Skip to main content
Log in

Upper intestinal lipids regulate energy and glucose homeostasis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Upon the entry of nutrients into the small intestine, nutrient sensing mechanisms are activated to allow the body to adapt appropriately to the incoming nutrients. To date, mounting evidence points to the existence of an upper intestinal lipid-induced gut–brain neuronal axis to regulate energy homeostasis. Moreover, a recent discovery has also revealed an upper intestinal lipid-induced gut–brain–liver neuronal axis involved in the regulation of glucose homeostasis. In this mini-review, we will focus on the mechanisms underlying the activation of these respective neuronal axes by upper intestinal lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cummings DE, Overduin J (2007) Gastrointestinal regulation of food intake. J Clin Invest 117:13–23

    Article  PubMed  CAS  Google Scholar 

  2. Wang PY, Caspi L, Lam CK, Chari M, Li X, Light PE, Gutierrez-Juarez R, Ang M, Schwartz GJ, Lam TK (2008) Upper intestinal lipids trigger a gut–brain–liver axis to regulate glucose production. Nature 452:1012–1016

    Article  PubMed  CAS  Google Scholar 

  3. Matzinger D, Degen L, Drewe J, Meuli J, Duebendorfer R, Ruckstuhl N, D’Amato M, Rovati L, Beglinger C (2000) The role of long chain fatty acids in regulating food intake and cholecystokinin release in humans. Gut 46:688–693

    Article  PubMed  CAS  Google Scholar 

  4. Feinle C, O’Donovan D, Doran S, Andrews JM, Wishart J, Chapman I, Horowitz M (2003) Effects of fat digestion on appetite, APD motility, and gut hormones in response to duodenal fat infusion in humans. Am J Physiol Gastrointest Liver Physiol 284:G798–G807

    PubMed  CAS  Google Scholar 

  5. Greenberg D, Smith GP, Gibbs J (1990) Intraduodenal infusions of fats elicit satiety in sham-feeding rats. Am J Physiol 259:R110–R118

    PubMed  CAS  Google Scholar 

  6. Lieverse RJ, Jansen JB, Masclee AA, Rovati LC, Lamers CB (1994) Effect of a low dose of intraduodenal fat on satiety in humans: studies using the type A cholecystokinin receptor antagonist loxiglumide. Gut 35:501–505

    Article  PubMed  CAS  Google Scholar 

  7. Matzinger D, Gutzwiller JP, Drewe J, Orban A, Engel R, D’Amato M, Rovati L, Beglinger C (1999) Inhibition of food intake in response to intestinal lipid is mediated by cholecystokinin in humans. Am J Physiol 277:R1718–R1724

    PubMed  CAS  Google Scholar 

  8. Covasa M, Ritter RC (2001) Attenuated satiation response to intestinal nutrients in rats that do not express CCK-A receptors. Peptides 22:1339–1348

    Article  PubMed  CAS  Google Scholar 

  9. Feltrin KL, Little TJ, Meyer JH, Horowitz M, Rades T, Wishart J, Feinle-Bisset C (2007) Effects of lauric acid on upper gut motility, plasma cholecystokinin and peptide YY, and energy intake are load, but not concentration, dependent in humans. J Physiol 581:767–777

    Article  PubMed  Google Scholar 

  10. Schwartz GJ, Whitney A, Skoglund C, Castonguay TW, Moran TH (1999) Decreased responsiveness to dietary fat in Otsuka Long-Evans Tokushima fatty rats lacking CCK-A receptors. Am J Physiol 277:R1144–R1151

    PubMed  CAS  Google Scholar 

  11. Feltrin KL, Little TJ, Meyer JH, Horowitz M, Smout AJ, Wishart J, Pilichiewicz AN, Rades T, Chapman IM, Feinle-Bisset C (2004) Effects of intraduodenal fatty acids on appetite, antropyloroduodenal motility, and plasma CCK and GLP-1 in humans vary with their chain length. Am J Physiol Regul Integr Comp Physiol 287:R524–R533

    PubMed  CAS  Google Scholar 

  12. McLaughlin J, Grazia LM, Jones MN, D’Amato M, Dockray GJ, Thompson DG (1999) Fatty acid chain length determines cholecystokinin secretion and effect on human gastric motility. Gastroenterology 116:46–53

    Article  PubMed  CAS  Google Scholar 

  13. Moran TH, Kinzig KP (2004) Gastrointestinal satiety signals II. Cholecystokinin. Am J Physiol Gastrointest Liver Physiol 286:G183–G188

    Article  PubMed  CAS  Google Scholar 

  14. Cox JE (1996) Effect of pyloric cuffs on cholecystokinin satiety. Physiol Behav 60:1023–1026

    PubMed  CAS  Google Scholar 

  15. Gibbs J, Young RC, Smith GP (1973) Cholecystokinin elicits satiety in rats with open gastric fistulas. Nature 245:323–325

    Article  PubMed  CAS  Google Scholar 

  16. Gibbs J, Falasco JD, McHugh PR (1976) Cholecystokinin-decreased food intake in rhesus monkeys. Am J Physiol 230:15–18

    PubMed  CAS  Google Scholar 

  17. Kissileff HR, Pi-Sunyer FX, Thornton J, Smith GP (1981) C-terminal octapeptide of cholecystokinin decreases food intake in man. Am J Clin Nutr 34:154–160

    PubMed  CAS  Google Scholar 

  18. Kraly FS, Carty WJ, Resnick S, Smith GP (1978) Effect of cholecystokinin on meal size and intermeal interval in the sham-feeding rat. J Comp Physiol Psychol 92:697–707

    Article  PubMed  CAS  Google Scholar 

  19. Moran TH, Ameglio PJ, Schwartz GJ, McHugh PR (1992) Blockade of type A, not type B, CCK receptors attenuates satiety actions of exogenous and endogenous CCK. Am J Physiol 262:R46–R50

    PubMed  CAS  Google Scholar 

  20. Moran TH, Baldessarini AR, Salorio CF, Lowery T, Schwartz GJ (1997) Vagal afferent and efferent contributions to the inhibition of food intake by cholecystokinin. Am J Physiol 272:R1245–R1251

    PubMed  CAS  Google Scholar 

  21. Weatherford SC, Chiruzzo FY, Laughton WB (1992) Satiety induced by endogenous and exogenous cholecystokinin is mediated by CCK-A receptors in mice. Am J Physiol 262:R574–R578

    PubMed  CAS  Google Scholar 

  22. Woltman T, Castellanos D, Reidelberger R (1995) Role of cholecystokinin in the anorexia produced by duodenal delivery of oleic acid in rats. Am J Physiol 269:R1420–R1433

    PubMed  CAS  Google Scholar 

  23. Monnikes H, Lauer G, Bauer C, Tebbe J, Zittel TT, Arnold R (1997) Pathways of Fos expression in locus ceruleus, dorsal vagal complex, and PVN in response to intestinal lipid. Am J Physiol 273:R2059–R2071

    PubMed  CAS  Google Scholar 

  24. Berthoud HR, Patterson LM (1996) Anatomical relationship between vagal afferent fibers and CCK-immunoreactive entero-endocrine cells in the rat small intestinal mucosa. Acta Anat (Basel) 156:123–131

    Article  CAS  Google Scholar 

  25. Moran TH, Smith GP, Hostetler AM, McHugh PR (1987) Transport of cholecystokinin (CCK) binding sites in subdiaphragmatic vagal branches. Brain Res 415:149–152

    Article  PubMed  CAS  Google Scholar 

  26. Moran TH, Norgren R, Crosby RJ, McHugh PR (1990) Central and peripheral vagal transport of cholecystokinin binding sites occurs in afferent fibers. Brain Res 526:95–102

    Article  PubMed  CAS  Google Scholar 

  27. Sclafani A, Ackroff K, Schwartz GJ (2003) Selective effects of vagal deafferentation and celiac-superior mesenteric ganglionectomy on the reinforcing and satiating action of intestinal nutrients. Physiol Behav 78:285–294

    Article  PubMed  CAS  Google Scholar 

  28. Hansen HS, Diep TA (2009) N-acylethanolamines, anandamide and food intake. Biochem Pharmacol [Epub ahead of print]

  29. Schwartz GJ, Fu J, Astarita G, Li X, Gaetani S, Campolongo P, Cuomo V, Piomelli D (2008) The lipid messenger OEA links dietary fat intake to satiety. Cell Metab 8:281–288

    Article  PubMed  CAS  Google Scholar 

  30. de Kloet AD, Woods SC (2009) Minireview: endocannabinoids and their receptors as targets for obesity therapy. Endocrinology 150:2531–2536

    Article  PubMed  Google Scholar 

  31. Gomez R, Navarro M, Ferrer B, Trigo JM, Bilbao A, Del AI, Cippitelli A, Nava F, Piomelli D, Rodriguez de FF (2002) A peripheral mechanism for CB1 cannabinoid receptor-dependent modulation of feeding. J Neurosci 22:9612–9617

    PubMed  CAS  Google Scholar 

  32. Burdyga G, Lal S, Varro A, Dimaline R, Thompson DG, Dockray GJ (2004) Expression of cannabinoid CB1 receptors by vagal afferent neurons is inhibited by cholecystokinin. J Neurosci 24:2708–2715

    Article  PubMed  CAS  Google Scholar 

  33. Thabuis C, Tissot-Favre D, Bezelgues JB, Martin JC, Cruz-Hernandez C, Dionisi F, Destaillats F (2008) Biological functions and metabolism of oleoylethanolamide. Lipids 43:887–894

    Article  PubMed  CAS  Google Scholar 

  34. Obici S, Zhang BB, Karkanias G, Rossetti L (2002) Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med 8:1376–1382

    Article  PubMed  CAS  Google Scholar 

  35. Obici S, Feng Z, Morgan K, Stein D, Karkanias G, Rossetti L (2002) Central administration of oleic acid inhibits glucose production and food intake. Diabetes 51:271–275

    Article  PubMed  CAS  Google Scholar 

  36. Pocai A, Lam TK, Gutierrez-Juarez R, Obici S, Schwartz GJ, Bryan J, Aguilar-Bryan L, Rossetti L (2005) Hypothalamic K (ATP) channels control hepatic glucose production. Nature 434:1026–1031

    Article  PubMed  CAS  Google Scholar 

  37. Obici S, Feng Z, Arduini A, Conti R, Rossetti L (2003) Inhibition of hypothalamic carnitine palmitoyltransferase-1 decreases food intake and glucose production. Nat Med 9:756–761

    Article  PubMed  CAS  Google Scholar 

  38. Pocai A, Obici S, Schwartz GJ, Rossetti L (2005) A brain–liver circuit regulates glucose homeostasis. Cell Metab 1:53–61

    Article  PubMed  CAS  Google Scholar 

  39. Lam TK, Pocai A, Gutierrez-Juarez R, Obici S, Bryan J, Aguilar-Bryan L, Schwartz GJ, Rossetti L (2005) Hypothalamic sensing of circulating fatty acids is required for glucose homeostasis. Nat Med 11:320–327

    Article  PubMed  CAS  Google Scholar 

  40. Caspi L, Wang PY, Lam TK (2007) A balance of lipid-sensing mechanisms in the brain and liver. Cell Metab 6:99–104

    Article  PubMed  CAS  Google Scholar 

  41. He W, Lam TK, Obici S, Rossetti L (2006) Molecular disruption of hypothalamic nutrient sensing induces obesity. Nat Neurosci 9:227–233

    Article  PubMed  CAS  Google Scholar 

  42. Covasa M, Ritter RC (1999) Reduced sensitivity to the satiation effect of intestinal oleate in rats adapted to high-fat diet. Am J Physiol 277:R279–R285

    PubMed  CAS  Google Scholar 

  43. Covasa M, Grahn J, Ritter RC (2000) Reduced hindbrain and enteric neuronal response to intestinal oleate in rats maintained on high-fat diet. Auton Neurosci 84:8–18

    Article  PubMed  CAS  Google Scholar 

  44. Artmann A, Petersen G, Hellgren LI, Boberg J, Skonberg C, Nellemann C, Hansen SH, Hansen HS (2008) Influence of dietary fatty acids on endocannabinoid and N-acylethanolamine levels in rat brain, liver and small intestine. Biochim Biophys Acta 1781:200–212

    PubMed  CAS  Google Scholar 

  45. Izzo AA, Piscitelli F, Capasso R, Aviello G, Romano B, Borrelli F, Petrosino S, Di MV (2009) Peripheral endocannabinoid dysregulation in obesity: relation to intestinal motility and energy processing induced by food deprivation and re-feeding. Br J Pharmacol [Epub ahead of print]

Download references

Acknowledgments

T. Lam is supported by grants from the Canadian Institutes of Health Research (CIHR, MOP-82701 and 86554). G. Cheung is supported by a graduate studentship from the Banting and Best Diabetes Centre at the University of Toronto (BBDC). A. Kokorovic is supported by a grant from the BBDC. T. Lam holds the John Kitson McIvor Chair in Diabetes Research at the Toronto General Research Institute and the University of Toronto. We apologize to colleagues whose work has not been specifically referenced due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony K. T. Lam.

Additional information

G. W. C. Cheung and A. Kokorovic contributed equally to this review.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheung, G.W.C., Kokorovic, A. & Lam, T.K.T. Upper intestinal lipids regulate energy and glucose homeostasis. Cell. Mol. Life Sci. 66, 3023–3027 (2009). https://doi.org/10.1007/s00018-009-0062-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0062-y

Keywords

Navigation