Skip to main content
Log in

Algorithmic complexity of Greenberg’s conjecture

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

Let k be a totally real number field and p a prime. We show that the “complexity” of Greenberg’s conjecture (\(\lambda = \mu = 0\)) is governed (under Leopoldt’s conjecture) by the finite torsion group \({{\mathscr {T}}}_k\) of the Galois group of the maximal abelian p-ramified pro-p-extension of k, by means of images, in \({{\mathscr {T}}}_k\), of ideal norms from the layers \(k_n\) of the cyclotomic tower (Theorem 4.2). These images are obtained via the algorithm computing, by “unscrewing”, the p-class group of \(k_n\). Conjecture 4.3 of equidistribution of these images would show that the number of steps \(b_n\) of the algorithms is bounded as \(n \rightarrow \infty \), so that (Theorem 3.3) Greenberg’s conjecture, hopeless within the sole framework of Iwasawa’s theory, would hold true “with probability 1”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. For more information on the main pioneering works about the practice of this theory, see “History of abelian p-ramification” in [10, Appendix] (e.g., Gras: “Crelle’s Journal” (1982/83), Jaulent: “Ann. Inst. Fourier” (1984) [12], Nguyen Quang Do: “Ann. Inst. Fourier” (1986) [20], Movahhedi “Thèse” (1988) and others). For convenience, we mostly refer to our book (2003/2005), which contains all the needed results in the most general statements. For more broad context about the base field k and the set S, see [19] and its bibliography.

References

  1. Belabas, K., Jaulent, J.-F.: The logarithmic class group package in PARI/GP. In: Publications mathématiques de Besançon. Algèbre et théorie des nombres, 2016. pp. 5–18. Publ. Math. Besançon Algèbre Théorie Nr., 2016. Presses Univ. Franche-Comté, Besançon (2017)

  2. Chevalley, C.: Sur la théorie du corps de classes dans les corps finis et les corps locaux (Thèse). J. Facul. Sci. Tokyo 2, 365–476 (1933)

    MATH  Google Scholar 

  3. Fukuda, T., Taya, H.: The Iwasawa \(\lambda \)-invariants of \({\mathbb{Z}}_p\)-extensions of real quadratic fields. Acta Arith. 69(3), 277–292 (1995)

    Article  MathSciNet  Google Scholar 

  4. Gras, G.: Class Field Theory: From Theory to Practice, Corrected. 2nd ed. Springer Monographs in Mathematics. Springer (2005)

  5. Gras, G.: Les \(\theta \)-régulateurs locaux d’un nombre algébrique : Conjectures \(p\)-adiques. Canad. J. Math. 68(3), 571–624 (2016). English translation: arXiv:1701.02618

  6. Gras, G.: Invariant generalized ideal classes—structure theorems for \(p\)-class groups in \(p\)-extensions. Proc. Math. Sci. 127(1), 1–34 (2017)

    Article  MathSciNet  Google Scholar 

  7. Gras, G.: Approche \(p\)-adique de la conjecture de Greenberg pour les corps totalement réels. Ann. Math. Blaise Pascal 24(2), 235–291 (2017). Numerical table: https://www.dropbox.com/s/tcqfp41plzl3u60/R

  8. Gras, G.: Normes d’idéaux dans la tour cyclotomique et conjecture de Greenberg. Ann. Math. Québec 43, 249–280 (2019)

    Article  MathSciNet  Google Scholar 

  9. Gras, G.: The \(p\)-adic Kummer–Leopoldt constant: normalized \(p\)-adic regulator. Int. J. Number Theory 14(2), 329–337 (2018)

    Article  MathSciNet  Google Scholar 

  10. Gras, G.: Practice of the incomplete \(p\)-ramification over a number field—history of abelian \(p\)-ramification. Comm. Adv. Math. Sci. 2(4), 251–280 (2019)

    Article  Google Scholar 

  11. Greenberg, R.: On the Iwasawa invariants of totally real number fields. Amer. J. Math. 98(1), 263–284 (1976)

    Article  MathSciNet  Google Scholar 

  12. Jaulent, J.-F.: \(S\)-classes infinitésimales d’un corps de nombres algébriques. Ann. Sci. Inst. Fourier 34(2), 1–27 (1984)

    Article  Google Scholar 

  13. Jaulent, J.-F.: Classes logarithmiques des corps de nombres. J. Théorie des Nombres de Bordeaux 6, 301–325 (1994)

    Article  MathSciNet  Google Scholar 

  14. Jaulent, J.-F.: Théorie \(\ell \)-adique globale du corps de classes. J. Théorie des Nombres de Bordeaux 10(2), 355–397 (1998)

    Article  MathSciNet  Google Scholar 

  15. Jaulent, J.-F.: Sur les normes cyclotomiques et les conjectures de Leopoldt et de Gross-Kuz’min. Ann. Math. Québec 41, 119–140 (2017)

    Article  MathSciNet  Google Scholar 

  16. Jaulent, J.-F.: Note sur la conjecture de Greenberg. J. Ramanujan Math. Soc. 34, 59–80 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Koch, H.: Galois theory of \(p\)-extensions. With a foreword by I.R. Shafarevich. Translated from the 1970 German original by Franz Lemmermeyer. With a postscript by the author and Lemmermeyer. Springer Monographs in Mathematics. Springer, Berlin (2002)

  18. Koymans, P., Pagano, C.: On the distribution of \({\cal{C}}(K)[\ell ^\infty ]\) for degree \(\ell \) cyclic fields. arXiv:1812.06884 (2018)

  19. Maire, C.: Sur la dimension cohomologique des pro-\(p\)-extensions des corps de nombres. J. Théorie des Nombres de Bordeaux 17(2), 575–606 (2005)

    Article  MathSciNet  Google Scholar 

  20. Nguy\(\tilde{\hat{\text{e}}}\)n-Quang-D\(\tilde{\hat{\text{ o }}}\), T.: Sur la \({\mathbb{Z}}_p\)-torsion de certains modules galoisiens. Ann. Inst. Fourier 36(2), 27–46 (1986)

  21. Nguy\(\tilde{\hat{\text{ e }}}\)n-Quang-D\(\tilde{\hat{\text{ o }}}\), T.: Formules de genres et conjecture de Greenberg. Ann. Math. Québec 42(2), 267–280 (2018)

  22. Smith, A.: \(2^\infty \)-Selmer groups, \(2^\infty \)-class groups and Goldfeld’s conjecture. arXiv:1702.02325 (2017)

  23. Taya, H.: On \(p\)-adic zeta functions and \({\mathbb{Z}}_p\)-extensions of certain totally real number fields. Tohoku Math. J. 51(1), 21–33 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I warmly thank the referee for a careful reading of the paper, for some corrections, and a question which is the subject of Remark 3.5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georges Gras.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gras, G. Algorithmic complexity of Greenberg’s conjecture. Arch. Math. 117, 277–289 (2021). https://doi.org/10.1007/s00013-021-01618-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-021-01618-9

Keywords

Mathematics Subject Classification

Navigation