Skip to main content
Log in

The Discovery of Artificial Radioactivity

  • Published:
Physics in Perspective Aims and scope Submit manuscript

Abstract

We reconstruct Frédéric Joliot and Irène Curie’s discovery of artificial radioactivity in January 1934 based in part on documents preserved in the Joliot–Curie Archives in Paris, France. We argue that their discovery followed from the convergence of two parallel lines of research, on the neutron and on the positron, that were focused on a well-defined experimental problem, the nuclear transmutation of aluminum and other light elements. We suggest that a key role was played by a suggestion that Francis Perrin made at the seventh Solvay Conference at the end of October 1933, that the alpha-particle bombardment of aluminum produces an intermediate unstable isotope of phosphorus, which then decays by positron emission. We also suggest that a further idea that Perrin published in December 1933, and the pioneering theory of beta decay that Enrico Fermi also first published in December 1933, established a new theoretical framework that stimulated Joliot to resume the researches that he and Curie had interrupted after the Solvay Conference, now for the first time using a Geiger-Müller counter to detect the positrons emitted when he bombarded aluminum with polonium alpha particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Irène Curie and F. Joliot, “Un nouveau type de radioactivité,” Comptes rendus hebdomadaries des séances de l’Académie des Sciences 198 (1934), 254-256; reprinted in Frédèric et Irène Joliot-Curie, Œuvres Scientifiques Complètes. Ouvrage publié avec le concours du Centre National de la Recherche Scientifique (Paris: Presses Universitaires de France, 1961), pp. 515-516.

  2. F. Joliot and I. Curie, “Artificial Production of a New Kind of Radio-Element,” Nature 133 (1934), 201-202; Œuvres Scientifiques Complètes (ref. 1), pp. 520-521.

  3. “Artificial Radioactivity Produced for the First Time,” The Science News Letter (February 10, 1934), p. 83.

  4. Quoted in ibid.

  5. E. Fermi, “Radioattività indotta da bombardamento di neutroni.–I,” La Ricerca Scientifica 5 (1934), 283; reprinted in Collected Papers (Note e Memorie). Vol I. Italy 1921-1938 (Chicago: University of Chicago Press and Roma: Accademia Nazionale dei Lincei, 1962), pp. 645-646; translated as “Radioactivity Induced by Neutron Bombardment.–I,” in Collected Papers, pp. 674-675.

  6. D. Skobeltsyne, “La découverte de la radioactivité artificielle et son role dans le développement de la physique depuis vingt ans,” La Pensée: Revue de rationalisme moderne 56 (1954), 3-13; S. Rosenblum, “L’aspect historique de la découverte de la radioactivité artificielle,” Le Journal de Physique et le Radium 16 (1955), 743-747; P.M.S. Blackett, “Jean Frédéric Joliot,” Fellows of the Royal Society Obituary Notices 6 (1960), 86-105, esp. 90-93; Pierre Biquard, Frédéric Joliot-Curie (Paris: Éditions Seghers, 1961), pp. 40-51; idem, Frédéric Joliot-Curie: The Man and his Theories. Translated by Geoffrey Strachan (New York: Paul S. Erikson, 1966), pp. 31-39; Manuel Valadares, “The discovery of artificial radioactivity,” Impact of Science on Society 14 (1964), 83-88; Maurice Goldsmith, Frédéric Joliot-Curie. A biography (London: Lawrence and Wishart, 1976), pp. 48-59; Edoardo Amaldi, “From the Discovery of the Neutron to the Discovery of Nuclear Fission,” Physics Reports 111 (1984), 1-332, esp. 109-151; Richard Rhodes, The Making of the Atomic Bomb (New York: Simon and Schuster, 1986), pp. 198-202; Rosalynd Pflaum, Grand Obsession: Madame Curie and Her World (New York, London, Toronto, Sydney, Auckland: Doubleday, 1989), pp. 299-310.

  7. Francis Perrin, “Joliot, Frédéric,” in Charles Coulson Gillespie, ed., Dictionary of Scientific Biography. Vol. VII (New York: Charles Scribner’s Sons, 1973), pp. 151-157; F. Perrin, “La decouverte de la radioactivité beta positive,” Journal de Physique 43 Colloque C8, supplément au no 12 (Decembre 1982), 431-433; Pierre Radvanyi and Monique Bordry, La radioactivité artificielle et son histoire (Paris: Éditions du Seuil, 1984), pp. 95-119; Michel Pinault, Frédéric Joliot-Curie (Paris: Editions Odile Jacob, 2000), pp. 74-79; R.H. Stuewer, “The Discovery of Artificial Radioactivity,” in Monique Bordry and Pierre Radvanyi, ed., Œuvre et Engagement de Frédéric Joliot-Curie. À l’occaision du centième anniversaire de sa naissance (Les Ulis: EDP Sciences, 2001), pp. 11–20; Pierre Radvanyi, “La radioactivité artificielle,” Pour la Science. Les Génies de la Science. Les Curie 9 (2001-2002), 58-69.

  8. Radvanyi and Bordry, La radioactivité artificielle (ref. 7), p. 106.

  9. Institut International de Physique Solvay, Structure et Propriétés des Noyaux Atomiques. Rapports et Discussions du Septieme Conseil de Physique tenu a Bruxelles du 22 au 29 Octobre 1933 (Paris: Gauthier-Villars, 1934); hereafter cited as Solvay Rapports.

  10. W. Bothe and H. Becker, “Künstliche Erregung von Kern-γ-Strahlen,” Zeitschrift für Physik 66 (1930), 289-306.

  11. James Chadwick, “Possible Existence of a Neutron,” Nature 129 (1932), 312.

    Google Scholar 

  12. Interview of Lew Kowarski by Charles Weiner on March 20, 1969, Niels Bohr Library and Archives, American Institute of Physics, College Park, MD, USA, website <http://www.aip.org/history/ohilist/4717_1.html>, p. 57 of 78.

  13. Irène Curie and F. Joliot,Sur la nature du rayonnement pénétrant excité dans les noyaux légers par les particules α,” Comptes rendus 194 (1932), 1229-1232; Œuvres Scientifiques Complètes (ref. 1), pp. 368-370.

  14. Irène Curie and F. Joliot, “Le Projection de noyaux atomiques par un rayonnement très pénétrant. L’existence du neutron,” Actualités scientifiques et industrielles, XXXII (Paris: Hermann et Cie, 1932); Œuvres Scientifiques Complètes (ref. 1), pp. 422-437.

  15. Irène Curie and F. Joliot, “New Evidence for the Neutron,” Nature 130 (1932), 57; Œuvres Scientifiques Complètes (ref. 1), pp. 379-380.

  16. Irène Curie and F. Joliot, “Sur les conditions d’émission des neutrons par action des particules α sur lés éléments légers,” Comptes rendus 196 (1933), 397-399; Œuvres Scientifiques Complètes (ref. 1), pp. 399-401.

  17. Ibid., p. 399; 401.

  18. Pierre Auger and Gabriel Monod-Herzen, “Sur l’Emission de neutrons par l’aluminum sous l’action des particules α,” Comptes rendus 196 (1933), 543.

    Google Scholar 

  19. Matteo Leone and Nadia Robotti, “Frederic Joliot, Irène Curie and the early history of the positron (1932-33),” European Journal of Physics 31 (2010), 975-987.

    Article  ADS  Google Scholar 

  20. Carl D. Anderson, “The Apparent Existence of Easily Deflectable Positives,” Science 76 (1932), 238-239; idem, “The Positive Electron,” Physical Review 39 (1933), 491-494.

  21. Curie and Joliot, “Projection de noyaux atomiques” (ref. 14).

  22. Ibid., p. 12; 429.

  23. P.M.S. Blackett and G.P.S. Occhialini, “Some Photographs of the Tracks of Penetrating Radiation,” Proceedings of the Royal Society of London [A] 139 (1933), 699–727.

    Article  ADS  Google Scholar 

  24. J. Chadwick, P.M.S. Blackett, and G. Occhialini, “New Evidence for the Positive Electron,” Nature 131 (1933), 473.

    Article  ADS  Google Scholar 

  25. Irène Curie and F. Joliot, “Contribution à l’étude des électrons positifs,” Comptes rendus 196 (1933), 1105-1107; Œuvres Scientifiques Complètes (ref. 1), pp. 440-441.

  26. Irène Curie and F. Joliot, “Sur l’origin des electrons positifs,” Comptes rendus 196 (1933), 1581-1583; Œuvres Scientifiques Complètes (ref. 1), pp. 442-443.

  27. Ibid., p. 1582; 443.

  28. Irène Curie and F. Joliot, “Electrons de matérialisation et de transmutation,” Jour. Phys. et Rad. 4 (1933), 494-500, on 500; Œuvres Scientifiques Complètes (ref. 1), pp. 444-454, on p. 454.

  29. Irène Curie and F. Joliot, “Electrons positifs de transmutations,” Comptes rendus 196 (1933), 1885-1887; Œuvres Scientifiques Complètes (ref. 1), pp. 472-473.

  30. Curie and Joliot, “Electrons de matérialisation” (ref. 28), p. 498; 451.

  31. Irène Curie and F. Joliot, “Nouvelles recherches sur l’émission des neutrons,” Jour. Phys. et Rad. 4 (1933) 278-286, on 279; Œuvres Scientifiques Complètes (ref. 1), pp. 402-413, on p. 404.

  32. Ibid., p. 280; 404.

  33. Curie and Joliot, “Sur les conditions d’émission des neutrons” (ref. 16), p. 399; 401.

  34. Curie and Joliot, “Nouvelles recherches” (ref. 31), p. 280; 404.

  35. Curie and Joliot, “Electrons de matérialisation” (ref. 28).

  36. Curie and Joliot, “Electrons positifs de transmutations,” (ref. 29), p. 1886; 473.

  37. Ibid.

  38. Irène Curie and F. Joliot, “La complexité du proton et la masse du neutron,” Comptes rendus 197 (1933), 237-238; Œuvres Scientifiques Complètes (ref. 1), pp. 417-418; James Chadwick, “The Existence of a Neutron,” Proc. Roy. Soc. Lon. [A] 136 (1932), 692-708, esp. 700-702. For a detailed account, see Roger H. Stuewer, “Mass-Energy and the Neutron in the Early Thirties,” Science in Context 6 (1993), 195-238.

  39. Solvay Rapports (ref. 9).

  40. Roger H. Stuewer, “The Seventh Solvay Conference: Nuclear Physics at the Crossroads,” in Anne J. Kox and Daniel M. Siegel, ed., No Truth Except in the Details: Essays in Honor of Martin J. Klein (Dordrecht: Kluwer, 1995), pp. 333-362.

  41. Ibid., p. 337.

  42. Solvay Rapports (ref. 9), p. 176.

  43. Ibid., p. 173.

  44. Ibid., p. 177.

  45. Ibid., p. 153.

  46. Ibid., p. 174.

  47. Ibid., p. 179.

  48. Ibid., p. 180.

  49. Ibid..

  50. Ibid..

  51. J. Chadwick and M. Goldhaber, “A ‘Nuclear Photo-effect’: Disintegration of the Diplon by γ-Rays,” Nature 134 (1934), 237-238; Maurice Goldhaber, “The Nuclear Photoelectric Effect and Remarks on Higher Multipole Transitions: A Personal History,” in Roger H. Stuewer, ed., Nuclear Physics in Retrospect: Proceedings of a Symposium on the 1930 s (Minneapolis: University of Minnesota Press, 1979), pp. 83-106.

  52. Meitner to Curie, November 18, 1933, Meitner Papers, Churchill College Archives, Cambridge, England.

  53. Solvay Rapports (ref. 9), p. 177.

  54. Curie to Meitner, November 22, 1933, Meitner Papers (ref. 52).

  55. Frédéric Joliot, manuscript notes for 1948/49 course at the Sorbonne, Archives Irène Curie et Frédéric Joliot-Curie (1918-1958), Paris France, p. 20.

  56. Miscellaneous notes, Archives Irène Curie et Frédéric Joliot-Curie (ref. 55).

  57. F. Joliot, “Preuve expérimentale de l’annihilation des électrons positifs,” Comptes rendus 197 (1933), 1622-1625; Œuvres Scientifiques Complètes (ref. 1), pp. 456-458; idem, “Sur la dématérialisation de paires d’électrons,” ibid. 198 (1934), 81-83; Œuvres Scientifiques Complètes (ref. 1), pp. 459-461.

  58. Interview of Wolfgang Gentner by Charles Weiner on November 15, 1971, Niels Bohr Library and Archives, American Institute of Physics, College Park, MD, USA, pp. 16-20.

  59. Curie and Joliot, “Un nouveau type de radioactivité” (ref. 1).

  60. Ibid., p. 255; 515. Jean Thibaud’s throcoid method entailed sending positrons through a nonuniform magnetic field onto a photographic plate; see Jean Thibaud, “Déviation électrostatique et charge spécifique de l’électron positif,” Comptes rendus 197 (1933), 447-448; idem, “Étude des propriétés physiques du positron,” ibid, 915-917; idem, “Electrostatic Deflection of Positive Electrons,” Nature 132 (1933), 480-481.

  61. Curie and Joliot, “Un nouveau type de radioactivité” (ref. 1), p. 256; 516.

  62. Ibid.

  63. Francis Perrin, “Possibilité d’émission de particules neutres de masse intrinsèque nulle dans les radioactivités β,” Comptes rendus 197 (1933), 1625-1627.

    Google Scholar 

  64. Ibid., p. 1627.

  65. Francesco Guerra and Nadia Robotti, “Enrico Fermi’s Discovery of Neutron-Induced Artificial Radioactivity: the Influence of His Theory of Beta Decay,” Physics in Perspective 11 (2009), 379-404.

    Article  MathSciNet  Google Scholar 

  66. E. Fermi, “Tentativo di una teoria dell’emissione dei raggi ‘beta’,” Ric. Sci. 4 (1933), 491-495; reprinted in Collected Papers (ref. 5), pp. 540-544.

  67. E. Fermi, “Tentativo di una teoria dei raggi β,” Il Nuovo Cimento 11 (1934), 1-19; reprinted in Collected Papers (ref. 5), pp. 559-574; E. Fermi, “Versuch einer Theorie der β-Strahlen. I.,” Zeit. f. Phys. 88 (1934), 161-171; reprinted in Collected Papers (ref. 5), pp. 575-590.

  68. Solvay Rapports (ref. 9), pp. 324-325.

  69. Quoted in Laurie M. Brown and Helmut Rechenberg, “Field theories of nuclear forces in the 1930s: the Fermi-Field theory,” Historical Studies in the Physical and Biological Sciences 25 (1994), 1-24, on 9.

  70. Radvanyi and Bordry, La radioactivité artificielle (ref. 7), p. 106.

  71. Ibid., pp. 109-110.

  72. Curie and Joliot, “Un nouveau type de radioactivité” (ref. 1), p. 254, n. 2; 515, n. 2.

  73. Editor of Nature to Joliot, January 31, 1934, Archives Irène Curie et Frédéric Joliot-Curie Joliot-Curie (ref. 55).

  74. Joliot and Curie, “Artificial Production” (ref. 2).

  75. Ibid., p. 201; 520.

  76. Irène Curie and F. Joliot, “Séparation chimique des nouveaux radioéléments émetteurs d’électrons positifs,” Comptes rendus 198 (1934), 559-561; Œuvres Scientifiques Complètes (ref. 1), pp. 517-519.

  77. Frédéric Joliot, “Chemical evidence of the transmutation of elements” [Nobel Lecture, December 12, 1935] in Nobel Foundation, Nobel Lectures including Presentation Speeches and Laureates’ Biographies. Chemistry 1922-1941 (Amsterdam, London, New York: Elsevier Publishing Company, 1966), pp. 369-373, on p. 369.

  78. Curie and Joliot, “Séparation chimique” (ref. 76), pp. 561; 518-519.

  79. Rutherford to Joliot-Curie, January 29, 1934, Archives Irène Curie et Frédéric Joliot-Curie Joliot-Curie (ref. 55).

  80. Joliot-Curie to Rutherford, February 2, 1934, Archives Irène Curie et Frédéric Joliot-Curie Joliot-Curie (ref. 55).

  81. Curie and Joliot, “Artificial Production” (ref. 2), 202; 521; for “diplon,” “deuton,” and other earlier names, see Roger H. Stuewer, “The Naming of the Deuteron,” American Journal of Physics 54 (1986), 206-218.

  82. J.D. Cockcroft, C.W. Gilbert, and E.T.S. Walton, “Production of Induced Radioactivity by High Velocity Protons,” Nature 133 (1934), 328; Malcolm C. Henderson, M. Stanley Livingston, and Ernest O. Lawrence, “Artificial Radioactivity Produced by Deuton Bombardment,” Phys. Rev. 45 (1934), 428–429; H.R. Crane and C.C. Lauritsen, “Radioactivity from Carbon and Boron Oxide Bombarded with Deutons and the Conversion of Positrons into Radiation,” ibid., 430–432.

  83. J. Chadwick, “The Neutron” [Bakerian Lecture], Proc. Roy. Soc. Lon. 142 [A] (1933), 1-25, on 2.

  84. Rutherford nomination of Frédéric Joliot and Irène Curie, January 21, 1935, Nobel Archives, Center for History of Science, Royal Swedish Academy of Sciences, Stockholm, Sweden.

Download references

Acknowledgments

We thank the staffs of the Archives Irène Curie et Frédéric Joliot–Curie, the Churchill College Archives, and the Nobel Archives for permission to quote from their materials, the staff of the Archives Irène Curie et Frédéric Joliot–Curie for permission to reproduce figures 5, 7, 8, and 10, and Dr. Marion Kazemi of the Archiv zur Geschichte der Max-Planck Gesellschaft for permission to reproduce figure 6. Finally, we thank Roger H. Stuewer for his meticulous and knowledgeable editorial work on our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Leone.

Additional information

Francesco Guerra is Professor of Theoretical Physics in the Department of Physics of the Sapienza University of Rome; his main fields of research are quantum-field theory, statistical mechanics of complex systems, and history of nuclear physics and quantum-field theory. Matteo Leone is contract researcher in the Department of Physics of the University of Genoa; his main fields of research are the history of spectroscopy, atomic physics, nuclear physics, and scientific instruments. Nadia Robotti is Professor of History of Physics in the Department of Physics of the University of Genoa; her main fields of research are the history of atomic physics, quantum mechanics, nuclear physics, and scientific instruments.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerra, F., Leone, M. & Robotti, N. The Discovery of Artificial Radioactivity. Phys. Perspect. 14, 33–58 (2012). https://doi.org/10.1007/s00016-011-0064-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00016-011-0064-7

Keywords

Navigation