Skip to main content
Log in

On the generalization of Faltings’ Annihilator Theorem

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

Let R be a commutative Noetherian ring, and let n be a non-negative integer. In this article, by using the theory of Gorenstein dimensions, it is shown that whenever R is a homomorphic image of a Noetherian Gorenstein ring, then the invariants \({\inf\{i \in \mathbb{N}_0|\, \rm{dim\, Supp}(\mathfrak{b}^t H_{\mathfrak{a}}^i(M)) \geq n\, \rm{for\, all}\, t \in \mathbb{N}_0\}}\) and \({\inf\{\lambda_{\mathfrak{a} R_{\mathfrak{p}}}^{\mathfrak{b} R_{\mathfrak{p}}}(M_{\mathfrak{p}})|\, \mathfrak{p} \in {\rm Spec} \, R\, \rm{and\, dim}\, R/ \mathfrak{p} \geq n\}}\) are equal, for every finitely generated R-module M and for all ideals \({\mathfrak{a}, \mathfrak{b}}\) of R with \({\mathfrak{b}\subseteq \mathfrak{a}}\). This generalizes Faltings’ Annihilator Theorem (see [6]).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Auslander, Anneaux de Gorenstein et torsion en algèbre commutative, Séminaire d,algèbre commutative 1966/67.

  2. M. Auslander and M. Bridger, Stable module theory, Mem. Amer. Math. Soc. 94 (1969).

  3. N. Bourbaki, Commutative algebra, Addison-Wesley, 1972.

  4. M.P. Brodmann and R.Y. Sharp, Local cohomology; an algebraic introduction with geometric applications, Cambridge University Press, Cambridge, 1998.

  5. L. W. Christensen, Gorenstein dimensions, Lecture Notes in Mathematics, no. 1747, Springer-Verlag, Berlin, 2000.

  6. Faltings G. (1978) Über die Annulatoren lokaler Kohomologiegruppen. Arch. Math. 30: 473–476

    Article  MATH  MathSciNet  Google Scholar 

  7. Goto S. (1982) Vanishing of \({{\rm Ext}_{R}^{i}(M, A)}\). J. Math. Kyoto Univ. 22: 481–484

    MATH  MathSciNet  Google Scholar 

  8. A. Grothendieck, Local cohomology, Notes by R. Hartshorne, Lecture Notes in Math., 862 (Springer, New York, 1966).

  9. Khashyarmanesh K., Salarian Sh. (2004) Faltings, theorem for the annihilation of local cohomology modules over a Gorenstein ring. Proc. Amer. Math. Soc. 132: 2215–2220

    Article  MATH  MathSciNet  Google Scholar 

  10. Khashyarmanesh K., Salarian Sh. (2006) Uniform annihilation of local cohomology modules over a Gorenstein ring. Comm. Algebra 34: 1625–1630

    Article  MATH  MathSciNet  Google Scholar 

  11. Melkersson L. (1990) On asymptotic stability for sets of prime ideals connected with the powers of an ideal. Math. Proc. Camb. Phil. Soc. 107: 267–271

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Naghipour.

Additional information

Dedicated to Professor Jürgen Herzog

This research was in part supported by a grant from IPM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doustimehr, M.R., Naghipour, R. On the generalization of Faltings’ Annihilator Theorem. Arch. Math. 102, 15–23 (2014). https://doi.org/10.1007/s00013-013-0601-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-013-0601-5

Mathematics Subject Classification (2010)

Keywords

Navigation