Skip to main content
Log in

Weighted shadowing for delay differential equations

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

After introducing the notion of weighted shadowing, we give sufficient conditions under which certain nonlinear perturbations of nonautonomous linear delay differential equations exhibit the shadowing property with respect to a given weight function. As a corollary, it is shown that if the unperturbed equation admits a shifted exponential dichotomy and the Lipschitz constant of the nonlinear term is sufficiently small, then the perturbed system has a shadowing property with respect to an exponential weight function. An application to differential equations with small delay is given. The results are new even in the case of the standard shadowing property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arino, O., Pituk, M.: More on linear differential systems with small delays. J. Differential Equations 170, 381–407 (2001)

    Article  MathSciNet  Google Scholar 

  2. Backes, L., Dragičević, D.: Shadowing for nonautonomous dynamics. Adv. Nonlinear Stud. 19, 425–436 (2019)

    Article  MathSciNet  Google Scholar 

  3. Backes, L., Dragičević, D.: Shadowing for infinite dimensional dynamics and exponential trichotomies. Proc. R. Soc. Edinburgh Sect. A 151(3), 863–884 (2021)

    Article  MathSciNet  Google Scholar 

  4. Backes, L., Dragičević, D.: A general approach to nonautonomous shadowing for nonlinear dynamics. Bull. Sci. Math. 170, 102996 (2021)

    Article  MathSciNet  Google Scholar 

  5. Backes, L., Dragičević, D., Singh, L.: Shadowing for nonautonomous and nonlinear dynamics with impulses. Monatsh. Math. 198, 485–502 (2022)

  6. Barbu, D., Buşe, C., Tabassum, A.: Hyers–Ulam stability and discrete dichotomy. J. Math. Anal. Appl. 423, 1738–1752 (2015)

    Article  MathSciNet  Google Scholar 

  7. Bernardes, N., Jr., Cirilo, P.R., Darji, U.B., Messaoudi, A., Pujals, E.R.: Expansivity and shadowing in linear dynamics. J. Math. Anal. Appl. 461, 796–816 (2018)

    Article  MathSciNet  Google Scholar 

  8. Buşe, C., Lupulescu, V., O’Regan, D.: Hyers–Ulam stability for equations with differences and differential equations with time-dependent and periodic coefficients. Proc. R. Soc. Edinburgh Sect. A 150, 2175–2188 (2020)

    Article  MathSciNet  Google Scholar 

  9. Buşe, C., O’Regan, D., Saierli, O., Tabassum, A.: Hyers–Ulam stability and discrete dichotomy for difference periodic systems. Bull. Sci. Math. 140, 908–934 (2016)

    Article  MathSciNet  Google Scholar 

  10. Brzdek, J., Popa, D., Raşa, I., Xu, B.: Ulam Stability of Operators. Academic Press, London (2018)

    MATH  Google Scholar 

  11. Dragičević, D., Pituk, M.: Shadowing for nonautonomous difference equations with infinite delay. Appl. Math. Lett. 120, 107284 (2021)

    Article  MathSciNet  Google Scholar 

  12. Driver, R.D.: Linear differential systems with small delays. J. Differential Equations 21, 149–167 (1976)

    Article  MathSciNet  Google Scholar 

  13. Faria, T., Huang, W.: Special solutions for linear functional differential equations and asymptotic behaviour. Differential Integral Equations 18, 337–360 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Fukutaka, R., Onitsuka, M.: A necessary and sufficient condition for Hyers–Ulam stability of first-order periodic linear differential equations. Appl. Math. Lett. 100, 106040 (2020)

    Article  MathSciNet  Google Scholar 

  15. Gelbaum, B.R., Olmsted, J.M.: Theorems and Counterexamples in Mathematics. Springer, New York (1990)

    Book  Google Scholar 

  16. Hale, J.K.: Theory of Functional Differential Equations. Springer, New York (1977)

    Book  Google Scholar 

  17. Hale, J.K., Lin, X.-B.: Heteroclinic orbits for retarded functional differential equations. J. Differential Equations 65, 175–202 (1986)

    Article  MathSciNet  Google Scholar 

  18. Huang, J., Li, Y.: Hyers–Ulam stability of delay differential equations of first order. Math. Nachr. 289, 60–66 (2016)

    Article  MathSciNet  Google Scholar 

  19. Konstantinidis, K., Papaschinopoulos, G., Schinas, C.J.: Hyers–Ulam stability for a partial difference equation. Electron. J. Qual. Theory Differential Equations 67, 1–13 (2021)

    Article  MathSciNet  Google Scholar 

  20. Meyer, K.R., Sell, G.R.: An analytic proof of the shadowing lemma. Funkcial. Ekvac. 30, 127–133 (1987)

    MathSciNet  MATH  Google Scholar 

  21. Murakami, S., Naito, T., Van Minh, N.: Massera’s theorem for almost periodic solutions of functional differential equations. J. Math. Soc. Japan 56(1), 247–268 (2004)

    Article  MathSciNet  Google Scholar 

  22. Onitsuka, M.: Hyers–Ulam stability of first order linear differential equations of Carathéodory type and its applications. Appl. Math. Lett. 90, 61–68 (2019)

    Article  MathSciNet  Google Scholar 

  23. Otrocol, D., Ilea, V.: Ulam stability for a delay differential equation. Cent. Eur. J. Math. 11, 1296–1303 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Palmer, K.J.: Exponential dichotomies, the shadowing lemma, and transversal homoclinic points. Dyn. Rep. 1, 266–305 (1988)

    MathSciNet  MATH  Google Scholar 

  25. Palmer, K.: Shadowing in Dynamical Systems. Theory and Applications. Mathematics and its Applications, 501. Kluwer Academic Publishers, Dordrecht (2000)

    MATH  Google Scholar 

  26. Pilyugin, S.Yu.: Shadowing in Dynamical Systems. Lecture Notes in Mathematics, vol. 1706. Springer, Berlin (1999)

  27. Pilyugin, S.Yu.: Multiscale conditional shadowing. J. Dyn. Differential Equations (2021). https://doi.org/10.1007/s10884-021-10096-0

  28. Wang, J., Fečkan, M., Zhou, Y.: Ulam’s type stability of impulsive ordinary differential equations. J. Math. Anal. Appl. 395, 258–264 (2012)

    Article  MathSciNet  Google Scholar 

  29. Zada, A., Ali, W., Park, C.: Ulam’s type stability of higher order nonlinear delay differential equations via integral inequality of Grönwall–Bellman–Bihari’s type. Appl. Math. Comput. 350, 60–65 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Zada, A., Zada, B.: Hyers–Ulam stability and exponential dichotomy of discrete semigroup. Appl. Math. E-Notes 19, 527–534 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the referee for useful and constructive comments that helped us to improve our paper. L. Backes was partially supported by a CNPq-Brazil PQ fellowship under Grant no. 306484/2018-8. D. Dragičević was supported in part by Croatian Science Foundation under the Project IP-2019-04-1239 and by the University of Rijeka under the Projects uniri-prirod-18-9 and uniri-prprirod-19-16. M. Pituk was supported by the Hungarian National Research, Development and Innovation Office grant no. K139346. L. Singh was fully supported by Croatian Science Foundation under the Project IP-2019-04-1239.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davor Dragičević.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

For completeness, we prove a variant of the Moore–Osgood theorem which is needed for the proof of Lemma 3.2. For analogous results, see [15, Theorem 2.1.4.1 and Remark 2.1.4.1].

Moore-Osgood type theorem. Let \((X,\Vert \cdot \Vert _X)\) be a Banach space and \(\sigma \in {\mathbb {R}}\). Suppose that \(f_n:[\sigma ,\infty )\rightarrow X\), \(n\in \mathbb N\), is a sequence of functions such that:

  1. (a)

    the limit \(g_n:=\lim _{t\rightarrow \infty }f_n(t)\) exists uniformly for \(n\in {\mathbb {N}}\),

  2. (b)

    the limit \(h(t):=\lim _{n\rightarrow \infty }f_n(t)\) exists for all \(t\ge \sigma \).

Then the limit

$$\begin{aligned} l:=\lim _{n\rightarrow \infty }g_n \end{aligned}$$
(A.1)

exists and

$$\begin{aligned} \lim _{t\rightarrow \infty }h(t)=l, \end{aligned}$$
(A.2)

i.e.,

$$\begin{aligned} \lim _{n\rightarrow \infty }\lim _{t\rightarrow \infty }f_n(t)=\lim _{t\rightarrow \infty }\lim _{n\rightarrow \infty }f_n(t). \end{aligned}$$
(A.3)

Proof

First we prove the existence of the limit in (A.1). Let \(\epsilon >0\). Condition (a) guarantees that if we choose t large enough, then

$$\begin{aligned} \Vert f_n(t)-g_n\Vert _X<\frac{\epsilon }{4}\qquad \text { for all}\ n\in {\mathbb {N}}. \end{aligned}$$
(A.4)

Let such t be fixed. Condition (b) implies the existence of \(n_0\) such that

$$\begin{aligned} \Vert f_n(t)-h(t)\Vert _X<\frac{\epsilon }{4}\qquad \text { for}\ n\ge n_0. \end{aligned}$$
(A.5)

If \(n, m\ge n_0\), then (A.4), and (A.5), together with the triangle inequality, imply that

$$\begin{aligned} \Vert g_n-g_m\Vert _X&\le \Vert g_n-f_n(t)\Vert _X+\Vert f_n(t)-h(t)\Vert _X\\&\quad +\Vert h(t)-f_m(t)\Vert _X+\Vert f_m(t)-g_m\Vert _X<4\frac{\epsilon }{4}=\epsilon . \end{aligned}$$

Since \(\epsilon >0\) was arbitrary, this shows that \(\{g_n\}_{n=1}^\infty \) is a Cauchy sequence in X. Therefore, the limit in (A.1) exists.

Now we prove the limit relation (A.2). Let \(\epsilon >0\). Condition (a) implies the existence of \(\tau \ge \sigma \) such that

$$\begin{aligned} \Vert f_n(t)-g_n\Vert _X<\frac{\epsilon }{3}\qquad \text {whenever } t\ge \tau \text { and } n\in {\mathbb {N}}. \end{aligned}$$
(A.6)

Let \(t\ge \tau \). Condition (b) guarantees the existence of \(n_1\) such that

$$\begin{aligned} \Vert f_n(t)-h(t)\Vert _X<\frac{\epsilon }{3}\qquad \text { for}\ n\ge n_1, \end{aligned}$$
(A.7)

while (A.1) implies that there exists \(n_2\) such that

$$\begin{aligned} \Vert g_n-l\Vert _X<\frac{\epsilon }{3}\qquad \text { for}\ n\ge n_2. \end{aligned}$$
(A.8)

Define \(n:=\max \{n_1,n_2\}\). Then (A.6), (A.7), and (A.8), together with the triangle inequality, imply that

$$\begin{aligned} \Vert h(t)-l\Vert _X \le \Vert h(t)-f_n(t)\Vert _X+\Vert f_n(t)-g_n\Vert _X+\Vert g_n-l\Vert _X<3\frac{\epsilon }{3}=\epsilon . \end{aligned}$$

Thus, \(\Vert h(t)-l\Vert _X<\epsilon \) for all \(t\ge \tau \). Since \(\epsilon >0\) was arbitrary, this proves (A.2).\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Backes, L., Dragičević, D., Pituk, M. et al. Weighted shadowing for delay differential equations. Arch. Math. 119, 539–552 (2022). https://doi.org/10.1007/s00013-022-01769-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-022-01769-3

Keywords

Mathematics Subject Classification

Navigation