Skip to main content
Log in

A criterion for I-adic completeness

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

Let I denote an ideal in a commutative Noetherian ring R. Let M be an R-module. The I-adic completion is defined by \({\hat{M}^I = \varprojlim{}_{\alpha} M/I^{\alpha}M}\). Then M is called I-adic complete whenever the natural homomorphism \({M \to \hat{M}^I}\) is an isomorphism. Let M be I-separated, i.e. \({\cap_{\alpha} I^{\alpha}M = 0}\). In the main result of the paper, it is shown that M is I-adic complete if and only if \({{\rm Ext}_R^1(F,M) = 0}\) for the flat test module \({F = \oplus_{i = 1}^r R_{x_i}}\), where \({\{x_1,\ldots,x_r\}}\) is a system of elements such that \({{\rm Rad} I = {\rm Rad}\, \underline{{\it x}} R}\). This result extends several known statements starting with Jensen’s result [9, Proposition 3] that a finitely generated R-module M over a local ring R is complete if and only if \({{\rm Ext}^1_R(F,M) = 0}\) for any flat R-module F.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Alonso Tarrîo, A. Jeremias López, and J. Lipman Local homology and cohomology of schemes, Ann. scient. Éc. Norm. Sup., 4e sér. 30 (1997), 1–39

  2. Avramov L.L., Foxby H.-B.: Homological dimensions of unbounded complexes. J. Pure Appl. Algebra 71, 129–155 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  3. J. Bartijn Flatness, completions, regular sequences, un ménage à trois, Thesis, Utrecht, 1985.

  4. N. Bourbaki Algebrè commutative, Hermann, Paris, 1961.

  5. Buchweitz R.-O., Flenner H.: Power series rings and projectivity. Manuscripta math. 119, 107–114 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. E. E. Enochs and O. Jenda, Relative Homological Algebra, 2nd revised ed., Walter de Gruyter, Berlin, 2011.

  7. Frankild A., Sather-Wagstaff S.: Detecting completeness from Ext-Vanishing. Proc. Amer. Math. Soc. 136, 2303–2312 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Greenlees J.P.C., May J.P.: Derived functors of the I-adic completion and local homology. J. Algebra 149, 438–453 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. C. U. Jensen On the vanishing of \({\varprojlim{}^{(i)}}\), J. Algebra 15 (1970), 151–166.

  10. C. U. Jensen Les foncteurs dérivés de \({\varprojlim}\) et leurs applications en théorie des modules, Lecture Notes in Math. 254, Springer, 1972.

  11. Schenzel P.: Proregular sequences, local cohomology, and completion. Math. Scand. 92, 181–180 (2003)

    Google Scholar 

  12. Schenzel P.: On the structure of the endomorphism ring of a certain local cohomology module. J. Algebra 344, 229–245 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. P. Schenzel A criterion for completeness, to appear.

  14. Simon A.-M.: Some homological properties of complete modules. Math. Proc. Cambr. Phil. Soc. 108, 231–246 (1990)

    Article  MATH  Google Scholar 

  15. A.-M. Simon ‘Adic - completion and some dual homological results’, Publ. Matematiques Univ. Autonoma de Barcelona 36 (1992), 965–979.

  16. J. Strooker Homological questions in local algebra, London Math. Lect. Note Ser. 145, Cambridge Univ. Press, 1990.

  17. C. Weibel An introduction to homological algebra, Cambridge Univ. Press, 1994.

  18. Yekutieli A.: ‘On flatness and completion for infinitely generated modules over noetherian rings’. Comm. Algebra 39, 4221–4245 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Schenzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schenzel, P. A criterion for I-adic completeness. Arch. Math. 102, 25–33 (2014). https://doi.org/10.1007/s00013-013-0598-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-013-0598-9

Mathematics Subject Classification (1991)

Keywords

Navigation