Skip to main content

Advertisement

Log in

Depression and antidepressants: molecular and cellular aspects

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Clinical depression is viewed as a physical and psychic disease process having a neuropathological basis, although a clear understanding of its ethiopathology is still missing. The observation that depressive symptoms are influenced by pharmacological manipulation of monoamines led to the hypothesis that depression results from reduced availability or functional deficiency of monoaminergic transmitters in some cerebral regions. However, there are limitations to current monoamine theories related to mood disorders. Recently, a growing body of experimental data has showed that other classes of endogenous compounds, such as neuropeptides and amino acids, may play a significant role in the pathophysiology of affective disorders. With the development of neuroscience, neuronal networks and intracellular pathways have been identified and characterized, describing the existence of the interaction between monoamines and receptors in turn able to modulate the expression of intracellular proteins and neurotrophic factors, suggesting that depression/antidepressants may be intermingled with neurogenesis/neurodegenerative processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hamet P, Tremblay J (2005) Genetics and genomics of depression. Metabolism 54(5 Suppl 1):10–15

    PubMed  CAS  Google Scholar 

  2. Segurado R, Detera-Wadleigh SD, Levinson DF, Lewis CM, Gill M, Nurnberger JI Jr, Craddock N, DePaulo JR, Baron M, Gershon ES, Ekholm J, Cichon S, Turecki G, Claes S, Kelsoe JR, Schofield PR, Badenhop RF, Morissette J, Coon H, Blackwood D, McInnes LA, Foroud T, Edenberg HJ, Reich T, Rice JP, Goate A, McInnis MG, McMahon FJ, Badner JA, Goldin LR, Bennett P, Willour VL, Zandi PP, Liu J, Gilliam C, Juo SH, Berrettini WH, Yoshikawa T, Peltonen L, Lönnqvist J, Nöthen MM, Schumacher J, Windemuth C, Rietschel M, Propping P, Maier W, Alda M, Grof P, Rouleau GA, Del-Favero J, Van Broeckhoven C, Mendlewicz J, Adolfsson R, Spence MA, Luebbert H, Adams LJ, Donald JA, Mitchell PB, Barden N, Shink E, Byerley W, Muir W, Visscher PM, Macgregor S, Gurling H, Kalsi G, McQuillinm A, Escamilla MA, Reus VI, Leon P, Freimer NB, Ewald H, Kruse TA, Mors O, Radhakrishna U, Blouin JL, Antonarakis SE, Akarsu N (2003) Genome scan meta-analysis of schizophrenia and bipolar disorder, part III: bipolar disorder. Am J Hum Genet 73(1):49–62

    PubMed  CAS  Google Scholar 

  3. Bunney WE Jr, Davis JM (1965) Norepinephrine in depressive reactions. A review. Arch Gen Psychiatry 13(6):483–494

    PubMed  CAS  Google Scholar 

  4. Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. J Neuropsychiatry Clin Neurosci 7:524–533

    Google Scholar 

  5. Coppen A (1967) The biochemistry of affective disorders. Br J Psychiatry 113:1237–1264

    PubMed  CAS  Google Scholar 

  6. Montgomery SA (2008) The under-recognized role of dopamine in the treatment of major depressive disorder. Int Clin Psychopharmacol 23(2):63–69

    PubMed  Google Scholar 

  7. Maas JW, Fawcett JA, Dekirmenjian H (1972) Catecholamine metabolism, depressive illness, and drug response. Arch Gen Psychiatry 26(3):252–262

    PubMed  CAS  Google Scholar 

  8. Roy A, Jimerson DC, Pickar D (1986) Plasma MHPG in depressive disorders and relationship to the dexamethasone suppression test. Am J Psychiatry 143(7):846–851

    PubMed  CAS  Google Scholar 

  9. Potter WZ, Manji HK (1993) Are monoamine metabolites in cerebrospinal fluid worth measuring? Arch Gen Psychiatry 50(8):653–656

    PubMed  CAS  Google Scholar 

  10. Ordway GA, Smith KS, Haycock JW (1998) Monoamine dysfunction and the pathophysiology and treatment of depression. J Clin Psychiatry 59(Suppl 14):11–14

    Google Scholar 

  11. Ruhé HG, Mason NS, Schene AH (2007) Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol Psychiatry 12(4):331–359

    PubMed  Google Scholar 

  12. Charney DS (1994) Elevated tyrosine hydroxylase in the locus coeruleus of suicide victims. J Neurochem 62(2):680–685

    Google Scholar 

  13. Zhu MY, Klimek V, Dilley GE, Haycock JW, Stockmeier C, Overholser JC, Meltzer HY, Ordway GA (1999) Elevated levels of tyrosine hydroxylase in the locus coeruleus in major depression. Biol Psychiatry 46(9):1275–1286

    PubMed  CAS  Google Scholar 

  14. Ordway GA, Widdowson PS, Smith KS, Halaris A (1994) Agonist binding to alpha 2-adrenoceptors is elevated in the locus coeruleus from victims of suicide. J Neurochem 63(2):617–624

    PubMed  CAS  Google Scholar 

  15. Ordway GA, Schenk J, Stockmeier CA, May W, Klimek V (2003) Elevated agonist binding to alpha2-adrenoceptors in the locus coeruleus in major depression. Biol. Psychiatry. 53(4):315–323

    PubMed  CAS  Google Scholar 

  16. Klimek V, Stockmeier C, Overholser J, Meltzer HY, Kalka S, Dilley G, Ordway GA (1997) Reduced levels of norepinephrine transporters in the locus coeruleus in major depression. J Neurosci 17(21):8451–8458

    PubMed  CAS  Google Scholar 

  17. Asberg M, Traskman L, Thoren P (1976) 5-HIAA in the cerebrospinal fluid: a biochemical suicide predictor? Arch Gen Psychiatry 33:1193–1197

    PubMed  CAS  Google Scholar 

  18. Asberg M, Thoren L, Traskman P (1976) Serotonin depression: a biochemical subgroup within the affective disorders. Science 191:478–480

    PubMed  CAS  Google Scholar 

  19. Csernansky JG, Sheline YI (1993) Abnormalities of serotonin metabolism and nonpsychotic psychiatric disorders. Ann Clin Psychiatry 5(4):275–281

    PubMed  CAS  Google Scholar 

  20. Tuinier S, Verhoeven WM, van Praag HM (1995) Cerebrospinal fluid 5-hydroxyindolacetic acid and aggression: a critical reappraisal of the clinical data. Int Clin Psychopharmacol 10(3):147–156

    PubMed  CAS  Google Scholar 

  21. Quintana J (1992) Platelet serotonin and plasma tryptophan decreases in endogenous depression: clinical, therapeutic and biological correlations. J Affect Disord 24:58–62

    Google Scholar 

  22. Jans LA, Riedel WJ, Markus CR, Blokland A (2007) Serotonergic vulnerability and depression: assumptions, experimental evidence and implications. Mol Psychiatry 12(6):522–543

    PubMed  CAS  Google Scholar 

  23. Arango V, Huang YY, Underwood MD, Mann JJ (2003) Genetics of the serotonergic system in suicidal behavior. J Psychiatr Res 37(5):375–386

    PubMed  Google Scholar 

  24. Celada P, Puig M, Amargós-Bosch M, Adell A, Artigas F (2004) The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. J Psychiatry Neurosci 29(4):252–265

    PubMed  Google Scholar 

  25. Mann JJ, Stanley M, McBride PA, McEwen BS (1986) Increased serotonin2 and beta-adrenergic receptor binding in the frontal cortices of suicide victims. Arch Gen Psychiatry 43:945–959

    Google Scholar 

  26. Arora RC, Meltzer HY (1989) Serotonergic measures in the brains of suicide victims: 5-HT2 binding sites in the frontal cortex of suicide victims and control subjects. Am J Psychiatry 146:730–736

    PubMed  CAS  Google Scholar 

  27. Yates M, Leake A, Candy JM, Fairbairn AF, McKeith IG, Ferrier IN (1990) 5-HT2 receptor changes in major depression. Biol Psychiatry 27:489–496

    PubMed  CAS  Google Scholar 

  28. Drevets WC, Frank E, Price JC, Kupfer DJ, Holt D, Greer PJ, Huang Y, Gautier C, Mathis C (1999) PET imaging of serotonin 1A receptor binding in depression. Biol Psychiatry 46:1375–1387

    PubMed  CAS  Google Scholar 

  29. Hamner MB, Diamond BI (1996) Plasma dopamine and norepinephrine correlations with psychomotor retardation, anxiety, and depression in non-psychotic depressed patients: a pilot study. Psychiatry Res 64(3):209–211

    PubMed  CAS  Google Scholar 

  30. Engstrom G, Alling C, Blennow K, Regnell G, Traskman-Bendz L (1999) Reduced cerebrospinal HVA concentrations and HVA/5-HIAA ratios in suicide attempters. Monoamine metabolites in 120 suicide attempters and 47 controls. Eur Neuropsychopharmacol 9(5):399–405

    PubMed  CAS  Google Scholar 

  31. D’Haenen HA, Bossuyt A (1994) Dopamine D2 receptors in depression measured with single photon emission computed tomography. Biol Psychiatry 35(2):128–132

    PubMed  Google Scholar 

  32. Shah PJ, Ogilvie AD, Goodwin GM, Ebmeier KP (1997) Clinical and psychometric correlates of dopamine D2 binding in depression. Psychol Med 27(6):1247–1256

    PubMed  CAS  Google Scholar 

  33. Klimek V, Schenck JE, Han H, Stockmeier CA, Ordway GA (2002) Dopaminergic abnormalities in amygdaloid nuclei in major depression: a postmortem study. Biol Psychiatry 52(7):740–748

    PubMed  CAS  Google Scholar 

  34. Sonnenberg CM, Deeg DJ, Comijs HC, van Tilburg W, Beekman AT (2008) Trends in antidepressant use in the older population: Results from the LASA-study over a period of 10 years. J Affect Disord 111(2–3):299–305

    PubMed  CAS  Google Scholar 

  35. Duman RS, Heninger GR, Nestler EJ (1997) A molecular and cellular theory of depression. Arch Gen Psychiatry 54(7):597–606

    PubMed  CAS  Google Scholar 

  36. Orrego F, Villanueva S (1993) The chemical nature of the main central excitatory transmitter: a critical appraisal based upon release studies and synaptic vesicle localization. Neuroscience 56:539–555

    PubMed  CAS  Google Scholar 

  37. Sanacora S, Zarate CA, Krystal JH, Manji HK (2008) Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders. Nat Rev Drug Discov 7(5):426–437

    PubMed  CAS  Google Scholar 

  38. Kim JS, Schmid-Burgk W, Claus D, Kornhuber HH (1982) Increased serum glutamate in depressed patients. Arch Psychiatr Nervenkr 232:299–304

    PubMed  CAS  Google Scholar 

  39. Altamura CA, Mauri MC, Ferrara A, Moro AR, D’Andrea G, Zamberlan F (1993) Plasma and platelet excitatory amino acids in psychiatric disorders. Am J Psychiatry 150:1731–1733

    PubMed  CAS  Google Scholar 

  40. Mauri MC, Ferrara A, Boscati L, Bravin S, Zamberlan F, Alecci M, Invernizzi G (1998) Plasma and platelet amino acid concentrations in patients affected by major depression and under fluvoxamine treatment. Neuropsychobiology 37:124–129

    PubMed  CAS  Google Scholar 

  41. Mitani H, Shirayama Y, Yamada T, Maeda K, Ashby CR Jr, Kawahara R (2006) Correlation between plasma levels of glutamate, alanine and serine with severity of depression. Prog Neuropsychopharmacol Biol Psychiatry 30:1155–1158

    PubMed  CAS  Google Scholar 

  42. Levine J, Panchalingam K, Rapoport A, Gershon S, McClure RJ, Pettegrew JW (2000) Increased cerebrospinal fluid glutamine levels in depressed patients. Biol Psychiatry 47:586–593

    PubMed  CAS  Google Scholar 

  43. Frye MA, Tsai GE, Huggins T, Coyle JT, Post RM (2006) Low cerebrospinal fluid glutamate and glycine in refractory affective disorder. Biol Psychiatry 61:162–166

    PubMed  Google Scholar 

  44. Francis PT, Poynton A, Lowe SL, Najlerahim A, Bridges PK, Bartlett JR, Procter AW, Bruton CJ, Bowen DM (1989) Brain amino acid concentrations and Ca2+-dependent release in intractable depression assessed antemortem. Brain Res 494:315–324

    PubMed  CAS  Google Scholar 

  45. Nudmamud-Thanoi S, Reynolds GP (2004) The NR1 subunit of the glutamate/NMDA receptor in the superior temporal cortex in schizophrenia and affective disorders. Neurosci Lett 372:173–177

    PubMed  CAS  Google Scholar 

  46. Mundo E, Tharmalingham S, Neves-Pereira M, Dalton EJ, Macciardi F, Parikh SV, Bolonna A, Kerwin RW, Arranz MJ, Makoff AJ, Kennedy JL (2003) Evidence that the N-methyl-d-aspartate subunit 1 receptor gene (GRIN1) confers susceptibility to bipolar disorder. Mol Psychiatry 8:241–245

    PubMed  CAS  Google Scholar 

  47. Martucci L, Wong AH, De Luca V, Likhodi O, Wong GW, King N, Kennedy JL (2006) N-methyl-d-aspartate receptor NR2B subunit gene GRIN2B in schizophrenia and bipolar disorder: polymorphisms and mRNA levels. Schizophr Res 84:214–221

    PubMed  Google Scholar 

  48. Meador-Woodruff JH, Hogg AJ Jr, Smith RE (2001) Striatal ionotropic glutamate receptor expression in schizophrenia, bipolar disorder, and major depressive disorder. Brain Res Bull 55:631–640

    PubMed  CAS  Google Scholar 

  49. Beneyto M, Meador-Woodruff JH (2006) Lamina-specific abnormalities of AMPA receptor trafficking and signaling molecule transcripts in the prefrontal cortex in schizophrenia. Synapse 60:585–598

    PubMed  CAS  Google Scholar 

  50. Laje G, Paddock S, Manji H, Rush AJ, Wilson AF, Charney D, Mc-Mahon FJ (2007) Genetic markers of suicidal ideation emerging during citalopram treatment of major depression. Am J Psychiatry 164:1530–1538

    PubMed  Google Scholar 

  51. Menke A, Lucae S, Kloiber S, Horstmann S, Bettecken T, Uhr M, Ripke S, Ising M, Müller-Myhsok B, Holsboer F, Binder EB (2008) Genetic markers within glutamate receptors associated with antidepressant treatment-emergent suicidal ideation. Am J Psychiatry 165(7):917–918

    PubMed  Google Scholar 

  52. Hasler G, van der Veen JW, Tumonis T, Meyers N, Shen J, Drevets WC (2007) Reduced prefrontal glutamate/glutamine and gammaaminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry 64:193–200

    PubMed  CAS  Google Scholar 

  53. Kugaya A, Sanacora G (2005) Beyond monoamines: glutamatergic function in mood disorders. CNS Spectr 10:808–819

    PubMed  Google Scholar 

  54. During MJ, Spencer DD (1993) Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 341:1607–1610

    PubMed  CAS  Google Scholar 

  55. Ongur D, Drevets WC, Price JL (1998) Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci USA 95:13290–13295

    PubMed  CAS  Google Scholar 

  56. Cotter D, Mackay D, Landau S, Kerwin R, Everall I (2001) Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch Gen Psychiatry 58:545–553

    PubMed  CAS  Google Scholar 

  57. Cotter D, Pariante CM, Rajkowska G (2002) Glial pathology and major psychiatric disorders. In: Agam G, Everall I, Belmaker RH (eds) The postmortem brain in psychiatric research. Mass Kluwer Academic Publishers, Boston, pp 49–73

  58. Bowley MP, Drevets WC, Ongur D, Price JL (2002) Low glial numbers in the amygdala in major depressive disorder. Biol Psychiatry 52:404–412

    PubMed  Google Scholar 

  59. Zarate CA, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, Charney DS, Manji HK (2006) A randomized trial of an N-methyl-d-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63:856–864

    PubMed  CAS  Google Scholar 

  60. Maeng S, Zarate CA Jr (2007) The role of glutamate in mood disorders: results from the ketamine in major depression study and the presumed cellular mechanism underlying its antidepressant effects. Curr Psychiatry Rep 9(6):467–474

    PubMed  Google Scholar 

  61. Ferguson JM, Shingleton RN (2007) An open-label, flexible-dose study of memantine in major depressive disorder. Clin Neuropharmacol 30(3):136–144

    PubMed  CAS  Google Scholar 

  62. Paredes RG, Agmo A (1992) GABA and behavior: the role of receptor subtypes. Neurosci Biobehav Rev 16(2):145–170

    PubMed  CAS  Google Scholar 

  63. Petty F (1995) GABA and mood disorders: a brief review and hypothesis. J Affect Disord 34(4):275–281

    PubMed  CAS  Google Scholar 

  64. Sanacora G, Mason GF, Krystal JH (2000) Impairment of GABAergic transmission in depression: new insights from neuroimaging studies. Crit Rev Neurobiol 14:23–45

    PubMed  CAS  Google Scholar 

  65. Krystal JH, Sanacora G, Blumberg H, Anand A, Charney DS, Marek G, Epperson CN, Goddard A, Mason GF (2002) Glutamate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments. Mol Psychiatry 7:S71–S80

    PubMed  CAS  Google Scholar 

  66. Petty F, Kramer GL, Gullion CM, Rush AJ (1992) Low plasma γ-aminobutyric acid levels in male patients with depression. Biol Psychiatry 32:354–363

    PubMed  CAS  Google Scholar 

  67. Gerner R, Hare TA (1981) CSF GABA levels in normal subjects and patients with depression, schizophrenia, mania and anorexia nervosa. Am J Psychiatry 138:1098–1101

    PubMed  CAS  Google Scholar 

  68. Kasa K, Otsuki S, Yamamoto M, Sato M, Kuroda H, Ogawa N (1982) Cerebrospinal fluid γ-aminobutyric acid and homovanillic acid in depressive disorders. Biol Psychiatry 17:877–883

    PubMed  CAS  Google Scholar 

  69. Roy A, Dejong J, Ferraro T (1991) CSF GABA in depressed patients and normal controls. Psychol Med 21:613–618

    PubMed  CAS  Google Scholar 

  70. Sanacora G, Mason GF, Rothman DL, Behar KL, Hyder F, Petroff OA, Berman RM, Charney DS, Krystal JH (1999) Reduced cortical γ-aminobutyric acid levels in depressed patients determined by proton magnetic resonance spectroscopy. Arch Gen Psychiatry 56:1043–1047

    PubMed  CAS  Google Scholar 

  71. Sanacora G, Mason GF, Rothman DL, Krystal JH (2002) Increased occipital cortex GABA concentrations in depressed patients after therapy with selective serotonin reuptake inhibitors. Am J Psychiatry 159:663–665

    PubMed  Google Scholar 

  72. Sanacora G, Mason GF, Rothman DL, Ciarcia JJ, Ostroff RB, Krystal JH (2003) Increased occipital cortex GABA concentrations following electroconvulsive therapy in depressed patients. Am J Psychiatry 160:577–579

    PubMed  Google Scholar 

  73. Tunnicliff G, Ngo TT (1986) Regulation of γ-aminobutyric acid synthesis in the vertebrate nervous system. Neurochem Int 8:287–297

    CAS  PubMed  Google Scholar 

  74. Fatemi SH, Stary JM, Earle JA, Araghi-Niknam M, Eagan E (2005) GABAergic dysfunction in schizophrenia and mood disorders as reflected by decreased levels of glutamic acid decarboxylase 65 and 67 kDa and reelin proteins in cerebellum. Schizophr Res 72:109–122

    PubMed  Google Scholar 

  75. Benes FM, Todtenkopf MS, Logiotatos P, Williams M (2000) Glutamate decarboxylase(65)-immunoreactive terminals in cingulate and prefrontal cortices of schizophrenic and bipolar brain. J Chem Neuroanat 20(3–4):259–269

    PubMed  CAS  Google Scholar 

  76. Heckers S, Stone D, Walsh J, Shick J, Koul P, Benes FM (2002) Differential hippocampal expression of glutamic acid decarboxylase 65 and 67 messenger RNA in bipolar disorder and schizophrenia. Arch Gen Psychiatry 59(6):521–529

    PubMed  CAS  Google Scholar 

  77. Sanacora G, Saricicek A (2007) GABAergic contributions to the pathophysiology of depression and the mechanism of antidepressant action. CNS Neurol Disord Drug Targets 6(2):127–140

    PubMed  CAS  Google Scholar 

  78. Horiuchi Y, Nakayama J, Ishiguro H, Ohtsuki T, Detera-Wadleigh SD, Toyota T, Yamada K, Nankai M, Shibuya H, Yoshikawa T, Arinami T (2004) Possible association between a haplotype of the GABA-A receptor alpha 1 subunit gene (GABRA1) and mood disorders. Biol Psychiatry 55(1):40–45

    PubMed  CAS  Google Scholar 

  79. Yamada K, Watanabe A, Iwayama-Shigeno Y, Yoshikawa T (2003) Evidence of association between gamma-aminobutyric acid type A receptor genes located on 5q34 and female patients with mood disorders. Neurosci Lett 349(1):9–12

    PubMed  CAS  Google Scholar 

  80. Serretti A, Macciardi F, Cusin C, Lattuada E, Lilli R, Di Bella D, Catalano M, Smeraldi E (1998) GABAA alpha-1 subunit gene not associated with depressive symptomatology in mood disorders. Psychiatr Genet 8(4):251–254

    PubMed  CAS  Google Scholar 

  81. Mitchell AJ (1998) The role of corticotropin releasing factor in depressive illness: a critical review. Neurosci Biobehav Rev 22:635–651

    PubMed  CAS  Google Scholar 

  82. Nemeroff CB (1998) The neurobiology of depression. Sci Am 278:42–49

    PubMed  CAS  Google Scholar 

  83. Gilad GM (1987) The stress-induced response of the septo-hippocampal cholinergic system. A vectorial outcome of psychoneuroendocrinological interactions. Psychoneuroendocrinology 12:167–184

    PubMed  CAS  Google Scholar 

  84. Janowsky DS, Risch SC (1984) Cholinomimetic and anticholinergic drugs used to investigate an acetylcholine hypothesis of affective disorders and stress. Drug Devel Res 4:125–142

    CAS  Google Scholar 

  85. Janowsky DS, El-Yousef MK, Davis JM, Sekerke HJ (1972) A cholinergic-adrenergic hypothesis of mania and depression. Lancet 2:632–635

    PubMed  CAS  Google Scholar 

  86. Janowsky DS, El-Yousef MK, Davis JM, Sekerke HJ (1973) Parasympathetic suppression of mania by physostigmine. Arch Gen Psych 28:542–547

    CAS  Google Scholar 

  87. Janowsky DS, Overstreet DH, Nurnberger JI Jr (1994) Is cholinergic sensitivity a genetic marker for the affective disorders? Am J Med Genet 54:335–344

    PubMed  CAS  Google Scholar 

  88. Davis KL, Berger PA, Hollister LE, Defraites E (1978) Physostigmine in man. Arch Gen Psychiatry 35:119–122

    PubMed  CAS  Google Scholar 

  89. O’Keane V, O’Flynn K, Lucey J, Dinan TG (1992) Pyridostigmine-induced growth hormone responses in healthy and depressed subjects: evidence for cholinergic supersensitivity in depression. Psychol Med 22:55–60

    PubMed  Google Scholar 

  90. Gillin JC, Salin-Pascual R, Velazquez-Moctezuma J, Shiromani P, Zoltoski R (1993) Cholinergic receptor subtypes and REM sleep in animals and normal controls. Prog Brain Res 98:379–387

    PubMed  CAS  Google Scholar 

  91. Janowsky DS, Risch SC, Kennedy B, Ziegler M, Huey LY (1986) Central muscarinic effects of physostigmine on mood, cardiovascular function, pituitary and adrenal neuroendocrine. Psychopharmacology 89:150–154

    PubMed  CAS  Google Scholar 

  92. Riemann D, Berger M (1992) Sleep, age depression and the cholinergic induction test with RS 86. Prog Neuropsychopharmacol Biol Psychiatry 16:311–316

    PubMed  CAS  Google Scholar 

  93. Bymaster FP, Felder CC (2002) Role of the cholinergic muscarinic system in bipolar disorder and related mechanism of action of antipsychotic agents. Mol Psychiatry 7:S57–S63

    PubMed  CAS  Google Scholar 

  94. Burt T, Sachs GS, Demopulos C (1999) Donepezil in treatment-resistant bipolar disorder. Biol Psychiatry 45:959–964

    PubMed  CAS  Google Scholar 

  95. Furey ML, Drevets WC (2006) Antidepressant efficacy of the antimuscarinic drug scopolamine: a randomized, placebo-controlled clinical trial. Arch Gen Psychiatry 63(10):1121–1129

    PubMed  CAS  Google Scholar 

  96. Janowsky DS (2007) Scopolamine as an antidepressant agent: theoretical and treatment considerations. Curr Psychiatry Rep 9(6):447–448

    PubMed  Google Scholar 

  97. Liu HF, Zhou WH, Xie XH, Cao JL, Gu J, Yang GD (2004) Muscarinic receptors modulate the mRNA expression of NMDA receptors in brainstem and the release of glutamate in periaqueductal grey during morphine withdrawal in rats. Sheng Li Xu Bao 56(1):95–100 (article in Chinese)

    CAS  Google Scholar 

  98. Shytle RD, Silver AA, Lukas RJ, Newman MB, Sheehan DV, Sanberg P (2002) Nicotinic acetylcholine receptors as targets for antidepressants. Mol Psychiatry 6:525–535

    Google Scholar 

  99. Silver AA, Shytle RD, Sheehan KH, Sheehan DV, Ramos A, Sanberg P (2001) Multicenter, double-blind, placebo-controlled study of mecamylamine monotherapy for Tourette’s disorder. J Am Acad Child Adolesc Psychiatry 40:1103–1110

    PubMed  CAS  Google Scholar 

  100. Sacco KA, Bannon KL, George TP (2004) Nicotinic receptor mechanisms and cognition in normal states and neuropsychiatric disorders. J Psychopharmacol 18(4):457–474

    PubMed  CAS  Google Scholar 

  101. Rozzini L, Vicini Chilovi B, Bertoletti E, Trabucchi M, Padovani A (2007) Acetylcholinesterase inhibitors and depressive symptoms in patients with mild to moderate Alzheimer’s disease. Aging Clin Exp Res 19(3):220–223

    PubMed  Google Scholar 

  102. Wynn ZJ, Cummings JL (2004) Cholinesterase inhibitor therapies and neuropsychiatric manifestations of Alzheimer’s disease. Dement Geriatr Cogn Disord 17(1–2):100–108

    PubMed  CAS  Google Scholar 

  103. Salzman C (1999) Practical considerations for the treatment of depression in elderly and very elderly long-term care patients. J Clin Psychiatry 60(20):30–33

    PubMed  Google Scholar 

  104. Mottram P, Wilson K, Strobl J (2006) Antidepressants for depressed elderly. Cochrane Database Syst Rev (1):CD003491

  105. Griebel G (1999) Is there a future for neuropeptide receptor ligands in the treatment of anxiety disorders? Pharmacol Ther 82:1–61

    PubMed  CAS  Google Scholar 

  106. Feng P, Vurbic D, Wu Z, Hu Y, Strohl KP (2008) Changes in brain orexin levels in a rat model of depression induced by neonatal administration of clomipramine. J Psychopharmacol 22(7):784–791

    PubMed  CAS  Google Scholar 

  107. Brown GW, Bifulco A, Harris TO (1987) Life events, vulnerability and onset of depression. Br J Psychiatry 150:30–42

    PubMed  CAS  Google Scholar 

  108. Hammen C, Davila J, Brown G, Ellicott A, Gitlin M (1992) Psychiatric history and stress: predictors of severity of unipolar depression. J Abnorm Psychol 101:45–52

    PubMed  CAS  Google Scholar 

  109. Owens MJ, Nemeroff CB (1991) Physiology and pharmacology of corticotropin-releasing factor. Pharmacol Rev 43:425–473

    PubMed  CAS  Google Scholar 

  110. Pariante CM (2003) Depression, stress and the adrenal axis. J Neuroendocrinol 15(8):811–812

    Article  PubMed  Google Scholar 

  111. Holsboer F, Barden N (1996) Antidepressants and hypothalamic-pituitary-adrenocortical regulation. Endocr Rev 17:187–205

    PubMed  CAS  Google Scholar 

  112. Plotsky P, Owens MJ, Nemeroff CB (1995) Neuropeptide alterations in affective disorders. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven Press, New York, pp 971–981

    Google Scholar 

  113. Nemeroff CB, Widerlöv E, Bissette G, Walleus H, Karlsson I, Eklund K, Kilts CD, Loosen PT, Vale W (1984) Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science 226:1342–1344

    PubMed  CAS  Google Scholar 

  114. Bánki CM, Karmacsi L, Bissette G, Nemeroff CB (1992) Cerebrospinal fluid neuropeptides in mood disorders and dementia. J Affect Disord 25:39–46

    PubMed  Google Scholar 

  115. Pitts AF, Samuelson SD, Meller WH, Bissette G, Nemeroff CB, Kathol RG (1995) Cerebrospinal fluid corticotropin-releasing hormone, vasopressin, and oxytocin concentrations in treated patients with major depression and controls. Biol Psychiatry 38:330–335

    PubMed  CAS  Google Scholar 

  116. Molchan SE, Hill JL, Martinez RA, Lawlor BA, Mellow AM, Rubinow DR, Bissette G, Nemeroff CB, Sunderland T (1993) CSF somatostatin in Alzheimer’s disease and major depression: relationship to hypothalamic-pituitary-adrenal axis and clinical measures. Psychoneuroendocrinology 19:509–519

    Google Scholar 

  117. Stenzel-Poore MP, Heinrichs SC, Rivest S, Koob GF, Vale WW (1994) Overproduction of corticotropin-releasing factor in transgenic mice: a genetic model of anxiogenic behavior. J Neurosci 14(5 Pt 1):2579–2584

    PubMed  CAS  Google Scholar 

  118. Kasahara M, Groenink L, Breuer M, Olivier B, Sarnyai Z (2007) Altered behavioral adaptation in mice with neural corticotrophin-releasing factor overexpression. Genes Brain Behav 6(7):598–607

    PubMed  CAS  Google Scholar 

  119. Holmes A, Heilig M, Rupniak NMJ, Steckler T, Griebel G (2003) Neuropeptides systems as novel therapeutic targets for depression and anxiety disorders. TIPS 24:580–588

    PubMed  CAS  Google Scholar 

  120. Griebel G, Perrault G, Sanger DJ (1998) Characterization of the behavioral profile of the non-peptide CRF receptor antagonist CP-154, 526 in anxiety models in rodents. Comparison with diazepam and buspirone. Psychopharmacology (Berl) 138:55–66

    CAS  Google Scholar 

  121. Holsboer F, Ising M (2008) Central CRH system in depression and anxiety—evidence from clinical studies with CRH1 receptor antagonists. Eur J Pharmacol 583(2–3):350–357

    PubMed  CAS  Google Scholar 

  122. Aguilera G, Rabadan-Diehl C (2000) Vasopressinergic regulation of the hypothalamic-pituitary-adrenal axis: implications for stress adaptation. Regul Pept 96:23–29

    PubMed  CAS  Google Scholar 

  123. Merali Z, Kent P, Du L, Hrdina P, Palkovits M, Faludi G, Poulter MO, Bédard T, Anisman H (2006) Corticotropin-releasing hormone, arginine vasopressin, gastrin-releasing peptide, and neuromedin B alterations in stress-relevant brain regions of suicides and control subjects. Biol Psychiatry 59:594–602

    PubMed  CAS  Google Scholar 

  124. van Londen L, Goekoop JG, van Kempen GM, Frankhuijzen-Sierevogel AC, Wiegant VM, van der Velde EA, De Wied D (1997) Plasma levels of arginine vasopressin elevated in patients with major depression. Neuropsychopharmacology 17(4):284–292

    PubMed  Google Scholar 

  125. van Londen L, Kerkhof GA, van den Berg F, Goekoop JG, Zwinderman KH, Frankhuijzen-Sierevogel AC, Wiegant VM, de Wied D (1998) Plasma arginine vasopressin and motor activity in major depression. Biol Psychiatry 43(3):196–204

    PubMed  Google Scholar 

  126. Purba JS, Hoogendijk WJ, Hofman MA, Swaab DF (1996) Increased number of vasopressin- and oxytocin-expressing neurons in the paraventricular nucleus of the hypothalamus in depression. Arch Gen Psychiatry 53(2):137–143

    PubMed  CAS  Google Scholar 

  127. Meynen G, Unmehopa UA, van Heerikhuize JJ, Hofman MA, Swaab DF, Hoogendijk WJ (2006) Increased arginine vasopressin mRNA expression in the human hypothalamus in depression: a preliminary report. Biol Psychiatry 60(8):892–895

    PubMed  CAS  Google Scholar 

  128. Spinedi E, Hadid R, Gaillard RC (1997) Increased vasopressinergic activity as a possible compensatory mechanism for a normal hypothalamic-pituitary-adrenal axis response to stress in BALB/c nude mice. Neuroendocrinology 66(4):287–293

    PubMed  CAS  Google Scholar 

  129. Keck ME, Wigger A, Welt T, Müller MB, Gesing A, Reul JM, Holsboer F, Landgraf R, Neumann ID (2002) Vasopressin mediates the response of the combined dexamethasone/CRH test in hyper-anxious rats: implications for pathogenesis of affective disorders. Neuropsychopharmacology 26(1):94–105

    PubMed  CAS  Google Scholar 

  130. Conte-Devolx B, Oliver C, Giraud P, Castanas E, Boudouresque F, Gillioz P, Millet Y (1982) Adrenocorticotropin, and corticosterone secretion in Brattleboro rats. Endocrinology 110(6):2097–2100

    Article  PubMed  CAS  Google Scholar 

  131. Wiley MK, Pearlmutter AF, Miller RE (1974) Decreased adrenal sensitivity to ACTH in the vasopressin-deficient (Brattleboro) rat. Neuroendocrinology 14(5):257–270

    PubMed  CAS  Google Scholar 

  132. Fink G, Dow RC, Casley D, Johnston CI, Bennie J, Carroll S, Dick H (1992) Atrial natriuretic peptide is involved in the ACTH response to stress and glucocorticoid negative feedback in the rat. J Endocrinol 135(1):37–43

    PubMed  CAS  Google Scholar 

  133. Williams AR, Carey RJ, Miller M (1985) Altered emotionality of the vasopressin-deficient Brattleboro rat. Peptides 6(Suppl 1):69–76

    PubMed  CAS  Google Scholar 

  134. Mlynarik M, Zelena D, Bagdy G, Makara GB, Jezova D (2007) Signs of attenuated depression-like behavior in vasopressin deficient Brattleboro rats. Horm Behav 51(3):395–405

    PubMed  CAS  Google Scholar 

  135. Jard S, Barberis C, Audigier S, Tribollet E (1987) Neurohypophyseal hormone receptor systems in brain and periphery. Prog Brain Res 72:173–187

    PubMed  CAS  Google Scholar 

  136. Birnbaumer M (2000) Vasopressin receptors. Trends Endocrinol Metab 11(10):406–410

    PubMed  CAS  Google Scholar 

  137. Thomson F, Craighead M (2008) Innovative approaches for the treatment of depression: targeting the HPA axis. Neurochem Res 33(4):691–707

    PubMed  CAS  Google Scholar 

  138. Lolait SJ, Stewart LQ, Jessop DS, Young WS 3rd, O’Carroll AM (2007) The hypothalamic-pituitary-adrenal axis response to stress in mice lacking functional vasopressin V1b receptors. Endocrinology 148(2):849–856

    PubMed  CAS  Google Scholar 

  139. Wersinger SR, Ginns EI, O’Carroll AM, Lolait SJ, Young WS 3rd (2002) Vasopressin V1b receptor knockout reduces aggressive behavior in male mice. Mol Psychiatry 7(9):975–984

    PubMed  CAS  Google Scholar 

  140. Wersinger SR, Kelliher KR, Zufall F, Lolait SJ, O’Carroll AM, Young WS 3rd (2004) Social motivation is reduced in vasopressin 1b receptor null mice despite normal performance in an olfactory discrimination task. Horm Behav 46(5):638–645

    PubMed  CAS  Google Scholar 

  141. Egashira N, Tanoue A, Higashihara F, Fuchigami H, Sano K, Mishima K, Fukue Y, Nagai H, Takano Y, Tsujimoto G, Stemmelin J, Griebel G, Iwasaki K, Ikeda T, Nishimura R, Fujiwara M (2005) Disruption of the prepulse inhibition of the startle reflex in vasopressin V1b receptor knockout mice: reversal by antipsychotic drugs. Neuropsychopharmacology 30(11):1996–2005

    PubMed  CAS  Google Scholar 

  142. Griebel G, Simiand J, Serradeil-Le Gal C, Wagnon J, Pascal M, Scatton B, Maffrand JP, Soubrie P (2002) Anxiolytic- and antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR149415, suggest an innovative approach for the treatment of stress-related disorders. Proc Natl Acad Sci USA 99(9):6370–6375

    PubMed  CAS  Google Scholar 

  143. Overstreet DH, Griebel G (2005) Antidepressant-like effects of the vasopressin V1b receptor antagonist SSR149415 in the Flinders Sensitive Line rat. Pharmacol Biochem Behav 82(1):223–227

    PubMed  CAS  Google Scholar 

  144. Iijima M, Chaki S (2007) An arginine vasopressin V1b antagonist, SSR149415 elicits antidepressant-like effects in an olfactory bulbectomy model. Prog Neuropsychopharmacol Biol Psychiatry 31(3):622–627

    PubMed  CAS  Google Scholar 

  145. Alonso R, Griebel G, Pavone G, Stemmelin J, Le Fur G, Soubrié P (2004) Blockade of CRF(1) or V(1b) receptors reverses stress-induced suppression of neurogenesis in a mouse model of depression. Mol Psychiatry 9(3):278–286, 224

    Google Scholar 

  146. Louis C, Cohen C, Depoortère R, Griebel G (2006) Antidepressant-like effects of the corticotropin-releasing factor 1 receptor antagonist, SSR125543, and the vasopressin 1b receptor antagonist, SSR149415, in a DRL-72 s schedule in the rat. Neuropsychopharmacology 31(10):2180–2187

    PubMed  CAS  Google Scholar 

  147. Stemmelin J, Lukovic L, Salome N, Griebel G (2005) Evidence that the lateral septum is involved in the antidepressant-like effects of the vasopressin V1b receptor antagonist, SSR149415. Neuropsychopharmacology 30(1):35–42

    PubMed  CAS  Google Scholar 

  148. Salomé N, Stemmelin J, Cohen C, Griebel G (2006) Differential roles of amygdaloid nuclei in the anxiolytic- and antidepressant-like effects of the V1b receptor antagonist, SSR149415, in rats. Psychopharmacology (Berl). 187(2):237–244

    Google Scholar 

  149. Hodgson RA, Higgins GA, Guthrie DH, Lu SX, Pond AJ, Mullins DE, Guzzi MF, Parker EM, Varty GB (2007) Comparison of the V1b antagonist, SSR149415, and the CRF1 antagonist, CP-154, 526, in rodent models of anxiety and depression. Pharmacol Biochem Behav 86(3):431–440

    PubMed  CAS  Google Scholar 

  150. Serradeil-Le Gal C, Wagnon J, Simiand J, Griebel G, Lacour C, Guillon G, Barberis C, Brossard G, Soubrié P, Nisato D, Pascal M, Pruss R, Scatton B, Maffrand JP, Le Fur G (2002) Characterization of (2S, 4R)-1-[5-chloro-1-[(2, 4-dimethoxyphenyl)sulfonyl]-3-(2-methoxy-phenyl)-2-oxo-2, 3-dihydro-1H-indol-3-yl]-4-hydroxy-N, N-dimethyl-2-pyrrolidine carboxamide (SSR149415), a selective and orally active vasopressin V1b receptor antagonist. J Pharmacol Exp Ther 300(3):1122–1130

    PubMed  CAS  Google Scholar 

  151. Griffante C, Green A, Curcuruto O, Haslam CP, Dickinson BA, Arban R (2005) Selectivity of d[Cha4]AVP and SSR149415 at human vasopressin and oxytocin receptors: evidence that SSR149415 is a mixed vasopressin V1b/oxytocin receptor antagonist. Br J Pharmacol 146(5):744–751

    PubMed  CAS  Google Scholar 

  152. Bielsky IF, Hu SB, Ren X, Terwilliger EF, Young LJ (2005) The V1a vasopressin receptor is necessary and sufficient for normal social recognition: a gene replacement study. Neuron 47(4):503–513

    PubMed  CAS  Google Scholar 

  153. Landgraf R, Gerstberger R, Montkowski A, Probst JC, Wotjak CT, Holsboer F, Engelmann M (1995) V1 vasopressin receptor antisense oligodeoxynucleotide into septum reduces vasopressin binding, social discrimination abilities, and anxiety-related behavior in rats. J Neurosci 15(6):4250–4258

    PubMed  CAS  Google Scholar 

  154. Ferris CF, Lu SF, Messenger T, Guillon CD, Heindel N, Miller M, Koppel G, Robert Bruns F, Simon NG (2006) Orally active vasopressin V1a receptor antagonist, SRX251, selectively blocks aggressive behavior. Pharmacol. Biochem. Behav. 83(2):169–174

    PubMed  CAS  Google Scholar 

  155. Pioro EP, Mai JK, Cuello AC (1990) Distribution of substance P and enkephalin immunoreactive neurons and fibers. In: Paxinos G (ed) The human nervous system (ed) Academic Press, San Diego, pp 1051–1094

  156. Otsuka M, Yoshioka K (1993) Neurotransmitter functions of mammalian tachykinins. Physiol Rev 73:229–308

    PubMed  CAS  Google Scholar 

  157. Alvaro G, Di Fabio R (2007) Neurokin 1 receptor antagonists—current prospects. Curr Opin Drug Discov Dev 10(5):613–621

    CAS  Google Scholar 

  158. Herpfer I, Lieb K (2003) Substance P and Substance P receptor antagonists in the pathogenesis and treatment of affective disorders. World J Biol Psychiatry 4:56–63

    Article  PubMed  Google Scholar 

  159. Stout SC, Owens MJ, Nemeroff CB (2001) Neurokinin(1) receptor antagonists as potential antidepressants. Annu Rev Pharmacol Toxicol 41:877–906

    PubMed  CAS  Google Scholar 

  160. Herpfer I, Katzev M, Feige B, Fiebich BL, Voderholzer U, Lieb K (2007) Effects of substance P on memory and mood in healthy male subjects. Hum Psychopharmacol Clin Exp 22:567–573

    CAS  Google Scholar 

  161. Bondy B, Baghai TC, Minov C, Schüle C, Schwarz MJ, Zwanzger P, Rupprecht R, Möller HJ (2003) Substance P serum levels are increased in major depression: preliminary results. Biol Psychiatry 53:538–542

    PubMed  CAS  Google Scholar 

  162. Rimon R, Le Greves P, Nyberg F, Heikkila L, Salmela L, Terenius L (1984) Elevation of substance P-like peptides in the CSF of psychiatric patients. Biol Psychiatry 19:509–516

    PubMed  CAS  Google Scholar 

  163. Herpfer I, Lieb K (2005) Substance P receptor antagonists in psychiatry: rationale for development and therapeutic potential. CNS drug 19(4):275–293

    CAS  Google Scholar 

  164. Sergeyev V, Hokfelt T, Hurd Y (1999) Serotonin and substance P coexist in dorsal raphe neurons of the human brain. Neuroreport 10:3967–3970

    PubMed  CAS  Google Scholar 

  165. Kramer MS, Cutler N, Feighner J, Shrivastava R, Carman J, Sramek JJ, Reines SA, Liu G, Snavely D, Wyatt-Knowles E, Hale JJ, Mills SG, MacCoss M, Swain CJ, Harrison T, Hill RG, Hefti F, Scolnick EM, Cascieri MA, Chicchi GG, Sadowski S, Williams AR, Hewson L, Smith D, Carlson EJ, Hargreaves RJ, Rupniak NM (1998) Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science 281:1640–1645

    PubMed  CAS  Google Scholar 

  166. Kramer MS, Winokur A, Kelsey J, Preskorn SH, Rothschild AJ, Snavely D, Ghosh K, Ball WA, Reines SA, Munjack D, Apter JT, Cunningham L, Kling M, Bari M, Getson A, Lee Y (2004) Demonstration of the efficacy and safety of a novel substance P (NK1) receptor antagonist in major depression. Neuropsychopharmacology 29:385–392

    PubMed  CAS  Google Scholar 

  167. Keller M, Montgomery S, Ball W, Morrison M, Snavely D, Liu G, Hargreaves R, Hietala J, Lines C, Beebe K, Reines S (2006) Lack of efficacy of the substance P (neurokinin1 receptor) antagonist aprepitant in the treatment of major depressive disorder. Biol Psychiatry 59(3):216–223

    PubMed  CAS  Google Scholar 

  168. Chahl LA (2006) Tachykinins and neuropsychiatric disorders. Curr Drug Targets 7(8):993–1003

    PubMed  CAS  Google Scholar 

  169. Boselli C, Santagostino Barbone M, Lucchelli A (2007) Older versus newer antidepressants: substance P or calcium antagonism? Can J Physiol Pharmacol 85:1004–1011

    PubMed  CAS  Google Scholar 

  170. Kim HJ, Choi JS, Lee Y, Shim EY, Hong SH, Kim M, Min DS, Rhie D, Kim M, Jo Y, Hahn SJ, Yoon SH (2005) Fluoxetine inhibits ATP-induced [Ca2+]i increase in PC12 cells by inhibiting both extracellular Ca2+ influx and Ca2+ release from intracellular stores. Neuropharmacology 49:265–274

    PubMed  CAS  Google Scholar 

  171. Lavoie PA, Beauchamp G, Elie R (1990) Tricyclic antidepressants inhibit voltage-dependent calcium channels and Na(+)-Ca2+ exchange in rat brain cortex synaptosomes. Can J Physiol Pharmacol 68:1414–1418

    PubMed  CAS  Google Scholar 

  172. Traboulsie A, Chemin J, Kupfer E, Nargeot J, Lory P (2006) T-type calcium channels are inhibited by fluoxetine and its metabolite norfluoxetine. Mol Pharmacol 69:1963–1968

    PubMed  CAS  Google Scholar 

  173. Steinberg R, Alonso R, Griebel G, Bert L, Jung M, Oury-Donat F, Poncelet M, Gueudet C, Desvignes C, Le Fur G, Soubrié P (2001) Selective blockade of neurokinin-2 receptors produces antidepressant-like effects associated with reduced corticotropin-releasing factor function. J Pharmacol Exp Ther 299:449–458

    PubMed  CAS  Google Scholar 

  174. Louis C, Stemmelin J, Boulay D, Bergis O, Cohen C, Griebel G (2008) Additional evidence for anxiolytic- and antidepressant-like activities of saredutant (SR48968), an antagonist at the neurokinin-2 receptor in various rodent-models. Pharmacol Biochem Behav 89(1):36–45

    PubMed  CAS  Google Scholar 

  175. Tatemoto K, Mutt V (1980) Isolation of two novel candidate hormones using a chemical method for finding naturally occurring polypeptides. Nature 285:417–418

    PubMed  CAS  Google Scholar 

  176. Jiménez Vasquez PA, Salmi P, Ahlenius S, Mathé AA (2000) Neuropeptide Y in brains of the Flinders Sensitive Line rat, a model of depression. Effects of electroconvulsive stimuli and d-amphetamine on peptide concentrations and locomotion. Behav Brain Res 111(1–2):115–123

    PubMed  Google Scholar 

  177. Eaton K, Sallee FR, Sah R (2007) Relevance of neuropeptide Y (NPY) in psychiatry. Curr Top Med Chem 7(17):1645–1659

    PubMed  CAS  Google Scholar 

  178. Mathé AA, Husum H, El Khoury A, Jiménez-Vasquez P, Gruber SH, Wörtwein G, Nikisch G, Baumann P, Agren H, Andersson W, Södergren A, Angelucci F (2007) Search for biological correlates of depression and mechanisms of action of antidepressant treatment modalities. Do neuropeptides play a role? Physiol Behav 92(1–2):226–231

    PubMed  Google Scholar 

  179. Widdowson PS, Ordway GA, Halaris AE (1992) Reduced neuropeptide Y concentrations in suicide brain. J Neurochem 59:73–80

    PubMed  CAS  Google Scholar 

  180. Geisler S, Bérod A, Zahm DS, Rostène W (2006) Brain neurotensin, psychostimulants, and stress—emphasis on neuroanatomical substrates. Peptides 27(10):2364–2384

    PubMed  CAS  Google Scholar 

  181. Nemeroff CB (1980) Neurotensin: perchance an endogenous neuroleptic. Biol Psychiatry 15:283–302

    PubMed  CAS  Google Scholar 

  182. Govoni S, Hong JS, Yang HYT, Costa E (1980) Increase of neurotensin content elicited by neuroleptics in nucleus accumbens. J Pharmacol Exp Ther 215:413–417

    PubMed  CAS  Google Scholar 

  183. Merchant KM, Dobner PR, Dorsa DM (1992) Differential effects of haloperidol and clozapine on neurotensin gene transcription in rat neostriatum. J Neurosci 12:652–663

    PubMed  CAS  Google Scholar 

  184. Battaini F, Govoni S, Di Giovine S, Trabucchi M (1986) Neurotensin effect on dopamine release and calcium transport in rat striatum: interactions with diphenylalkylamine calcium antagonists. Naunyn Schmiedebergs Arch Pharmacol 332(3):267–270

    PubMed  CAS  Google Scholar 

  185. Sharma RP, Janicak PJ, Bissette G, Nemeroff CB (1997) CSF neurotensin concentrations and antipsychotic treatment in schizophrenia and schizoaffective disorder. Am J Psychiatry 154:1019–1021

    PubMed  CAS  Google Scholar 

  186. Boules M, Fredrickson P, Richelson E (2005) Neurotensin agonists as an alternative to antipsychotics. Expert Opin Investig Drugs 14(4):359–369

    PubMed  CAS  Google Scholar 

  187. Cervo L, Rossi C, Tatarczynska E, Samanin R (1992) Antidepressant-like effect of neurotensin administered in the ventral tegmental area in the forced swimming test. Psychopharmacology (Berl) 109(3):369–372

    CAS  Google Scholar 

  188. Tatemoto K, Rökaeus A, Jörnvall H, McDonald TJ, Mutt V (1983) Galanin—a novel biologically active peptide from porcine intestine. FEBS Lett 164:124–128

    PubMed  CAS  Google Scholar 

  189. Kordower JH, Le HK, Mufson EJ (1992) Galanin immunoreactivity in the primate central nervous system. J Comp Neurol 319:479–500

    PubMed  CAS  Google Scholar 

  190. Pieribone VA, Burazin TC (1998) Electrophysiologic effects of galanin on neurons of the central nervous system. Ann NY Acad Sci 863:264–273

    PubMed  CAS  Google Scholar 

  191. Kehr J, Yoshitake T, Wang FH, Razani H, Gimenez-Llort L, Jansson A, Yamaguchi M, Ogren SO (2002) Galanin is a potent in vivo modulator of mesencephalic serotonergic neurotransmission. Neuropsychopharmacology 27:341–356

    PubMed  CAS  Google Scholar 

  192. Lu X, Sharkey L, Bartfai T (2007) The brain galanin receptors: targets for novel antidepressant drugs. CNS Neurolog Dis Drug Targets 6:183–192

    CAS  Google Scholar 

  193. Branchek T, Smith KE, Walker MW (1998) Molecular biology and pharmacology of galanin receptors. Ann NY Acad Sci 863:94–107

    PubMed  CAS  Google Scholar 

  194. Weiss JM, Bonsall RW, Demetrikopoulos MK, Emery MS, West CH (1998) Galanin: a significant role in depression? Ann NY Acad Sci 863:364–382

    PubMed  CAS  Google Scholar 

  195. Kuteeva E, Wardi T, Hökfelt T, Ögren SO (2007) Galanin enhances and a galanin antagonist attenuates depression-like behavior in the rat. Eur Neuropsychopharmacol 17:64–69

    PubMed  CAS  Google Scholar 

  196. Ogren SO, Razani H, Elvander-Tottie E, Kehr J (2007) The neuropeptide galanin as an in vivo modulator of brain 5-HT1A receptors: possible relevance for affective disorders. Physiol Behav 92(1–2):172–179

    PubMed  Google Scholar 

  197. Ogren SO, Kuteeva E, Hökfelt T, Kehr J (2006) Galanin receptor antagonists : a potential novel pharmacological treatment for mood disorders. CNS Drugs 20(8):633–654

    PubMed  Google Scholar 

  198. Kuteeva E, Hökfelt T, Wardi T, Ogren SO (2008) Galanin—25 years with a multitalented neuropeptide: Galanin, galanin receptor subtypes and depression-like behavior. Cell Mol Life Sci 65(12):1854–1863

    PubMed  CAS  Google Scholar 

  199. Murck H, Held K, Ziegenbein M, Kunzel H, Holsboer F, Steiger A (2004) Intravenous administration of the neuropeptide galanin has fast antidepressant efficacy and affects the sleep EEG. Psychoneuroendocrinology 29:1205–1211

    PubMed  CAS  Google Scholar 

  200. Amadio M, Govoni S, Alkon DL, Pascale A (2004) Emerging targets for the pharmacology of learning and memory. Pharmacol Res 50(2):111–122

    PubMed  CAS  Google Scholar 

  201. Squire LR (1992) Memory and the hippocampus: A synthesis from findings with rats, monkeys and humans. Psychological Rev 99:195–231

    CAS  Google Scholar 

  202. Fenn KM, Nusbaum HC, Margoliash D (2003) Consolidation during sleep of perceptual learning of spoken language. Nature 425:614–616

    PubMed  CAS  Google Scholar 

  203. Foster DJ, Wilson MA (2006) Reverse replay of behavioral sequences in hippocampal place cells during the awake state. Nature 440:680–683

    PubMed  CAS  Google Scholar 

  204. Kandel ER (2004) The Molecular biology of memory storage: a dialog between genes and synapses. Biosci Rep 24(4/5):477–522

    CAS  Google Scholar 

  205. Spedding M, Neau I, Harsing L (2003) Brain plasticity and pathology in psychiatric disease: sites of action for potential therapy. Curr Opin Pharmacol 3:33–40

    PubMed  CAS  Google Scholar 

  206. De Murtas M, Tatarelli R, Girardi P, Vicini S (2004) Repeated electroconvulsive stimulation impairs long-term depression in the neostriatum. Biol Psychiatry 55:472–476

    PubMed  Google Scholar 

  207. Shakesby AC, Anwyl R, Rowan MJ (2002) Overcoming the effects of stress on synaptic plasticity in the intact hippocampus: rapid actions of serotonergic and antidepressant agents. J Neurosci 22:3638–3644

    PubMed  CAS  Google Scholar 

  208. Han JH, Kushner SA, Yiu AP, Hsiang HL, Buch T, Waisman A, Bontempi B, Neve RL, Frankland PW, Josselyn SA (2009) Selective erasure of a fear memory. Science 323(5920):1492–1496

    PubMed  CAS  Google Scholar 

  209. Potter GG, Steffens DC (2007) Contribution of depression to cognitive impairment and dementia in older adults. Neurologist 13(3):105–117

    PubMed  Google Scholar 

  210. Duman RS (2004) Role of neurotrophic factors in the etiology and treatment of mood disorders. Neuromolecular Med 5:11–25

    PubMed  CAS  Google Scholar 

  211. Duman RS, Monteggia LM (2006) A neurotrophic model for stressrelated mood disorders. Biol Psychiatry 59:1116–1127

    PubMed  CAS  Google Scholar 

  212. Lindsay RM, Wiegand SJ, Altar CA, DiStefano PS (1994) Neurotrophic factors: from molecule to man. Trends Neurosci 17:182–190

    PubMed  CAS  Google Scholar 

  213. Sairanen M, O’Leary OF, Knuuttila JE, Castren E (2007) Chronic antidepressant treatment selectively increases expression of plasticity related proteins in the hippocampus and medial prefrontal cortex of the rat. Neuroscience 144:368–374

    PubMed  CAS  Google Scholar 

  214. Pang PT, Teng HK, Zaitsev E, Woo NT, Sakata K, Zhen S, Teng KK, Yung WH, Hempstead BL, Lu B (2004) Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 306:487–491

    PubMed  CAS  Google Scholar 

  215. Bekinschtein P, Cammarota M, Igaz LM, Bevilaqua LR, Izquierdo I, Medina JH (2007) Persistence of long-term memory storage requires a late protein synthesis- and BDNF- dependent phase in the hippocampus. Neuron 53:261–277

    PubMed  CAS  Google Scholar 

  216. Krishnan V, Nestler EJ (2008) The molecular neurobiology of depression. Nature 455(7215):894–902

    PubMed  CAS  Google Scholar 

  217. Nibuya M, Morinobu S, Duman RS (1995) Regulation of BDNF and TrkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 15:7539–7547

    PubMed  CAS  Google Scholar 

  218. Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT (2001) Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 50:260–265

    PubMed  CAS  Google Scholar 

  219. Sheline YI, Gado MH, Kraemer HC (2003) Untreated depression and hippocampal volume loss. Am J Psychiatry 160:1516–1518

    PubMed  Google Scholar 

  220. Karege F, Schwald M, Cisse M (2002) Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets. Neurosci Lett 328:261–264

    PubMed  CAS  Google Scholar 

  221. Shimizu E, Hashimoto K, Okamura N, Koike K, Komatsu N, Kumakiri C, Nakazato M, Watanabe H, Shinoda N, Okada S, Iyo M (2003) Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry 54:70–75

    PubMed  CAS  Google Scholar 

  222. Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS (2002) Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 22(8):3251–3261

    PubMed  CAS  Google Scholar 

  223. Coppell AL, Pei Q, Zetterström TS (2003) Bi-phasic change in BDNF gene expression following antidepressant drug treatment. Neuropharmacology 44(7):903–910

    PubMed  CAS  Google Scholar 

  224. De Foubert G, Carney SL, Robinson CS, Destexhe EJ, Tomlinson R, Hicks CA, Murray TK, Gaillard JP, Deville C, Xhenseval V, Thomas CE, O’Neill MJ, Zetterström TS (2004) Fluoxetine-induced change in rat brain expression of brain-derived neurotrophic factor varies depending on length of treatment. Neuroscience 128(3):597–604

    PubMed  Google Scholar 

  225. Messaoudi E, Ying SW, Kanhema T, Croll SD, Bramham CR (2002) Brain-derived neurotrophic factor triggers transcription-dependent, late phase long-term potentiation in vivo. J Neurosci 22(17):7453–7461

    PubMed  CAS  Google Scholar 

  226. Alme MN, Wibrand K, Dagestad G, Bramham CR (2007) Chronic fluoxetine treatment induces brain region-specific upregulation of genes associated with BDNF-induced long-term potentiation. Neural Plast 2007:26496

    PubMed  Google Scholar 

  227. Martinowich K, Manji H, Lu B (2007) New insights into BDNF function in depression and anxiety. Nat Neurosci 10(9):1089–1093

    PubMed  CAS  Google Scholar 

  228. Bueller JA, Aftab M, Sen S, Gomez-Hassan D, Burmeister M, Zubieta JK (2006) BDNF Val66Met allele is associated with reduced hippocampal volume in healthy subjects. Biol Psychiatry 59:812–815

    PubMed  CAS  Google Scholar 

  229. Hwang JP, Tsai SJ, Hong CJ, Yang CH, Lirng JF, Yang YM (2006) The Val66Met polymorphism of the brain-derived neurotrophic factor gene is associated with geriatric depression. Neurobiol Aging 27:1834–1837

    PubMed  CAS  Google Scholar 

  230. Pollak DD, Monje FJ, Zuckerman L, Denny CA, Drew MR, Kandel ER (2008) An animal model of a behavioral intervention for depression. Neuron 60(1):149–161

    PubMed  CAS  Google Scholar 

  231. Krishnan V, Han MH, Graham DL, Berton O, Renthal W, Russo SJ, Laplant Q, Graham A, Lutter M, Lagace DC, Ghose S, Reister R, Tannous P, Green TA, Neve RL, Chakravarty S, Kumar A, Eisch AJ, Self DW, Lee FS, Tamminga CA, Cooper DC, Gershenfeld HK, Nestler EJ (2007) Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131(2):391–404

    PubMed  CAS  Google Scholar 

  232. Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ, Graham D, Tsankova NM, Bolanos CA, Rios M, Monteggia LM, Self DW, Nestler EJ (2006) Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311(5762):864–868

    PubMed  CAS  Google Scholar 

  233. Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 9(4):519–525

    PubMed  CAS  Google Scholar 

  234. Nestler EJ, Carlezon WA Jr (2006) The mesolimbic dopamine reward circuit in depression. Biol Psychiatry 59(12):1151–1159

    PubMed  CAS  Google Scholar 

  235. Cummings JL (2003) Toward a molecular neuropsychiatry of neurodegenerative diseases. Ann Neurol 54(2):147–154

    PubMed  CAS  Google Scholar 

  236. Girgenti MJ, Hunsberger J, Duman CH, Sathyanesan M, Terwilliger R, Newton SS (2009) Erythropoietin induction by electroconvulsive seizure, gene regulation, and antidepressant-like behavioral effects. Biol Psychiatry. doi: 10.1016/j.biopsych.2008.12.005

  237. Joffe H, Cohen LS (1998) Estrogen, serotonin, and mood disturbance: where is the therapeutic bridge? Biol Psychiatry 44:798–811

    PubMed  CAS  Google Scholar 

  238. Sohrabji F, Greene LA, Miranda RC, Toran-Allerand CD (1994) Reciprocal regulation of estrogen and NGF receptors by their ligands in PC12 cells. J Neurobiol 25:974–988

    PubMed  CAS  Google Scholar 

  239. Kessler RC, McGonagle KA, Swartz M, Blazer DG, Nelson CB (1993) Sex and depression in the National Comorbidity Survey I: lifetime prevalence, chronicity and recurrence. J Affect Disord 29:85–96

    PubMed  CAS  Google Scholar 

  240. Parry BL, Newton RP (2001) Chronobiological basis of female-specific mood disorders. Neuropsycopharmacology 25(5):S102–S108

    CAS  Google Scholar 

  241. Young EA, Korszun A (2002) The hypothalamic-pituitary-gonadal axis in mood disorders. Endocrinol Metab Clin North Am 31(1):63–78

    PubMed  CAS  Google Scholar 

  242. Gallicchio L, Schilling C, Miller SR, Zacur H, Flaws JA (2007) Correlates of depressive symptoms among women undergoing the menopausal transition. J Psychosom Res 63:263–268

    PubMed  Google Scholar 

  243. Morsink LF, Vogelzangs N, Nicklas BJ, Beekman AT, Satterfield S, Rubin SM, Yaffe K, Simonsick E, Newman AB, Kritchevsky SB, Penninx BW, for the Health ABC study (2007) Associations between sex steroid hormone levels and depressive symptoms in elderly men and women: results from the Health ABC study. Psychoneuroendocrinology 32:874–883

    PubMed  CAS  Google Scholar 

  244. Young EA, Midgley AR, Carlson NE, Brown MB (2000) Alteration in the hypothalamic-pituitary-ovarian axis in depressed women. Arch Gen Psychiatry 57(12):1157–1162

    PubMed  CAS  Google Scholar 

  245. Carlson LE, Sherwin BB, Chertkow HM (2000) Relationships between mood and estradiol (E2) levels in Alzheimer’s disease (AD) patients. J Gerontol B55:47–53

    Google Scholar 

  246. Bloch M, Schmidt PJ, Su TP, Tobin MB, Rubinow DR (1998) Pituitary-adrenal hormones and testosterone across the menstrual cycle in women with premenstrual syndrome and controls. Biol Psychiatry 43:897–903

    PubMed  CAS  Google Scholar 

  247. Carlsson M, Carlsson A (1988) A regional study of sex differences in rat brain serotonin. Prog Neuropsychopharmacol Biol Psychiatry 12:53–61

    PubMed  CAS  Google Scholar 

  248. Haleem DJ, Kennett GA, Curzon G (1990) Hippocampal 5-hydroxy-tryptamine synthesis is greater in female rats than in males and more decreased by the 5-HT1A agonist 8-OHDPAT. J Neural Transm Gen Sect 79:93–101

    PubMed  CAS  Google Scholar 

  249. Nishizawa S, Benkelfat C, Young SN, Leyton M, Mzengeza S, deMontignuy C, Blier P, Diksic M (1997) Differences between males and females in rates of serotonin synthesis in human brain. Proc Natl Acad Sci USA 94:5308–5313

    PubMed  CAS  Google Scholar 

  250. Agren H, Mefford IN, Rudorfer MV, Linnoila M, Potter WZ (1986) Interacting neurotransmitter systems: a non-experimental approach to the 5-HIAA-HVA correlation in human CSF. J Psychiatr Res 20:175–193

    PubMed  CAS  Google Scholar 

  251. Biver F, Lotstra F, Monclus M, Wikler D, Damhaut P, Mendlewicz J, Goldman S (1996) Sex difference in 5HT2 receptor in the living human brain. Neurosci Lett 204:25–28

    PubMed  CAS  Google Scholar 

  252. Kendall DA, Stancel GM, Enna SJ (1981) Imipramine: effect of ovarian steroids on modifications in serotonin receptor binding. Science 211:1183–1185

    PubMed  CAS  Google Scholar 

  253. Westberg L, Eriksson E (2008) Sex steroid-related candidate genes in psychiatric disorders. J Psychiatry Neurosci 33(4):319–330

    PubMed  Google Scholar 

  254. Cheng R, Juo SH, Loth JE, Nee J, Iossifov I, Blumenthal R, Sharpe L, Kanyas K, Lerer B, Lilliston B, Smith M, Trautman K, Gilliam TC, Endicott J, Baron M (2006) Genome-wide linkage scan in a large bipolar disorder sample from the National Institute of Mental Health genetics initiative suggests putative loci for bipolar disorder, psychosis, suicide, and panic disorder. Mol Psychiatry 11:252–260

    PubMed  CAS  Google Scholar 

  255. Wochnik GM, Ruegg J, Abel GA, Schmidt U, Holsboer F, Rein T (2005) FK506-binding Proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells. J Biol Chem 28:4609–4616

    Google Scholar 

  256. Binder EB, Salyakina D, Lichtner P, Wochnik GM, Ising M, Pütz B, Papiol S, Seaman S, Lucae S, Kohli MA, Nickel T, Künzel HE, Fuchs B, Majer M, Pfennig A, Kern N, Brunner J, Modell S, Baghai T, Deiml T, Zill P, Bondy B, Rupprecht R, Messer T, Köhnlein O, Dabitz H, Brückl T, Müller N, Pfister H, Lieb R, Mueller JC, Lõhmussaar E, Strom TM, Bettecken T, Meitinger T, Uhr M, Rein T, Holsboer F, Muller-Myhsok B (2004) Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet 36:1319–1325

    PubMed  CAS  Google Scholar 

  257. Tsankova N, Renthal W, Kumar A, Nestler EJ (2007) Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 8:355–367

    PubMed  CAS  Google Scholar 

  258. McGowan PO, Sasaki A, D’Alessio AC, Dymov S, Labonté B, Szyf M, Turecki G, Meaney MJ (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 12(3):342–348

    PubMed  CAS  Google Scholar 

  259. Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7(8):847–854

    PubMed  CAS  Google Scholar 

  260. Levenson JM, Roth TL, Lubin FD, Miller CA, Huang IC, Desai P, Malone LM, Sweatt JD (2006) Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. J Biol Chem 281(23):15763–15773

    PubMed  CAS  Google Scholar 

  261. Chen Z, Skolnick P (2007) Triple uptake inhibitors: therapeutic potential in depression and beyond. Expert Opin Investig Drugs 16:1365–1377

    PubMed  Google Scholar 

  262. Skolnick P, Krieter P, Tizzano J, Basile A, Popik P, Czobor P, Lippa A (2006) Preclinical and clinical pharmacology of DOV216, 303, a “triple” reuptake inhibitor. CNS Drug Rev. 12:123–134

    PubMed  CAS  Google Scholar 

  263. Lotrich FE, Pollock BG (2005) Candidate genes for antidepressant response to selective serotonin reuptake inhibitors. Neuropsychiatr Dis Treat 1(1):17–35

    PubMed  CAS  Google Scholar 

  264. Kato T (2007) Molecular genetics of bipolar disorder and depression. Psychiatry Clin Neurosci 61(1):3–19

    PubMed  CAS  Google Scholar 

  265. Maier W, Zobel A (2008) Contribution of allelic variations to the phenotype of response to antidepressants and antipsychotics. Eur Arch Psychiatry Clin Neurosci 258(1):12–20

    PubMed  Google Scholar 

  266. Camilleri M (2007) Pharmacogenomics and serotonergic agents: research observations and potential clinical practice implications. Neurogastroenterol Motil 19(2):40–45

    PubMed  CAS  Google Scholar 

  267. Lesch KP (1998) Serotonin transporter and psychiatric disorders: listening to the gene. Neuroscientist 4:25–34

    CAS  Google Scholar 

  268. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, Poulton R (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301:368–389

    Google Scholar 

  269. Lotrich FE, Pollock BG (2004) Meta-analysis of serotonin transporter polymorphisms and affective disorder. Psychiatr Genet 14(3):121–129

    PubMed  Google Scholar 

  270. Yu YW, Tsai SJ, Chen TJ, Lin CH, Hong CJ (2002) Association study of the serotonin transporter promoter polymorphism and symptomatology and antidepressant response in major depressive disorders. Mol Psychiatry 7(10):1115–1119

    PubMed  CAS  Google Scholar 

  271. Arias B, Catalán R, Gastó C, Gutiérrez B, Fañanás L (2003) 5-HTTLPR polymorphism of the serotonin transporter gene predicts non-remission in major depression patients treated with citalopram in a 12-weeks follow up study. J Clin Psychopharmacol 23(6):563–567

    PubMed  CAS  Google Scholar 

  272. Serretti A, Cusin C, Rossini D, Artioli P, Dotoli D, Zanardi R (2004) Further evidence of a combined effect of SERTPR and TPH on SSRIs response in mood disorders. Am J Med Genet B Neuropsychiatr Genet 129:36–40

    Google Scholar 

  273. Murphy GM Jr, Kremer C, Rodrigues HE, Schatzberg AF (2003) Pharmacogenetics of antidepressant medication intolerance. Am J Psychiatry 160(10):1830–1835

    PubMed  Google Scholar 

  274. Gonzalez-Gay MA, Hajeer AH, Garcia-Porrua C, Dababneh A, Amoli MM, Botana MA, Thomson W, Llorca J, Ollier WE (2003) Corticotropin-releasing hormone promoter polymorphisms in patients with rheumatoid arthritis from northwest Spain. J Rheumatol 30(5):913–917

    PubMed  CAS  Google Scholar 

  275. Claes S, Villafuerte S, Forsgren T, Sluijs S, Del-Favero J, Adolfsson R, Van Broeckhoven C (2003) The corticotropin-releasing hormone binding protein is associated with major depression in a population from Northern Sweden. Biol Psychiatry 54(9):867–872

    PubMed  CAS  Google Scholar 

  276. Binder EB, Holsboer F (2006) Pharmacogenomics and antidepressant drugs. Ann Med 38:82–94

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cinzia Boselli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanni, C., Govoni, S., Lucchelli, A. et al. Depression and antidepressants: molecular and cellular aspects. Cell. Mol. Life Sci. 66, 2985–3008 (2009). https://doi.org/10.1007/s00018-009-0055-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0055-x

Keywords

Navigation