Skip to main content
Log in

Remainder terms in a higher order Sobolev inequality

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

For higher order Hilbertian Sobolev spaces, we improve the embedding inequality for the critical L p-space by adding a remainder term with a suitable weak norm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almgren F.J., Lieb E.H.: Symmetric decreasing rearrangement is sometimes continuous. J. Amer. Math. Soc. 2, 683–773 (1989)

    MATH  MathSciNet  Google Scholar 

  2. Bartsch T., Weth T., Willem M.: A Sobolev inequality with remainder term and critical equations on domains with topology for the polyharmonic operator. Calc. Var. Partial Differential Equations 18, 253–268 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bianchi G., Egnell H.: A note on the Sobolev inequality. J. Funct. Anal. 100, 18–24 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brezis H., Lieb E.H.: Sobolev inequalities with remainder terms. J. Funct. Anal. 62, 73–86 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ferrero A., Gazzola F., Weth T.: Positivity, symmetry and uniqueness for minimizers of second-order Sobolev inequalities. Ann. Mat. Pura Appl. (4) 186, 565–578 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gazzola F.: Critical growth problems for polyharmonic operators. Proc. Roy. Soc. Edinburgh A 128, 251–263 (1998)

    MATH  MathSciNet  Google Scholar 

  7. Gazzola F., Grunau H.C.: Critical dimensions and higher order Sobolev inequalities with remainder terms. Nonlin. Diff. Eq. Appl. 8, 35–44 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. F. Gazzola, H. C. Grunau, and G. Sweers, Optimal Sobolev and Hardy-Rellich constants under Navier boundary conditions, to appear in Ann. Mat. Pura Appl.

  9. Ge Y.: Sharp Sobolev inequalities in critical dimensions. Michigan Math. J. 51, 27–45 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Grunau H.C.: Positive solutions to semilinear polyharmonic Dirichlet problems involving critical Sobolev exponents. Calc. Var. Partial Differential Equations 3, 243–252 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hunt R.A.: On L(p, q) spaces. Enseignement Math. (2) 12, 249–276 (1966)

    MATH  MathSciNet  Google Scholar 

  12. Swanson C.A.: The best Sobolev constant. Appl. Anal. 47, 227–239 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Talenti G.: Elliptic equations and rearrangements. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3, 697–718 (1976)

    MATH  MathSciNet  Google Scholar 

  14. Talenti G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. (4) 110, 353–372 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  15. van der Vorst R.C.A.M.: Best constant for the embedding of the space \({H^2\cap H^1_0(\Omega)}\) into L 2N/(N-4)(Ω). Differential Integral Equations 6, 259–276 (1993)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Weth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gazzola, F., Weth, T. Remainder terms in a higher order Sobolev inequality. Arch. Math. 95, 381–388 (2010). https://doi.org/10.1007/s00013-010-0170-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-010-0170-9

Mathematics Subject Classification (2000)

Keywords

Navigation