Skip to main content
Log in

Mathematical study of attractors to a 3D heated fluid

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

The Bardina model to regularize the three-dimensional periodic Boussinesq system is shown to have a global uniform attractor. A mean free initial temperature enables estimates that are from the first step time independent. This allows one to avoid classical technical difficulties generated by the buoyancy force while deriving absorbing balls for which all final bounds depend only on the viscosity, the thermal diffusivity, the regularizing parameter, and the heating source. Also, these bounds are valid for all positive times, not only for large times as it was usually the case due to the buoyancy force in precedent works related to the Boussinesq system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Farhany, K., Al-Muhja, B., Ali, F., Khan, U., Zaib, A., Raizah, Z., Galal, A.M.: The baffle length effects on the natural convection in nanofluid-filled square enclosure with sinusoidal temperature. Molecules 27(14), 4445 (2022)

  2. Annese, M., Bisconti, L., Catania, D.: Exponential attractors for the 3D fractional-order Bardina turbulence model with memory and horizontal filtering. J. Dynam. Differential Equations 34, 505–534 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bardina, J., Ferziger, J., Reynolds, W.: Improved subgrid scale models for large eddy simulation. Am. Inst. Aeronat. Astronaut. 80, 80–1357 (1980)

    Google Scholar 

  4. Benameur, J., Selmi, R.: Time decay and exponential stability of solutions to the periodic 3D Navier-Stokes equation in critical spaces. Math. Methods Appl. Sci 37(17), 2817–2828 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benameur, J., Selmi, R.: Long-time behavior of periodic Navier-Stokes equations in critical spaces. In: Progress in Analysis and its Applications, pp. 597–603. World Sci. Publ., Hackensack, NJ (2010)

  6. Birnir, B., Svanstedt, N.: Existence theory and strong attractors for the Rayleigh-Bénard problem with a large aspect ratio. Discrete Contin. Dyn. Syst. 10, 53–74 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Cao, Y., Lunasin, E.M., Titi, E.S.: Global well-posedness of three-dimensional viscous and inviscid simplified Bardina turbulence models. Comm. Math. Sci. 4, 823–884 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cao, Y., Jolly, M.S., Titi, E.S., Whitehead, J.P.: Algebraic bounds on the Rayleigh-Bénard attractor. Nonlinearity 34(1), 509–531 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chepyzhov, V.V.: Approximating the trajectory attractor of the 3D Navier-Stokes system using various \(\alpha \)-models of fluid dynamics. Sb. Math. 207(1), 610–638 (2016)

  10. Constantin, P., Foias, C.: Navier-Stokes Equations. The University of Chicago Press (1988)

    Book  MATH  Google Scholar 

  11. Huo, W., Huang, A.: The global attractor of the 2D Boussinesq equations with fractional Laplacian in subcritical case. Discrete Contin. Dyn. Syst. Ser. B. 21(8), 2531–2550 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang, A., Huo, W., Jolly, M.: Finite-dimensionality and determining modes of the global attractor for 2D Boussinesq equations with fractional laplacian. Adv. Nonlinear Stud. 18(3), 501–515 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kapustyan, O.V., Melnik, V.S., Valero, J.: A weak attractor and properties of solutions for the three-dimensional Bénard problem. Discrete Contin. Dyn. Syst. 18(2), 449–481 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Layton, W., Lewandowski, R.: On a well-posed turbulence model. Dicrete Contin. Dyn. Syst. Ser. B 6, 111–128 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Liu, H., Sun, C., Xin, J.: Attractors of the 3D magnetohydrodynamics equations with damping. Bull. Malays. Math. Sci. Soc. 44, 337–351 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Majda, A., Bertozzi, A.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  17. Norman, D.E.: Chemically reacting fluid flows: weak solutions and global attractors. J. Differential Equations 152, 75–135 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Roe, J.: Elliptic Operators, Topology and Asymptotic Methods. Pitman Research Notes in Mathematics Series, 179. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York (1988)

  19. Sboui, A., Selmi, R.: Well-posedness and convergence results for the 3D-Lagrange Boussinesq-\(\alpha \) system. Arch. Math. (Basel) 119(1), 89–100 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  20. Selmi, R.: Global well-posedness and convergence results for the 3D-regularized Boussinesq system. Canad. J. Math. 64(6), 1415–1436 (2012)

  21. Selmi, R.: Asymptotic study of mixed rotating MHD system. Bull. Korean Math. Soc. 47(2), 231–249 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Selmi, R.: Asymptotic study of an anisotropic periodic rotating MHD system. In: Further Progress in Analysis, pp. 368–378. World Sci. Publ., Hackensack, NJ (2009)

  23. Song, X.L., Liang, F., Wu, J.H.: Pullback \(\cal{D}\)-attractors for three-dimensional Navier-Stokes equations with nonlinear damping. Boundary Value Prob. 2016, Paper No. 145, 15 pp. (2016)

  24. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Applied Mathematical Sciences, vol. 68. Springer, New York (1988)

    Book  MATH  Google Scholar 

  25. Ushachew, E.G., Sharma, M.K., Makinde, O.D.: Numerical study of MHD heat convection of nanofluid in an open enclosure with internal heated object and sinusoidal heated bottom. Comput Thermal Sci 13(5), 1–16 (2021)

    Article  Google Scholar 

  26. Yang, X.J., Liu, H., Sun, C.F.: Global attractors of the 3D micropolar equations with damping term. Math Foundations Comput 4(2), 117–130 (2021)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the approval and the support of this research study by the grant no. SCIA-2022-11-1518 from the Deanship of Scientific Research at Northern Border University, Arar, K.S.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Selmi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Louati, H., Touati, A., Selmi, R. et al. Mathematical study of attractors to a 3D heated fluid. Arch. Math. 121, 317–328 (2023). https://doi.org/10.1007/s00013-023-01888-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-023-01888-5

Keywords

Mathematics Subject Classification

Navigation