Skip to main content
Log in

A Moser/Bernstein type theorem in a Lie group with a left invariant metric under a gradient decay condition

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

We say that a PDE on the hyperbolic space \({\mathbb {H}}^{n}\) of constant sectional curvature \(-1,\) \(n\ge 2\), is geometric if, whenever u is a solution of the PDE on a domain \(\Omega \) of \({\mathbb {H}}^{n}\), the composition \(u_{\phi }:=u\circ \phi \) is also a solution on \(\phi ^{-1}\left( \Omega \right) \) for any isometry \(\phi \) of \({\mathbb {H}}^{n}\). We prove that if \(u\in C^{1}\left( {\mathbb {H}}^{n}\right) \) is a solution of a geometric PDE satisfying the comparison principle and if

$$\begin{aligned} \limsup _{r\rightarrow \infty }\left( e^{2r}\sup _{S_{r}}\left\| \nabla u\right\| \right) =0, \end{aligned}$$
(1)

where \(S_{r}\) is a geodesic sphere of \({\mathbb {H}}^{n}\) centered at a fixed point \(o\in {\mathbb {H}}^{n}\) with radius r,  then u is constant. However, given \(C>0,\) there exists a bounded non-constant harmonic function \(v\in C^{\infty }\left( {\mathbb {H}}^{n}\right) \) such that

$$\begin{aligned} \lim _{r\rightarrow \infty }\left( e^{r}\sup _{S_{r}}\left\| \nabla v\right\| \right) =C. \end{aligned}$$
(2)

We prove (1) by showing a similar result for left invariant PDEs on a Lie group and by endowing \({\mathbb {H}}^{n}\) with a Lie group structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bombieri, E., De Giorgi, E., Giusti, E.: Minimal cones and the Bernstein problem. Invent. Math. 7, 243–268 (1969)

    Article  MathSciNet  Google Scholar 

  2. Bianchini, B., Colombo, G., Magliaro, M., Mario, L., Pucci, P., Rigoli, M.: Recent rigidity for graphs with prescribed mean curvature. Math. Eng. 3(5), Paper No. 039, 48 pp. (2021)

  3. Bernstein,S. N.: Sur une théorème de géometrie et ses applications aux équations dérivées partielles du type elliptique. Comm. Soc. Math. Kharkov 15(2), 38–45 (1915–1917)

  4. Caffarelli, L., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian. Acta Math. 155(3–4), 261–301 (1985)

  5. Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces. Corrected reprint of the 1978 original. Graduate Studies in Mathematics, 34. American Mathematical Society, Providence, RI (2001)

  6. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Monographs of Math., vol. 80. Birkhäuser, Basel (1984)

  7. Milnor, J.: Curvatures of Left Invariant Metrics on Lie Groups. Adv. Math. 21, 293–329 (1976)

    Article  MathSciNet  Google Scholar 

  8. Moser, J.: On Harnack’s theorem for elliptic differential equations. Comm. Pure Appl. Math. 14, 577–591 (1961)

  9. Meeks, W., Pérez, J.: Constant mean curvature surfaces in metric Lie groups. In: Geometric Analysis: Partial Differential Equations and Surfaces, pp. 25–110. Contemp. Math., 570. Amer. Math. Soc., Providence, RI (2012)

  10. Pucci, P., Serrin, J.: The Maximum Principle. Progress in Nonlinear Differential Equations and their Applications, 73. Birkhäuser, Basel (2007)

  11. Rosenberg, H., Schulze, F., Spruck, J.: The half-space property and entire positive minimal graphs in \(M\times \mathbb{R}\). J. Differential Geom. 95(2), 321–336 (2013)

  12. Ripoll, J., Tomi, F.: Notes on the Dirichlet Problem of a Class of Second Order Elliptic Partial Differential Equations on a Riemannian Manifold. Ensaios Matemáticos [Mathematical Surveys], 32. Sociedade Brasileira de Matemática, Rio de Janeiro (2018)

  13. Simons, J.: Minimal varieties in Riemannian manifolds. Ann. of Math. 88, 62–105 (1968)

    Article  MathSciNet  Google Scholar 

  14. Williams, G.: The Dirichlet problem for the minimal surface equation. In: Instructional Workshop on Analysis and Geometry, Part I (Canberra, 1995), pp. 91–110. Proc. Centre Math. Appl. Austral. Nat. Univ., 34. Austral. Nat. Univ., Canberra (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Ripoll.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aiolfi, A., Bonorino, L., Ripoll, J. et al. A Moser/Bernstein type theorem in a Lie group with a left invariant metric under a gradient decay condition. Arch. Math. 119, 75–87 (2022). https://doi.org/10.1007/s00013-022-01728-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-022-01728-y

Keywords

Mathematics Subject Classification

Navigation