Skip to main content
Log in

A Trudinger–Moser inequality of Adimurthi–Druet type involving higher order eigenvalues

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

Let \(\Omega \) be a smooth bounded domain in \({\mathbb {R}}^2\) and \(W_0^{1, 2}(\Omega )\) be the usual Sobolev space. Assume that \(0<\lambda _1(\Omega )<\lambda _2(\Omega )<\cdots \) are all distinct eigenvalues of the Laplace–Beltrami operator \(-\Delta \). Denote the eigenfunction space with respect to \(\lambda _j(\Omega )\) by \(E_{\lambda _j(\Omega )}\) for any integer \(j\ge 1\). For any \(\ell \ge 1\), we define

$$\begin{aligned} E_{\ell }^\perp =\left\{ u\in W_0^{1, 2}(\Omega ): \mathop \int \limits _\Omega uvdx=0, \, \, \forall v\in E_{\lambda _1(\Omega )}\oplus \cdots \oplus E_{\lambda _\ell (\Omega )}\right\} . \end{aligned}$$

We shall prove that there exists some constant \(\alpha _0\) with \(0<\alpha _0<\lambda _{\ell +1}(\Omega )\) such that when \(0\le \alpha \le \alpha _0\), the supremum

$$\begin{aligned} \Lambda _{\ell , \alpha }=\sup _{u\in E_\ell ^\perp , \, \Vert \nabla u\Vert _2\le 1}\mathop \int \limits _\Omega e^{4\pi u^2(1+\alpha \Vert u\Vert _2^2)}dx \end{aligned}$$

can be attained. This complements the result of Lu and Yang (Discrete Contin Dyn Syst 25:963–979, 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adimurthi, Druet, O.: Blow-up analysis in dimension 2 and a sharp form of Trudinger–Moser inequality. Comm. Partial Differ. Equ. 29, 295–322 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adimurthi, Struwe, M.: Global compactness properties of semilinear elliptic equations with critical exponential growth. J. Funct. Anal. 175, 125–167 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carleson, L., Chang, S.Y.A.: On the existence of an extremal function for an inequality of J. Moser. Bull. Sci. Math. 110, 113–127 (1986)

    MathSciNet  MATH  Google Scholar 

  4. Chen, W., Li, C.: Classification of solutions of some nonlinear elliptic equations. Duke Math. J. 63, 615–622 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. de Souza, M., do Ó, J.M.: A sharp Trudinger–Moser type inequality in \({\mathbb{R}}^2\). Trans. Am. Math. Soc. 366, 4513–4549 (2014)

    Article  MATH  Google Scholar 

  6. Ding, W., Jost, J., Li, J., Wang, G.: The differential equation \(-\Delta u=8\pi -8\pi he^u\) on a compact Riemann surface. Asian J. Math. 1, 230–248 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. do Ó, J.M., de Souza, M.: Trudinger–Moser inequality on the whole plane and extremal functions. Comm. Contemp. Math. 18, 2051–2057 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Flucher, M.: Extremal functions for the Trudinger–Moser inequality in 2 dimensions. Comment. Math. Helv. 67, 471–497 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Iula, S., Mancini, G.: Extremal functions for singular Moser–Trudinger embeddings. Nonlinear Anal. 156, 215–248 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, X.: An improved singular Trudinger–Moser inequality in \(\mathbb{R}^N\) and its extremal functions. J. Math. Anal. Appl. 462, 1109–1129 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, Y.: Moser–Trudinger inequality on compact Riemannian manifolds of dimension two. J. Partial Differ. Equ. 14, 163–192 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Lin, K.C.: Extremal functions for Moser’s inequality. Trans. Am. Math. Soc. 348, 2663–2671 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lu, G., Yang, Y.: Adams’ inequalities for bi-Laplacian and extremal functions in dimension four. Adv. Math. 220, 1135–1170 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lu, G., Yang, Y.: Sharp constant and extremal function for the improved Moser–Trudinger inequality involving \(L^p\) norm in two dimension. Discrete Contin. Dyn. Syst. 25, 963–979 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mancini, G., Thizy, P.: Non-existence of extremals for the Adimurthi-Druet inequality. J. Partial Differ. Equ. 255(2–3), 1051–1072 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077-1092 (1970/71)

  17. Nguyen, V.H.: Improved Moser–Trudinger inequality of Tintarev type in dimension \(n\) and the existence of its extremal functions. Ann. Glob. Anal. Geom. 54, 237–256 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Peetre, J.: Espaces d’interpolation et \(\rm th\acute{e}or\grave{e}me\) de Soboleff. Ann. Inst. Fourier (Grenoble) 16, 279–317 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pohozaev, S.I.: The Sobolev embedding in the special case \(pl=n\). In: Proceedings of the Technical Scientific Conference on Advances of Scientific Research 1964–1965, Mathematics sections, Moscow. Energet. Inst. 158–170 (1965)

  20. Struwe, M.: Positive solution of critical semilinear elliptic equations on non-contractible planar domain. J. Eur. Math. Soc. 2, 329–388 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tintarev, C.: Trudinger–Moser inequality with remainder terms. J. Funct. Anal. 266, 55–66 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Trudinger, N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–484 (1967)

    MathSciNet  MATH  Google Scholar 

  23. Yang, Y.: A sharp form of Moser–Trudinger inequality in high dimension. J. Funct. Anal. 239, 100–126 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yang, Y.: A sharp form of the Moser–Trudinger inequality on a compact Riemannian surface. Trans. Am. Math. Soc. 359, 5761–5776 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yang, Y.: Corrigendum to “A sharp form of Moser–Trudinger inequality in high dimension”. J. Funct. Anal. 242, 669–671 (2007)

    Article  MathSciNet  Google Scholar 

  26. Yang, Y.: Extremal functions for Trudinger–Moser inequalities of Adimurthi–Druet type in dimension two. J. Differ. Equ. 258, 3161–3193 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yang, Y.: Nonexistence of extremals for an inequality of Adimurthi-Druet on a closed Riemann surface. arXiv:1812.05884

  28. Yang, Y., Zhu, X.: Blow-up analysis concerning singular Trudinger–Moser inequalities in dimension two. J. Funct. Anal. 272, 3347–3374 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yang, Y., Zhu, X.: Existence of solutions to a class of Kazdan–Warner equations on compact Riemannian surface. Sci. China Math. 61, 1109–1128 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yuan, A., Zhu, X.: An improved singular Trudinger–Moser inequality in unit ball. J. Math. Anal. Appl. 435, 244–252 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yudovich, V.I.: Some estimates connected with integral operators and with solutions of elliptic equations. Dokl. Akad. Nauk SSSR 138, 805–808 (1961)

    MathSciNet  Google Scholar 

  32. Zhu, X.: A generalized Trudinger–Moser inequality on a compact Riemannian surface. Nonlinear Anal. 169, 38–58 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengjie Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M. A Trudinger–Moser inequality of Adimurthi–Druet type involving higher order eigenvalues. Arch. Math. 113, 399–413 (2019). https://doi.org/10.1007/s00013-019-01352-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-019-01352-3

Keywords

Mathematics Subject Classification

Navigation