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like take the opportunity to thank Professor Xuetao Cao for kindly providing us with OVA-transgene mouse (DO11.10) and Doctor Liwei Dong for SB202190, an inhibitor of p38 MPAK pathway, and its inactive analog, SB202474. The authors declare that there were no financial interest conflicts raised during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, G., Qin, Q., Zhang, P. et al. Reverse signaling using an inducible costimulator to enhance immunogenic function of dendritic cells. Cell. Mol. Life Sci. 66, 3067–3080 (2009). https://doi.org/10.1007/s00018-009-0090-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0090-7

Keywords

Navigation